Intro to Chemistry II

1. Calculate the number of moles present in each of the following cases:	2. Calculate the mass of substance present in the following cases:	3. Calculate the relative molecular mass of the following substances and suggest a possible identity of each substance:
a) 2.3 g of Na	a) 0.05 moles of Cl_{2}	a) 0.015 moles, 0.42 g
b) 2.5 g of O		
c) 240 kg of CO		
2	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
d) 12.5 g of Al(OH $)_{3}$	c) 0.075 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$	c) 0.55 moles, 88 g
e) 5.2 g of PbO_{2}	d) 250 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$	d) 2.25 moles, 63 g

4. Calculate the number of particles in the following substances:
a) 0.025 moles
b) $2.5 \mathrm{~g}^{\text {of } \mathrm{CO}_{2}}$
c) 5.0 g of Pb
d) 100 g of N_{2}
5. Calculate the mass of the following substances:
a) 2.5×10^{23} molecules of N_{2}
b) 1.5×10^{24} molecules of CO_{2}
c) 2×10^{20} atoms of Mg

Reacting Masses

6. Calculate the mass of $\mathrm{H}_{2} \mathrm{O}$ required to react completely with 5.0 g of SiCl_{4} :

$$
\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}
$$

7. Calculate the mass of phosphorus required to make 200 g of phosphine, PH_{3}, by the reaction:

$$
\mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{NaOH}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{NaH}_{2} \mathrm{PO}_{2}(\mathrm{aq})+\mathrm{PH}_{3}(\mathrm{~g})
$$

8. Lead (IV) oxide reacts with concentrated hydrochloric acid as follows:

$$
\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What mass of lead chloride would be obtained from $37.2 \mathrm{~g}_{\text {of }} \mathrm{PbO}_{2}$, and what mass of chlorine gas would be produced?
9. When copper (II) nitrate is heated, it decomposes according to the following equation:
$2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
When 20.0 g of copper (II) nitrate is heated, what mass of copper (II) oxide would be produced?
What mass of NO_{2} would be produced?

Using molarities and concentrations

1. Calculate the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $50 \mathrm{~cm}^{3}$ of a $0.50 \mathrm{moldm}^{-3}$ solution.
2. Calculate the number of moles of FeSO_{4} in $25 \mathrm{~cm}^{3}$ of a 0.2 moldm ${ }^{-3}$ solution.
3. Calculate the mass of KMnO_{4} in $25 \mathrm{~cm}^{3}$ of a 0.02 moldm $^{-3}$ solution.
4. Calculate the mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in $30 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{moldm}^{-3}$ solution.
5. What is the molarity of $1.06 \mathrm{~g}_{\text {of }} \mathrm{H}_{2} \mathrm{SO}_{4}$ in $250 \mathrm{~cm}^{3}$ of solution?
6. What is the molarity of 15.0 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution?
7. What volume of a 0.833 moldm $^{-3}$ solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ will be required to make $250 \mathrm{~cm}^{3}$ of a 0.100 moldm $^{-3}$ solution?
8. What volume of a $0.50 \mathrm{moldm}^{-3}$ solution of HCl will be required to make $100 \mathrm{~cm}^{3}$ of a 0.050 M solution?
9. How many moles of NaCl are there in $25 \mathrm{~cm}^{3}$ of a $50 \mathrm{gdm}^{-3}$ solution?
10. A compound contains $\mathrm{C} 62.08 \%, \mathrm{H} 10.34 \%$ and $\mathrm{O} 27.58 \%$ by mass. Find its empirical formula and its molecular formula given that its relative molecular mass is 58 .
11. Find the empirical formula of the compound containing C $22.02 \%, \mathrm{H} 4.59 \%$ and Br 73.39% by mass.
12. A compound containing $85.71 \% \mathrm{C}$ and $14.29 \% \mathrm{H}$ has a relative molecular mass of 56 . Find its molecular formula.
13. A compound containing 84.21% carbon and 15.79% hydrogen by mass has a relative molecular mass of 114. Find its molecular formula.
14. Analysis of a hydrocarbon showed that 7.8 g of the hydrocarbon contained 0.6 g of hydrogen and that the relative molecular mass was 78 . Find the molecular formula of the hydrocarbon.
15. 3.36 g of iron join with 1.44 g of oxygen in an oxide of iron. What is the empirical formula of the oxide?
16. What is the percentage composition of SiCl_{4} ?
17. What is the mass of sulphur in 1 tonne of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
