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Good books for the course are Folland-Real Analysis for Distributions, LP and func-
tional Analysis. Grafakos -Classical Fourier Analysis, and Stein- Singular Integrals.

1 Fourier Transform
We have a typical setting of R with the Lebesgue measure, written dzx.

Definition 1.1 We define, for f e L*(R™) the Fourier Transform to be

f©) = [ f@e = da

We now motivate this definition, from the Fourier series. We restrict ourselves to R for
simplicity. Suppose that f(z) is periodic of period L. We take {K,e“""*} and that for

27rznx

specific K, ¢, that they are orthonormal. With period L, we have e, = %e and so

(€n,em) = Omn. Then given any f € L2([ ]) define

272

f) = (fren) = = [ f@) e B

Since {e,} is an orthonormal basis, we have f(z) = ¥ f(n)e,. We now want to send L to
oo. There is a well known formula called Plancherel:

I RENIG

We build a step function as follows:

92(6) = VL i(n) 1f§e[2”” —2”(””))

L

and then [ |f[?dz = ¥|f(n)]? = 5= [ |g.(€)[?d¢ and the limit of g, gives what we want.
Explicitly, R R

lim 01(8) = £(6) = F(©)
and

CJTi o YE 3 1
9.(§) =VLf(n) = s %f(x) Nind dz

Now 2“—" is the left endpoint of [2”” W) and we think of &£ = 2”—” and take limits

when L — oo keeping & “fixed”.

1.1 Properties of the Fourier Transform
We think of A: L' -7 but for sure ? is not L', but what is it?.
Lemma 1.2 Let f,g,he L' and o, 5 € R. Then
1. A is a linear operator, i.e. (af + Bg)(€) = af (€) + By(€).
2. fllz <1 £l
3. f e L' then f(&) is continuous. Moreover, limyg| o0 1f(€)] = 0. This is called

Riemann-Lebesgue.
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8.

Convolution. If f,g e L' define f » g(z) = [gn f(¥)g(x - y)dy and then (f = g)(&) =
F(©)3()

Define mf(x) = f(z +h). Then 7, (€) = f(€)e*™" and f(x)e2miwh = f(& - h)
If 0 € SO(n) ,i.e. 0 a rotation matriz, then f(0x)(€) = f(H€)
If we define g(z) = /\inf(f) for A>0 then we have §(§) = f()\f)

I feC fell, 2L e L' then JL(¢) = 2mit;f ()

9. (=2mia; [(2))(€) = 32 (f(£))-
Proof
1. Obvious
2. Fix € and then [f(€)| < [ |f(2)|le 2™®¢|dx = || f|| ;2 and so

3.

6.

Il = s%plf’(f)l <[ flles

Pick e, = (0,...,0,1) and so we have

f(g) __ [ f($)e—27ri(r+§inen)-§dx _ [ fla - {ien)e_zmx.gdx

and so

IGE % f(f(a:) - f(z- ginen))e—%rz‘x.fdx

and if |¢,| - oo then the dominated convergence theorem implies that |f(&)] — 0.
It is clear that this doesn’t depend on e, and so this shows the result for [£] - oo
along any axis. Property 6 then gives any direction.

(T*_?)(E)=f(f f(y)g(w—y)dy)e”mfdx
and then Fubini gives
S ([ 1t -way) e cin = [ e ( [ oo y)e =) ay
= f(©)a(€)

BI© = [ faemetmmtin = [ petniegy < e fe)
The other part is left as an exercise.

If 6 € SO(n) then 67! = 7 and det§ = 1. Then
[ 1) = tdn = [ pow)e o da
= / f(9:1:)672’”9_191'£d:c
- [ Fow)e iy
= f(06)
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7.
0O = [ 521 (3)e e = [ f)e09ay - frg)
8. -
g_;;fj(f): f C%’;(g;)e-?mfdx: f f(x)2mig;e ™S dy +Ba*'=0 2mi&; f(€)
9. exercise

Q.E.D.

The main problem with this definition of the Fourier transform is that A : L' — L*
but L* is not contained in L'. In an interval however, L* c L'. If one is doing the
Fourier series, we can define the inverse of the Fourier transform, and it should be

1@ = [ Feyemta

but since f (€) is not necessarily in L' the right hand side of the above does not necessarily
make sense. We thus have a goal to change L' into something else so that it is somehow
true. It turns out that the correct place is L?. However, for f € L? the definition of
Fourier transform doesn’t necessarily make sense.

