1. Show how equation A can be rearranged to give Equation B. Show all your working.

Equation A: $\quad a=\frac{b(\ln y-2 \ln A)}{x^{2}-1}$

Equation B: $\quad y=A^{2} e^{\left(\frac{a x^{2}-a}{b}\right)}$
2. (i) Solve the simultaneous equations:
$x+\frac{y}{3}=2.5$
$3 x+2 y=13.5$
3. Combine the two functions $f(x)$ and $g(x)$ to give expressions for $f(g(x))$ and $g(f(x))$.
$f(x)=x \sin ^{4}\left(x^{3}\right)$
$g(x)=\sqrt{x}$
4. (i) Determine the x-coordinates of the turning points of the following cubic equation by differentiating and factorising. Show all your working.
$y=\frac{4}{3} x^{3}-\frac{3}{2} x^{2}-x+4$
(ii) Sketch the function below marking the points at which it crosses both axes and the coordinates of the maxima/minima.
$y=4 x^{2}-3 x-1$
5. For the function $f(x)=\left(\frac{1}{e^{(x-2)}+3}\right)$ evaluate the following limits:
(i) $\quad \lim _{x \rightarrow 0}\left(\frac{1}{e^{(x-2)}+3}\right)$
(ii) $\lim _{x \rightarrow-\infty}\left(\frac{1}{e^{(x-2)}+3}\right)$
(iii) $\lim _{x \rightarrow 2}\left(\frac{1}{e^{(x-2)}+3}\right)$
6. (i) Change the base of the following logarithmic expression from 3 to base 10 and simplify as far as possible:
$\log _{3}\left(10 x^{4}\right)$
(ii) Expand and simplify the following logarithmic expression:
$\log _{3}\left(\frac{27}{x^{2}}\right)$
7. What is the derivative of y for each of the following functions?
(i) $y=\tan (x)+2 e^{5 x}-\frac{1}{x^{2}}$
(ii) $y=x^{2} \tan (3 x)$
(iii) $y=\ln \left(x^{3}-1\right) \sqrt{x^{2}-2}$
(iv) $y=\left(e^{2 x}+2 x\right)^{2}$

