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1 Introduction

We study the following one-dimensional version of the cloaking problem:

φxx(x) + (k(x))2φ(x) = 0, x ∈ (0, 1), (1)

φ(x) = 1, x = 0, (2)

φ′(x) = ik0, x = 0, (3)

φ(x) = 0, x = 1. (4)

where k(x) is the refractivity index of the cloaking medium in (0, 1). For the right-hand side
boundary condition to be satisfied we expect k(1) =∞.

Some remarks are in order here.

1. Condition 1 is the Helmholtz equation for waves travelling in a medium with inhomoge-
neous refractive index k(x).

2. Condition 2 is a continuity condition which we require for k(x), for a wave φ−(x) = eik0x

coming from −∞ we want, φ−(0) = φ−(0). Similarly, we want φ−x (0) = φx(0) which is
Condition 3.

3. Condition 4 is the requirement that no waves reach the target.

We begin with the case where k is constant.

2 The solution for k(x) = k constant

Suppose we neglect equation 4, and consider the corresponding initial-value problem; then the
solutions will be of the form

φ(x) = A cos(kx) +B sin(kx),

where A and B are chosen to satisfy

1 = φ(0) = A,

and
ik0 = kB.

It follows that φ(1) = cos(k) + ik0
k sin(k), which is zero if and only if k ∈ (n + 1

2)π and
k0 = 0.

3 Solutions for k(x) = (1− x)−n

We have some intuition about k(x).

1. k(x) = n(x)M , where n(x) is the index of refractivity of the medium in (0, 1), which
describes the rate at which the velocity of the wavelength is decreased and M is the angular
frequency.

2. Thus expect n(1) =∞.

Without loss of generality assume that M = 1 (we can rescale the harmonic components of the
solution later). As a guess it would make sense to try something of the form k(x) =M(1−x)−n,
for some n ∈ N.
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3.1 For k = M(1− x)−1

We want to solve

φxx +
M2

(1− x)2
φ = 0.

Trying φ = (1− x)λ in the equation gives λ2 − λ+M2 = 0. So

λ1,2 =
1

2
±
√
1− 4M2

2
.

3.1.1 Two distinct real roots (1− 4M2 > 0)

General solution

φ = A(1− x)
1
2
+

√
1−4M2

2 +B(1− x)
1
2
−
√

1−4M2

2

Clearly φ(1) = 0 is satisfied and φ(0) = 1 implies

1 = A+B.

The condition on the derivative requires

φ′(x) = −Aλ1(1− x)λ1−1 −Bλ2(1− x)λ2−1 (5)

so φ′(0) = ik0 = −λ1A− λ2(1−A) implies

A =
λ2 + ik0
λ2 − λ1

and B = −λ1 + ik0
λ2 − λ1

.

The final solution then is

φ(x) =
λ2 + ik0
λ2 − λ1

(1− x)λ1 − λ1 + ik0
λ2 − λ1

(1− x)λ2 .

3.1.2 Two distinct complex roots (1− 4M2 < 0)

The roots are

λ =
1

2
± i
√
4M2 − 1

2

So

(1− x)λ = eλ ln(1−x) = e
1
2
ln(1−x)±i

√
4M2−1

2
ln(1−x) = e

1
2
ln(1−x)e±i

√
4M2−1

2
ln(1−x)

=
√
1− x

[
cos

(
±
√
4M2 − 1

2
ln(1− x)

)
+ i sin

(
±
√
4M2 − 1

2
ln(1− x)

)]
=
√
1− x [cos (±C ln(1− x)) + i sin (±C ln(1− x))]

where C =
√
4M2−1

2 . So the general solution is

φ(x) =
√
1− xA cos (C ln(1− x)) +

√
1− xB sin (C ln(1− x)) .