1.2 Schwartz space

This is intuitively the space of C'*™ functions that decay faster than any polynomial. We
first introduce some notation.

A point in space is denoted = = (1, ..., ,,) and a multiindex is denoted a = (v, ..., )
for ay € N. Ja| = ¥y and o! = aql..op,!. We have 0°f = 0gl...03" f and 2% =

(z{*,...,z{") and they satisfy the Leibniz rule
dm moim dkf dm—kg
a9 = kz(kz)F—dtm

or more generally

rm -5 ()

where 8 < o means 3; < oy for all 3.

Definition 1.3 f:R" - R is Schwartz (S) if for all o, B multiindices, there exists Co g
such that

pas(f) = sup 2707 f ()] < Cap
zeR™
We make the following observations

1. C¥ cS and ezl ¢ S for ¢> 0 but m isnot in S.

2. feS(R™) and g € S(R™) then h(x1,....,Tnim) = f(21, 0 Tn)g(Tns1, ooy Tnam) 1S In

3. If P(x) is any polynomial and f € S(R™) then P(z)f(x) € S(R")
4. If f €S and « is any multiindex then 0%f € S.

Remark f €S if and only if for all N there exists C n such that [0%f| < Lo

= 1+]z|V
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1.3 Convergence in S.

Definition 1.4 {f,} for f, € S converges to f € S in S if and only if for all o,
multiindices,

pas(fi—f) = Sgplwaaﬁ(fk - f=0

This is a very demanding definition. Note that if o = 0 then sup, |0°(fi - f)| = 0.

This definition generates a topology on & and with respect to that topology the
operators +, a-, 0% are continuous functions.

The objects p, g(f) are seminorms. They satisfy all properties of norms except
Pap(f) =0 does not imply that f = 0.

One can construct a distance function in & which generates the same topology as

follows: - (F—0)
d =N o Pi\J — g
(7.9) j; L+pi(f-9)

where p; are any enumeration of pa,.

Theorem 1.5 Suppose {fir} and f € S(R™) and fr - f in S then fr —» f in LP for
1<p<oo (why not p=17%). Moreover, there exists C,, such that

||aﬁf||LP <Chp Z Pa,ﬁ(f)

la|<N+1
where N = 2L
p
Proof
107118, = [ 1% s
:f |aﬁf|de+f 108 fIPda
|z|<1 |z|>1

1 n+l P
B £|P > 168
<O Ml + [ o [l 107 1] o

1
<O M+ [, ooy sue el 5 10° 1] o

and so (using different constants)

10° llee < Cullo? 3 + 200 () w2 pas(f)

[=l>1 |‘7C|n+1 lal<N+1

To prove convergence part, use the estimate with f replaced by fx — f and 8 =0. Thus

Ife=fllee <C Y. pao(fe—f)—0

la|<N+1

Q.E.D.
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Theorem 1.6 The Fourier transform is a continuous map from S to S such that
f fgdx = / fgd:c

f@)= [ feyemtae

Moreover

for f,geS.

Proof If fe& then f e L'. Thus we can define f(£). We claim that A:S — S is well
defined on S by the previous comment. Thus it is left to show that the range of A lies in
S. We need sup [€20° f ()| < aq3- Recall rules on A from before. We ignore factors of 27i
for simplicity. R .

£20°f(€) = C(0°(a"1))(€)
and so

sup [€20° £ ()] < Csup |[(9°(2B 1)) (€)]

We've seen that g € L' = g e L®. We want |[(9*(2%f))(€)||> < aqp It is enough

to show that (9(z?f))(¢) € L'. Notice that when you expand it you get factors of the
form 2¢0° f for various a and b. and each one of these is in S and so is in L'. Thus it is
bounded. We have

sup [€207 F(£)] = [|C(0° (27 /) ()= < CI(@* (27 )1 (1.1)
To prove continuity, we show that A is sequentially continuous, i.e. if f, - fin S

then fn - f in S.
Convergence in § is defined in terms of the seminorms. Thus we need

pa,ﬁ(fn_f) -0 = pa,ﬁ(fn_f) -0

We have from (1.1) that
(= 1) = sup €D (fu = )] < C102 (" (Fo = Dl

If we now apply the Leibniz rule, we get

Cllo (2" (fo = Hllzr <] E;Ox“(?b(fn =Dl €3 pap (@8 (fo - 1))

and since pag(fn — f) = 0 for fixed a and 3 then

Pap (@0 (fo - f)) =0

Thus we have shown continuity.
Now for the first equality.

