1. Calculate the number of	2. Calculate the mass of	3. Calculate the relative
moles present in each of the	substance present in the	molecular mass of the
following cases:	following cases:	following substances and suggest a possible identity of
		each substance:
a) 2.3 g of Na	a) 0.05 moles of Cl_2	a) 0.015 moles, 0.42 g
b) 2.5 g of O ₂	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
c) 240 kg of CO ₂	c) 0.075 moles of Ca(OH) ₂	c) 0.55 moles, 88 g
d) 12.5 g of Al(OH) ₃	d) 250 moles of Fe_2O_3	d) 2.25 moles, 63 g
e) 5.2 g of PbO ₂	e) 0.02 moles of Al ₂ (SO ₄) ₃	e) 0.00125 moles, 0.312 g

d) 100 g of N₂

4. Calculate the number of particles in the following substances:

```
a) 0.025 moles b) 2.5 g of CO<sub>2</sub> c) 5.0 g of Pb
```

5. Calculate the mass of the following substances: a) 2.5 x 10^{23} molecules of N₂ b) 1.5 x 10^{24} molecules of CO₂

c) 2×10^{20} atoms of Mg

Reacting Masses

- 6. Calculate the mass of H₂O required to react completely with 5.0 g of SiCl₄: SiCl₄ + 2H₂O \rightarrow SiO₂ + 4HCl
- 7. Calculate the mass of phosphorus required to make 200 g of phosphine, PH₃, by the reaction:

 $P_4(s) + 3NaOH(aq) + 3H_2O(1) \rightarrow 3NaH_2PO_2(aq) + PH_3(g)$

8. Lead (IV) oxide reacts with concentrated hydrochloric acid as follows:

 $PbO_2(s) + 4HCl(aq) \rightarrow PbCl_2(s) + Cl_2(g) + 2H_2O(l)$

What mass of lead chloride would be obtained from 37.2g of PbO₂, and what mass of chlorine gas would be produced?

9. When copper (II) nitrate is heated, it decomposes according to the following equation: 2Cu(NO₃)₂(s) → 2CuO(s) + 4NO₂(g) + O₂(g). When 20.0g of copper (II) nitrate is heated, what mass of copper (II) oxide would be produced? What mass of NO₂ would be produced?

Using molarities and concentrations

- 1. Calculate the number of moles of H_2SO_4 in 50 cm³ of a 0.50 moldm⁻³ solution.
- 2. Calculate the number of moles of $FeSO_4$ in 25 cm³ of a 0.2 moldm⁻³ solution.
- 3. Calculate the mass of $KMnO_4$ in 25 cm³ of a 0.02 moldm⁻³ solution.
- 4. Calculate the mass of $Pb(NO_3)_2$ in 30 cm³ of a 0.1 moldm⁻³ solution.

- 5. What is the molarity of 1.06g of H_2SO_4 in 250 cm³ of solution?
- 6. What is the molarity of 15.0 g of $CuSO_{4.5}H_2O$ in 250 cm³ of solution?
- 7. What volume of a 0.833 moldm⁻³ solution of H_2O_2 will be required to make 250 cm³ of a 0.100 moldm⁻³ solution?
- 8. What volume of a 0.50 moldm⁻³ solution of HCl will be required to make 100 cm³ of a 0.050M solution?
- 9. How many moles of NaCl are there in 25 cm^3 of a 50 gdm⁻³ solution?

- 1. A compound contains C 62.08%, H 10.34% and O 27.58% by mass. Find its empirical formula and its molecular formula given that its relative molecular mass is 58.
- 2. Find the empirical formula of the compound containing C 22.02%, H 4.59% and Br 73.39% by mass.
- 3. A compound containing 85.71% C and 14.29% H has a relative molecular mass of 56. Find its molecular formula.
- 4. A compound containing 84.21% carbon and 15.79% hydrogen by mass has a relative molecular mass of 114. Find its molecular formula.
- 5. Analysis of a hydrocarbon showed that 7.8 g of the hydrocarbon contained 0.6 g of hydrogen and that the relative molecular mass was 78. Find the molecular formula of the hydrocarbon.
- 6. 3.36 g of iron join with 1.44 g of oxygen in an oxide of iron. What is the empirical formula of the oxide?
- 7. What is the percentage composition of SiCl₄?
- 8. What is the mass of sulphur in 1 tonne of H_2SO_4 ?