We apply the boundary conditions to find the constants A and B. From φ(0) = 1 we immediately
obtain that A = 1. From the condition ik0 = φ′(0) we see that B = −2ik0+1

2C . Our solution
therefore is

φ(x) =
√
1− x

(
cos (C ln(1− x))− 2ik0 + 1

2C
sin (C ln(1− x))

)
.
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3.2 Solutions for k(x) = M(1− x)−2

The case when n = 2 seems equally simple to solve. The resulting boundary value problem is

φxx(x) +
M2

(1− x)4
φ(x) = 0, x ∈ (0, 1),

φ(x) = 1, x = 0,

φ′(x) = ik0, x = 0,

φ(x) = 0, x = 1.

The fundamental solutions are given by

(x− 1) sin

(
Mx

x− 1

)
and (x− 1) cos

(
Mx

x− 1

)
.

This follows since

φ′1(x) = sin

(
Mx

x− 1

)
+ (x− 1)

(
M

x− 1
− Mx

(1− x)2

)
cos

(
Mx

x− 1

)
,

and

φ′′1(x) = −M2
sin
(
Mx
x−1

)
(x− 1)3

,

so that
φ′′1(x) +M2(1− x)−4φ1(x) = 0,

and similarly
φ′′2(x) +M2(1− x)−4φ2(x) = 0.

The Wronskian of these solutions is non-zero, so these solutions are indeed linearly independent.
Writing

φ(x) = A(x− 1) sin

(
Mx

x− 1

)
+B(x− 1) cos

(
Mx

x− 1

)
,

at x = 0, we have
1 = φ(0) = −B,

and
ik0 =M.A+B,

so that A = (1 + ik0)/M and B = −1. This gives us the solution

φ(x) =
(1 + ik0)

M
(x− 1) sin

(
x

x− 1

)
− (x− 1) cos

(
x

x− 1

)
To check whether φ(x) satisfies the right boundary condition φ(1) = 0, we note that

lim
x→1

(
(x− 1) sin

(
x

x− 1

))
= 0 and lim

x→1

(
(x− 1) cos

(
x

x− 1

))
= 0,

so that the right boundary condition is satisfied also.
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Figure 1: Plot of Re[φ(x)] for k0 = 20, with k(x) = (1− x)−2,
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Figure 2: Plot of Im[φ(x)] for k0 = 20, with k(x) = (1− x)−2,
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Figure 3: Plot of Re[φ(x)] for k0 = 20, with k(x) = (1− x)−1,
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Figure 4: Plot of Im[φ(x)] for k0 = 20 with k(x) = (1− x)−1,
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4 Regularisation of k(x).

We now wish to perturb the problem such that k(x) → 1
ε as x → 1, and measure the error

introduced in this perturbation. To this end, we consider k(x) = M(1 + ε − x)−1. We want to
solve

φxx +
M2

(1 + ε− x)2
φ = 0.

Trying φ = (1 + ε− x)λ in the equation gives λ2 − λ+M2 = 0. So

λ± =
1± p
2

,

where
p =

√
1− 4M2.

4.1 Two distinct real roots (1− 4M2 > 0), n = 1

A general solution will be of the form

A(1− x+ ε)λ+ +B(1− x+ ε)λ− ,

for some constants A,B ∈ C. Applying the boundary conditions at x = 0:

1 = A(1 + ε)λ+ +B(1 + ε)λ− = q1A+ q2B,

and
ik0 = (1 + ε)λ+−1λ+A+ (1 + ε)λ−−1λ−B,

which implies that

ik0(1 + ε) = q1λ+A+ q2λ−B = q1λ+A+ λ−(1−Aq1) = q1A(λ+ − λ−) + λ−,

so that

A =
ik0(1 + ε)− λ−
q1(λ+ − λ−)

,

and

B =
λ+ − ik0(1 + ε)

q2(λ+ − λ−)
,

so that for x = 1:

Aελ+ +Bελ− =
ik0(1 + ε)− λ−
q1(λ+ − λ−)

ελ+ +
λ+ − ik0(1 + ε)

q2(λ+ − λ−)
ελ− . (6)

If we assume that p ∈ R (thus we have two real roots λ+ and λ−) then we have that φ(1) ≈
Kελ+(1 + ε)−λ+ + Lελ−(1 + ε)−λ− ∝ ελ+ + ελ− ≈ ε