[ r@a@yda= [ 1@ [ g)emayda
Fredint f 9(y) / f(@)e ™™ dady
- [ f@)g(@)da
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Remember if h(z) € L' then hy(z) = 5-h(%) has hy(€) = F(AE). If g€ S then gy e S
for all \. Then

f@)gx)de = [ f(@)gr()de = | f(x)ga(z)dz = f(w)ing(f)dx
/ / / J st

and so

n . : x
[ p@gOayd = [ f)g(S)da
and then changing variables in the right hand side by y = Az we get
NP 5 x
[ 1wy = [ f@)g(S)ds
which is true for all A >0 and thus
. N L : x
Jim / F)f(y)dy = lim f F(@)g(5)dx
We can use the DCT here (CHECK) to get
10) [ 3@)de =g(0) [ f(x)da

for all f,geS.
2 2
We claim that if g(z) = e then §(z) = ™I, Then using this g we get that

10 = [ f@)da

which is what we want with # = 0. Recall that 7, /(&) = f(£)e*™¢. We work with a
function f(y). Then f(x)=7,(f)(0) and 7, f(y) = f(z +y). Then

J@) = (mf (0) = [ 2T = [ fe)erm<a

as required. Q.E.D.

Lemma 1.7 If f(z) = e then f(g) = el

Proof f is the unique solution of the ODE u' + 27wzu = 0 with w(0) = 1. If we Fourier
transform both sides we get 4’ + 27&a = 0 and this is an ODE for 4, with 4(0) = 1. This
is the same ODE as before, and so 4(§) = e e’ Q.E.D.

Proposition 1.8 If f,ge S then 0*(f xg) = (0%f) xg = f » (0%g)

Definition 1.9 For f, define f(x) = [ f(&)e*™@4dE.

1.4 Fourier Transform in LP

Observe that f(z) = f(-z). Also f = f(x) and f = f(x) and also from above [ fh= [ fh.
So far we have f € L' and a Fourier transform, but the Fourier transform is not
necessarily in L!, and so we cant define [ f (&)e?™™€d¢. Then we had f € S and felLl
and so we could define the inverse and A :S — S as an isometry in L2
There exists a unique extension of A from S to L2. The reason is that S is dense in
L?. After all C2° is dense in LP for p # co and C° c¢ S. To define A for f € L?, take {f,}
in S with f,, > f in L2. Then define F(f) = lim f, understood as a limit in L2.
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We should be clear that we are not claiming that f (¢) has any pointwise limit. We
are claiming that {f,,} converges, and so {f,} is Cauchy, so ||f, = fll2 = [|fn - f|l2 and so
{f} is Cauchy, and take F(f) to be the limit in L? of that Cauchy sequence. This works
because L? is complete.

About the unique extension. By contradiction, suppose f,, - f in L? and ¢, — f in
L? for fy,gn €S, but f, > F and §, - G in L%, with G # F. Then

0 # (|G = Fll2 = lim ||g. = full2 = lim|[gn = fall2 = 0

and clearly this cannot be the case. Using the density of S in L?, coupled with A: S - S
is an isometry in L? we can define the Fourier transform for fe L2,

We get that F is an isometry in L? since || F(f)||2 = im || fnll2 = im || fu]]2 = 1fll2. We
can do the same thing for v, and get that || f||2 = || f|l2. We can define F'(f) = lim;» f, for
fn €S where f,, - f in L% Tt is then straightforward to see that FF'(f) = f = F'F(f).

How though do we compute F(f) for f e L. If f e L' then f(f) = [ f(z)e 2 @8y
If feLl'nL?NS then f(&) = [ f(z)e 2™@8dx. If f e L' n L? then the same thing. How
about taking f, € L' n L? such that f, - f in L?. How about taking f, = f(2)xB,(0) for
f € L?. Then claim that f, € L', and to show this uses Holder.

Define F(f) =limyz [ f(:v)XBn(o)e_me'fd:z:.

