1. (i) Show how equation A below can be re-arranged to give equation B:

(A)
$$\left(P + \frac{an^2}{V^2}\right) \left(\frac{1}{V} - n^{3/2}\right) = nRT$$

(B)
$$a = \left(\frac{nRTV^3}{n^2 - Vn^{7/2}} - \frac{PV^2}{n^2}\right)$$

2. (i) Solve the simultaneous equations

$$2x + y = 5$$

$$\frac{y}{2} + 6x = 7.5$$

3. Combine the two functions f(x) and g(x) to give expressions for f(g(x)) and g(f(x)).

$$f(x) = 8\cos^{3}(1 - x^{3})$$

$$g(x) = \sqrt[3]{x}$$

4. (i) Solve the following quadratic equation by factorising or using the formula given at the top of this exam paper: [7]

$$x^2 - 4x - 12 = 0$$

(ii) Sketch the function below marking the points at which it crosses both axes <u>and</u> the coordinates of the maxima/minima. [6]

$$y = x^2 - 4x - 12$$

5. (i) Evaluate: $\lim_{x \to \infty} 2e^{-\left(\frac{1}{x^2}\right)}$

(ii) In practice this limit is never reached. For what value of x would this function be within 90% of the limiting value given in part (i).

[4]

[4]

(iii) Evaluate:
$$\lim_{x \to 0} \left(\frac{x + 3x^2}{x} \right)$$

[4]

6. (i) Change the base of the following logarithmic expression from e to base 10 and simplify as far as possible:

[5]

$$\ln\!\left(\frac{x^3}{100}\right)$$

(ii) Expand and simplify:

$$\log_4\left(\frac{256}{x^3}\right)$$

[5]

[4x4]

7. What is the derivative of y for each of the following functions?

(i)
$$y = (x-1)(x+1)$$

(ii)
$$y = \frac{4}{x} + x^3 - 1$$

(iii)
$$y = x^2 e^{(x+2)}$$

(v)
$$y = \cos(3x - x^2)$$