1−p
2 . In fact, as λ+ − λ− = p, we can see

that φ(1) ≈ |k0|p−1ε
1−p
2 , so that to leading order, the error depends linearly on |k0|.
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4.2 Two distinct complex roots (1− 4M2 < 0), n = 1

The roots are

λ =
1

2
± i
√
4M2 − 1

2

So

(1 + ε− x)λ = eλ ln(1+ε−x)

= e
1
2
ln(1+ε−x)±i

√
4M2−1

2
ln(1+ε−x)

= e
1
2
ln(1+ε−x)e±i

√
4M2−1

2
ln(1+ε−x)

=
√
1 + ε− x

[
cos

(√
4M2 − 1

2
ln(1 + ε− x)

)
± i sin

(√
4M2 − 1

2
ln(1 + ε− x)

)]
=
√
1 + ε− x [cos (C ln(1 + ε− x))± i sin (C ln(1 + ε− x))]

where C =
√
4M2−1

2 . So the general solution is

φ(x) =
√
1 + ε− xA cos (C ln(1 + ε− x)) +

√
1 + ε− xB sin (C ln(1 + ε− x)) (7)

Let’s check the boundary conditions. The left-hand boundary condition

φ(0) =
√
1 + εA cos (C ln(1 + ε)) +

√
1 + εB sin (C ln(1 + ε)) (8)

= 1

from (7) we can see

φ′(x) = −
√
1 + ε− x

(
B cos (C ln(1 + ε− x)) C

1 + ε− x
−A sin (C ln(1 + ε− x)) C

1 + ε− x

)
− 1

2
√
1 + ε− x

(A cos(C ln(1 + ε− x)) +B sin(C ln(1 + ε− x))

evaluating this at the left-hand end we have

φ′(0) = −
√
1 + ε

(
B cos (C ln(1 + ε))

C

1 + ε
−A sin (C ln(1 + ε))

C

1 + ε

)
− 1

2
√
1 + ε

(A cos(C ln(1 + ε)) +B sin(C ln(1 + ε))

= ik0

direct substitution of (8) gives

− C√
1 + ε

(B cos (C ln(1 + ε))−A sin (C ln(1 + ε)))− 1

2(1 + ε)
= ik0 (9)

re-arrangement of (8) gives

A =
1√
1 + ε

−B tan(C(ln(1 + ε)) (10)

Substitution into (9) gives

ik0 = −
BC

(
cos2(C ln(1 + ε)) + sin2(C ln(1 + ε))

)
√
1 + ε cos(C ln(1 + ε))

+
C sin(C ln(1 + ε))

1 + ε
− 1

2(1 + ε)
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using standard trigonometric identities this is

ik0 = −
BC√

1 + ε cos(C ln(1 + ε))
+
C sin(C ln(1 + ε))

1 + ε
− 1

2(1 + ε)

re-arrangement gives

B = −
(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
cos(C ln(1 + ε))

C
√
1 + ε

using (10) gives

A =
1√
1 + ε

−
(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
sin(C ln(1 + ε))

C
√
1 + ε

which is just

A =
C −

(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
sin(C ln(1 + ε))

C
√
1 + ε

Thus

φ(x) =
√
1 + ε− x

C −
(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
sin(C ln(1 + ε))

C
√
1 + ε

cos (C ln(1 + ε− x))

+
√
1 + ε− x

−
(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
cos(C ln(1 + ε))

C
√
1 + ε

sin (C ln(1 + ε− x))

We claim

φ(1) =
√
ε
C −

(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
sin(C ln(1 + ε))

C
√
1 + ε

cos (C ln(ε))

+
√
ε
−
(
1
2 + ik0(1 + ε)− C sin(C ln(1 + ε))

)
cos(C ln(1 + ε))

C
√
1 + ε

sin (C ln(ε))

√
1 + ε

−1
= 1 +O(ε)

ln(1 + ε) = ε+O(ε2)

ln(ε) = ε− 1 +O(ε− 1)

sin(C ln(1 + ε)) = Cε+O(ε3)

cos(C ln(1 + ε)) = C +O(ε2)

sin(C ln(ε)) = C(ε− 1) +O(ε− 1)

cos(C ln(ε)) = C +O(ε− 1)