Does [ f(z)x Bn(o)e’%m'gdx converge pointwise to anything? We know that fn
F(f) in L2. Tt is an open question whether [ f(z)xs, ()€ ~2miT8 g converges pointwise
to F(f). We do know L? convergence though. From measure theory, convergence in L2
implies that there exists a subsequence that converges pointwise. Thus we know there is
a {n;} such that [ f(z)xg, e >""dz -~ F(f) pointwise.

What now about the Fo{u"ier transform in LP for 1 <p<2.

Theorem 1.10 Suppose 1<p<qg<r<oo. Then LYcIP+L"={f+g:felP gelL"}

Proof If f e L? then write f(z) = fou + fomr where fonr = fX(aif(a)<rry and fonr =
IX{w|f()z0ry- We take M =1 here and claim that fq € L™ and fsq € LP.

[lsal < [1rars [1r1< e

and the other one is proved similarly. Q.E.D.
We hope to define F(f) for f e LP for 1 <p <2 by F(f) = F(f<1)+ f>1. In fact, one

can use any decomposition. If f € LP write f = g1 + g2 = h1 + ho. with the ones in L' and
the twos in L?. Define F(f) = g1 + F(g2) = h1 + F(ha) and this is independent of the
choice because of the following: We have g1 — hy = ho — g1 adn the LHS is in L' and the
RHS is in L2, so they both have a A and it agrees with F.

Proposition 1.11 For all f € LP for 1 <p <2 then ||F(f)|ly < |If|l, where o+ pi =1.
We introduce a bit of an abuse of notation. We use A always with the understanding
that we need to take limits if we are not in S.
This above proposition is a consequence of Riesz Thorin interpolation.
Proof We know two cases of the inequality in the above proposition, namely for p = 1
and p = 2. Applying Riesz-Thorin gives the result. We spill some more of the details
below. Q.E.D.
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Lemma 1.12 ((3 line lemma) Stein 1960s) Suppose F is a bounded and continuous
complex valued function and S = {x+iy:z,y € R,0 < x < 1} that is analytic in the interior
of S. If |[F(iy)| < mg for y e R and |F (1 +iy)| < mq for y e R then for fized x,

|F(x+1iy)| < méfwm:f

Proof See Duoandikoetchea Q.E.D.

Theorem 1.13 (Riesz-Thorin Interpolation) Suppose that 1 < pg,qo,p1,q1 < o0 and
define for 0 < 0 <1 the numbers p,q by

1 1-6 0 1 1-6 6

—=— + —, _— 4+ —

p Po p1 q p1 q1

Let T be a linear operator from LP° into L and LP' into LY that satisfies

17" fllgo < Mol| 1l
1T fllgn < Mallfllpy

and also suppose that T' is linear from LP° + LP' into L% + LY. Then
-0 10
1T flly < Mo~ MY |If1l,
A proof is omitted. Its too hard for this course. The following is an application of
Riesz-Thorin.
Lemma 1.14 (Young’s Inequality) Suppose that f e LP? and g € LY. Then
1S * gl < [1f1lpllgllq

where L =1+1+ L
T p D

Proof There are two easy cases, namely

1f > glloo < [[£llpllgllp
and
1 = gllp <1 fllpllglh

The former is essentially Holder’s inequality:

If*g(:v)lﬁ/If(w—y)llg(y)ldys||f(93—-)||p||9||p'=||f||p||9||p'

and taking the supremum gives the required result. The latter uses Minkowski’s inequality,
which is stated below the proof.

If we fix f e LP and define T¢(g) = f * g then T} is linear, T} : L - L™ with
ITsglle < Mollglly with Mo = |fll, and Ty : L1 — L7 with | Tygll, < Mgl with My =||fl}.
Then by the Riesz-Thorin interpolation, we get T : LY — L" and

Trgllr < Mo~ MY llgllq
0

where—=1_,9+%andl=l;+g and so
P rT e T p
1 -1 -1 -1 1 1
S A P A S
q r’ p r D r r p r
as required. Q.E.D.

Take g € L? and define ¢4(f) = [ fgdu. By Holder this is well defined for f € L? since
|/ fal <1Ifllpllglly and so ¢g : LP - R and ¢, € (LP)*.
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Theorem 1.15 Suppose 1 < p < co. Then (LP)* = L1 where }—17+% =1. If p is o finite
then (L')* = L*.

