

A novel SEXY approach to conquer poor resolution in Solid-State NMR

Ruben Tomas

Supervisors: Trent Franks, Peter Gierth and Józef Lewandowski

19th June 2017

Why Solid-State NMR?

- Information on the structure and dynamics of biomolecules
- Large molecules tumble slowly in solution-state NMR

Solid-state NMR also has issues

Extraction of structural information from extensively broadened peaks

Methodology

- Bruker Avance II+ spectrometer at a ¹H Larmor frequency of 600 MHz
- ➤ 1.3 mm triple-resonance magic angle spinning (MAS) probe
- MAS frequency of 60 KHz

Proof of Concept

$$\begin{array}{c|c} C\delta_1 \\ C\gamma \\ C\delta_2 \\ O \\ C\beta \\ C\beta \\ C\gamma \\ S \\ C\epsilon \\ \end{array}$$

N-formyl-Met-Leu-Phe-OH (fMLF).

- Crystalline sample
- No inhomogeneous broadening

One-dimensional ¹³C-spectrum of MLF

Optimisation

➤ 2D ¹³C-SEXY difference spectra of MLF obtained at different nutation frequencies and pulse durations.

Temperature control

2D ¹³C-SEXY spectrum with temperature control

Chemical shift anisotropy

- Mapping of CSA was attempted using a 'grid search' method
- Saturation frequencies increased in 250 Hz increments

How does SEXY compare to PDSD?

Conclusions and future work

- SEXY presents a novel approach to tackle inhomogeneous broadening
- ➤ Analysis using MLF has provided proof-of-concept
- > Future work is required to optimise this experiment
- Analysis of samples containing various degrees of inhomogeneous broadening is required

Acknowledgments

- Trent Franks
- Peter Gierth
- Józef Lewandowski

Thank you for listening! Any questions?