Using these we conclude that to leading order

φ(1) = |k0|
√
ε

4.3 For n = 2

We notice that to O(ε), the regularised solution φ̃(x) can be approximated at 1 by φ(1− ε), where
φ is the solution to equation (3.2) with boundary conditions φ(0) = 1 +Kε, φ′(0) = ik0 + Lε. It
follows that to leading order

|φ̃(1)| ≈ |k0|ε. (11)

Note: John Ockendon seems to disagree with this, claiming that the error is independent of k0. I’d
be very surprised if this were the case, but would be interested to see why.
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5 The impossibility of having k(x) bounded.

An interesting question for this 1 dimensional model is whether or not it would be possible to
achieve the same outcome with an continuous, bounded k(x). Suppose k(x) is bounded and let
K > 0 be a constant such that |k(x)| < K. Suppose the boundary value problem

φxx(x) + k(x)2φ(x) = 0, x ∈ (0, 1), (12)

φ(x) = 1, x = 0, (13)

φ′(x) = ik0, x = 0, (14)

φ(x) = 0, x = 1. (15)

has a solution φ. Note that we can separate φ into real and imaginary components φr and φi which
satisfy the PDE with respective boundary conditions

φr(0) = 1, φ′r(0) = 0 φr(1) = 0 (16)

φi(0) = 0, φ′i(0) = k0 φi(1) = 0. (17)

We note that φr and φi are linearly independent solutions of the second order PDE. Now
consider φi. Then φi has at least two roots in [0, 1]. Suppose now that φr or φi had infinitely many
roots, then by the Sturm-Picone comparison theorem (see [2] Theorem 5.20) for the following two
problems:

φ(1)xx (x) + k(x)2φ(1)(x) = 0 (18)

φ(2)xx (x) +K2φ(2)(x) = 0, (19)

it follows that φ(2)(x) = A cos(kx) + B sin(kx) would also have infinitely many roots in [0, 1]
which is clearly not true.

Let i0 be the root of φi immediately before r1 = i1 = 1. By the Sturm separation theorem
(see [2], Section 5.5), then φr must have a root in (i0, i1), say r0. Similarly, applying the separa-
tion theorem again, φi must have a root i2 ∈ (r0, r1). Continuing this argument, we note that φr
and φi must necessarily have infinitely many roots in [0, 1], which gives rise to a contradiction.

6 Frobenius solutions

6.1 The case when k(x) = (1− x)−
1
2

We use the Frobenius method to identify two linearly independent solutions to the boundary value
problem, and then show how the solutions cannot satisfy all the boundary conditions.

First, we will make the change of variables x→ (1− x) to get the following BVP

φxx(x) + x−1φ(x) = 0 (20)

φ(0) = 0, (21)

φ(1) = 1, (22)

φ′(1) = −ik0. (23)

We look for series solutions of the form φ(x) =
∑∞

k=0 akx
k+r, for some r ∈ C. Substituting

in (20) and using linear independence of monomials we get a series of relationships between the
coefficients and r. The indicial equation is

r(r − 1) = 0,
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so that r = 0 or r = 1. The second equation gives us

(r + 1)ra1 + a0 = 0,

so that for r = 1 we have a0 = −1
2a0 and for r = 0 we have that a0 = 0.

For r = 1 we obtain the following recursive relationship for the coefficients ak:

ak = −
ak−1

(k + 1)k
, for k ≥ 2, (24)

from which it follows that one solution is given by

y1(x) = a0

∞∑
k=0

(−1)kxk+1

k!(k + 1)!
(25)

Since the indicial roots differ by an integer, to obtain the second independent solution we look for
a solution of the form

y2(x) = αy1(x) ln(x) + x0(1 +
∞∑
k=1

bkx
k).

Substituting this into equation (20) and writing b0 = 1 we obtain

α
(
y′′1(x) + x−1y1(x)

)
ln(x) +

α

x

(
2y′1(x)−

y1(x)

x

)
+
∞∑
k=0

[k(k + 1)bk+1 + bk]x
k−1 = 0.

Since y1(x) is a solution, the first term above vanishes:

α

(
2y′1(x)−

y1(x)

x

)
+

∞∑
k=0

[k(k + 1)bk+1 + bk]x
k = 0

Substituting in the equation (25) for y1(x) we have the relation

α

∞∑
k=0

(2k + 1)(−1)kxk

(k + 1)!k!
= −

∞∑
k=0

(k(k + 1)bk+1 + bk)x
k,

from which we obtain the following recursive relationship

k(k + 1)bk+1 + bk =
(−1)k+1α(2k + 1)

(k + 1)!k!
(26)

so that for k = 0,
α = −b0 = −1.

For k = 1,

2b2 + b1 = −
3

2
,

and for k = 2,

6b3 + b2 =
5

12
.

The constant b1 is arbitrary, so choose it to be 0, to get

y2(x) = y1(x) ln(x) + 1− 3

4
x2 +

7

36
x3 + . . . (27)

It’s straightforward to see that limx→0 y2(x) = 1 6= 0. Thus, y2 does not satisfy the boundary
conditions. Thus given a general solution y(x) = Ay1(x) + By2(x), to satisfy the boundary
conditions we must have that B = 0. The constant A must be chosen to satisfy BOTH right-hand
side boundary conditions, which we can immediately see is not possible.
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6.2 The case when k(x) = M(1− x)−a, 0 < a < 2, a ∈ R

Let z = f(y). Then the first derivative is

φ′(y) = φ′(z)
dz

dy

and similarly

φ′′(y) = φ′′(z)

(
dz

dy

)2

+ φ′(z)
d2z

dy2
(28)

After substituting x = 1− y, the original equation is

φ′′(y) +M2y−aφ(y) = 0 (29)

with conditions

φ(1) = 1

φ′(1) = −ik0
φ(0) = 0.

Putting (28) in (29) we have

φ′′(z)

(
dz

dy

)2

+ φ′(z)
d2z

dy2
+M2y−aφ(z) = 0

which re-arranges to

φ′′(z) + φ′(z)

d2z
dy2(
dz
dy

)2 +
M2y−a(
dz
dy

)2 φ(z) = 0 (30)

For the Frobenius method to be amenable we impose the following condition on the coefficient of
φ(z):

M2y−a(
dz
dy

)2 =M2zn n ≥ −2 n ∈ Z. (31)

This is
y

−a
2 = z

n
2
dz

dy
,

which integrates to
2y

2−a
2

2− a
=

2z
n+2
2

2 + n
.

Squaring both sides leads to
y2−a

(2− a)2
=

zn+2

(2 + n)2
,

which we can re-arrange to give z:

z =

(
n+ 2

2− a

) 2
n+2

y
2−a
n+2 . (32)

The first derivative can be calculated as

dz

dy
=

(
n+ 2

2− a

)
z

y
,

11



with the second derivative

d2z

dy2
=

(
n+ 2

2− a

)(
n+ 2

2− a
− 1

)
z

y2
.

We can now calculate the ratio of the second derivative and the square of the first derivatives which
is the coefficient of φ′(z)

d2z
dy2

dz
dy

=

(
n+2
2−a − 1

)
(
n+2
2−a

) 1

z
.

Substituting this in (30) and using (31) we have

φ′′(z) +

(
n+2
2−a − 1

)
(
n+2
2−a

) φ′(z)

z
+M2znφ(z) = 0

for convenience we set n = 0 and define Ca = a
2 . Thus our equation is

φ′′(z) +
Caφ

′(z)

z
+M2φ(z) = 0. (33)

Using (32) we have

z =
2

2− a
y

2−a
2 ,

and the derivative is given by
dz

dy
= y

2−a
2
−1.

These allow us to find z and its derivative at the appropriate points:

y = 0⇒ z = 0, y = 1⇒ z =
2

2− a
,

dz

dy

∣∣∣∣
y=1

= 1

which gives us the conditions

φ(0) = 0

φ

(
2

2− a

)
= 1

φ′
(

2

2− a

)
= −ik0

We look for a Frobenius solution of the form

U(z) =
∞∑
k=0

Akz
k+r.

Substitution into (33) gives

∞∑
k=0

Ak

[
((k + r)(k + r − 1) + Ca(k + r)) zk+r−2 +M2zk+r

]
= 0,

which becomes
∞∑
k=0

Ak(k + r)(k + r − 1 + Ca)z
k+r−2 +

∞∑
k=2

M2Ak−2z
k+r−2 = 0.

12



The indicial (k = 0) equation is r(r − 1 + Ca) = 0, which gives the values for r to be r = 0 and
r = 1−Ca. If these differ by an integer (i.e. Ca ∈ Z) we have the same problem as we had in the
case a = 1. Otherwise, looking at the k = 1 equation, we have

(1 + r)(Ca + r)A1 = 0

which implies A1 = 0.
For k ≥ 2, we obtain the recursive relation

Ak =
−M2

(k + r)(k + r − 1 + Ca)
Ak−2,

which implies either k = 2p + 1 p ∈ Z, in which case as A1 = 0, A2p+1 = 0, or k = 2p, which
gives rise to

A2p =

p∏
i=0

−M2

(2i+ r)(2i+ r − 1 + Ca)
A0.

We can now formulate the two solutions noting first that

1− Ca = 1− a

2
=

2− a
2

,

then if φ0(z) denotes the solution at r = 0, we have

φ0(x) =
∞∑
k=0

k∏
i=0

−M2

(2k)(2k − 1 + Ca)
A0x

2k.

If φa(z) is the solution when r = 2+a
2 , we have

φa(x) =

∞∑
k=0

p∏
i=0

−M2(
2i+ 2−a

2

)
2i
A0x

2k+ 2−a
2 . (34)

Our true solution is
φ(z) = Aφ0(z) +Bφa(z).

Clearly, φa(0) = 0 so φ(0) = AA0. Thus for φ(0) = 0, we require A = 0. From (34),

φ′a(x) =
∞∑
k=0

(
2k +

2− a
2

) p∏
i=0

−M2(
2i+ 2−a

2

)
2i
A0x

2k+ 2−a
2
−1,

hence

φ′a(1) =

∞∑
k=0

(
2k +

2− a
2

) p∏
i=0

−M2(
2i+ 2−a

2

)
2i
A0.

Since M , i, k ∈ R, we have φ′
(

2
2−a

)
= −ik0, implying BA0 is imaginary. However,

φa(1) =

∞∑
k=0

p∏
i=0

−M2(
2i+ 2−a

2

)
2i
A0

with M , i, k ∈ R, we see that φ
(

2
2−a

)
= 1, meaning BA0 ∈ R which is a contradiction, so no

solution exists.

13



7 Asymptotics when k(x) = M(1− x)−n for n > 1

While we don’t have a closed formula solution for n > 2 one can derive approximations of the
solution φ(x) close to the singularity. For n > 1, the point x = 1 no longer remains a regular
singular point and so we can no longer hope to obtain a solution via the Frobenius method. Instead
we make a WKB approximation. First, we make the change of variables x→ (1− x) to get

φxx(x) +M2x−2nφ(x) = 0 (35)

φ(0) = 0, (36)

(37)

We interested in the behaviour of the solution φ near the singularity. We assume that near 0,
φ(x) is of the form φ(x) = exp[S(x)] for some function S(x). Substituting this into the equation
we see that S(x) must satisfy

x2n((S′(x))2 + S′′(x)) +M2 = 0. (38)

Suppose that S′(x) = cxα to leading order. Substituting we get that

c2x2α+2n + cαxα+(2n−1) +M2 = 0. (39)

Balancing the dominant terms we see that α = −n and c2 = −M2, so that c = ±iM .

Further expanding S′(x) as
S′(x) = ±iMx−n +A(x),

for A(x) = o(x−n), then writing c1xβ and substituting we get(
c2 + 2c1cx

n+β + c21x
2β+2n − ncxn−1 + c1βx

2n+β−1
)
+M2 = 0. (40)

Balancing dominant terms we have that β = −1,and c1 = n/2, and so

S′(x) = ±iMx−n +
n

2
x−1. (41)

Integrating we get

S(x) = ±iM x1−n

1− n
+
n

2
ln |x|, (42)

and so for 0 ≤ x� 1, φ(x) has the general form

φ(x) = Ax
n
2 e

iMx1−n
1−n +Bx

n
2 e−

iMx1−n
1−n (43)

8 Regularised cloaking for n > 1

If we consider instead k(x) = (1 − x + ε)−n, then in this case we see that, we can approximate
the corresponding solution at zero, by evaluating (43) at ε. Doing so gives us

φ(x) = Aε
n
2 e

iMε1−n
1−n +Bε

n
2 e−

iMε1−n
1−n = O(ε

n
2 ). (44)

Calculating how the constants behave isn’t straightforward as the solution φ is only valid around
0. To extend it to the whole domain we’d need a boundary layer approximation matching this
solution to an outer solution. However, we expect the constants to behave linearly with respect to
k0.
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9 A piecewise constant k(x)

Another possibility would be to consider whether “staircase” of piecewise constant functions
would serve as a good candidate for this one-dimensional cloaking problem. The appeal of this
approach is that it reduces the problem to an algebraic problem.

Let (ln)n∈N be a sequence of lengths partitioning [0, 1], so that
∑

n ln = 1. Choose kn ∈ R
such that kn.ln = π

2 . Then suppose we consider the following problem

φ′′n(x) + k2nφn(x) = 0 x ∈ (0, ln)

φn(0) = An

φ′n(0) = Bn

Then one can see that φn(ln) = An cos(kn.ln) +
Bn
kn

sin(kn.ln) =
Bn
kn

since kn.ln = π
2 . Similarly

φ′(ln) = −kn.An. Let’s introduce a scheme where the values φn(ln) and φ′n(ln) become the
left-hand side for the (n + 1)th problem. Indeed, starting from A1 = 1, B1 = ik0 we obtain the
following recursive relationship

An+1 =
Bn
kn
, n > 0

and
Bn+1 = −Ankn n > 0.

So that
An = (−1)n ik0

k1

k2
k3
. . .

kn−2
kn−1

,

and
Bn = (−1)n−1ik0

k1
k2
. . .

kn−1
kn−2

,

so that as n→∞, An converges to 0

kn < c.kn+1, for all n (45)

for some 0 < c < 1 or equivalently

ln+1 < c.ln, for all n (46)

This is the growth condition we require for the piecewise-constant function to be a suitable candi-
date for perfect cloaking. Note that Bn → ∞ as n → ∞, which is how we expect the derivative
to behave, since we need a shock at x = 1.

Now consider the ODE on [0, 1] given by

φ′′(x) + k2nφ(x) = 0 x ∈ (
n−1∑
k=1

lk,
n∑
k=1

lk)

φ(x) = 1 x = 0

φ′(x) = ik0 x = 0
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Then it’s clear that

lim
x→1

φ(x) = lim
n→∞

φ(
n∑
k=1

ln) = lim
n→∞

φn(ln) = lim
n→∞

An+1 = 0.

It would be interesting to consider the error introduced in truncated part of the ”staircase” in a
neighbourhood of x = 1 where it attains∞, but we don’t have time to consider this.

10 Conclusion

We have studied a very basic one-dimensional model of cloaking and considered a possible can-
didate for the refractive index of the form k(x) = M(1 − x)n for 0 < n < ∞. We exhaustively
studied the range of possible values of n and identified the values for which k(x) is a suitable can-
didate. Wanting to avoid the singularity at x = 1 which seems necessary for perfect cloaking, we
then considered a regularisation of the problem and provided bounds for the error in the solution
for general n, thus allowing partial cloaking with an error term that can be controlled. Finally
we considered a possibly piecewise constant candidate for the refractive index and showed that it
satisfies our requirements to be a perfect cloaking medium.

Possible future work would be extending the above results to a 2D and 3D medium (a brief
study suggests this is certainly not as straightforward as initially supposed, at least following the
approach of [1]).
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