Proposition 1.16 (Duality) Suppose 1< q< oo and g€ LY. Then

lalle = 8yl = sup{ [ fodp:11fll, = 1)

Lemma 1.17 (Minkowski Inequality) Suppose f:R" xR"™ - R. Then

| [ sCwasllo < [ 176 w)ldy

Proof This is easy for p =1 by Fubini and similarly p = co is easy. Then for rest,

| [ sCwdyll = swp { [[ £.p)dyh(e)da)

heLP’
[IAll,r=1

= h(x)dxd
s%pfff(x,y) (z)dxdy
<sup [/ 11/ )logllelrdy
=sup [/ 11/ )zl

= [ 15 w)lzzdy

Q.E.D.

We justify the Fourier transform in LP for 1 < p < 2. We have inequalities at the end
bounds. From R-T we get bounds for p and ¢ where

1-60 6 1 1-46
== = - = — +
q o0

1
p 1 2 -

N D

and so we get % =1- % as required.

1.4.1 Scaling analysis

We ask the question, is ||f * g||» <||f|lpl|gllq ever goint to be true, for any choice of r,p, g.
If so, then it must also be true for f(Ax) and g(Az). We get

[ 106 -maona] @] <( [ sonpa)” ([ o)

and then if we change variables by Az =z and Ay = § we get

[ e -wnatnras] xae] " < ( [rs@pxmar)” ( [raiaras)”

and so we get
B 1 (il
AN glle <X gl

and so if the inequality is true, then —n(1 + %) = —n(% + %)
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1.5 Fourier Series

Take 27 periodic functions on R and define f(n) = fo27r f(z)e™™*dzx. Then are you able
to recover f from {f(n)} We would like it to be f(z) = 2%, f(n)e™*. We define
Sy f(x) = XNy f(n)e™ and wonder whether ||Sx f — fll, = 0 or Sy f(z) - f(z) a.ex.

Theorem 1.18 ||Syf - f|| =0 <> ||Snfllp < l|f|lp where 1 <p < oo and f e LP[0,27].

Proof “«<=” For g€ C* we have

1SN f = fllp <ISNf = Sngllp + 11Sng = gllp + llg =

and since C* is dense in L?, for all € > 0 there is a g such that ||g — f||, < . Since Sy
is linear and by the assumptions in the theorem we have |[Sy f - Sngllp < ¢l f - gllp and
thus
1SN f = fllp < 22+ [|Sng - gllp <&’

where we have assumed the result for C* functions.

“ == " We use the alternative statement to the UBP below. Suppose that X =
LP =Y and T, = Sy. If we work by contradiction then there exists f € LP such that
supy [|Sn fllp = 0. However, [|Sn fllp < [[Snf = fllp +[|fllp and the [|Sx f - fl|p is bounded
and so this is less than M + || f|], < oo and this is a contradiction. Q.E.D.

Theorem 1.19 (Uniform Boundedness principle) Suppose that X andY are normed
spaces. A denotes a subset of L(X,Y"), the linear bounded maps X =Y. Then

1. If sup||Tz|ly < oo for all x then sup||T|| < co.
TeA TeA
2. If furthermore X is a Banach space and sup ||[Tx|| < oo for all x then sup ||T]| < oo.
TeA TeA

Theorem 1.20 (Alternative Statement) Suppose that X is a Banach space and 'Y is
a normed space. Suppose {Tp}aea is a set of linear and bounded functionals T : X - Y.
Then either

sup||Ty|| < oo

acA

or
Jz € X such that sup||Tz|y = oo

In one dimension, we have ||Sx f|| < ¢,|| f|| implies that we have L” convergence of Sy f
to f. In two or more dimensions, this is true for p = 2 but false for all other p. Inn =1
a.e. convergence is also true (Carlesson for p=2 Hunt did rest). All hell breaks loose in
n =2 and above.

We go back ton =1. Take f: R > R, f e LP, for 1 < p <2, and define Sgf(z) =
fﬁ% f(€)e*™ ™ dg. We have seen f € S then f(z) = [ f(£)e*™*¢d¢. and so we ask does
Srf(xz) - f(x) or ||Srf - fllp = 0. Then

R . B
Saf@)= [ [ f)emayerm e
R .
= [1@) [ emertagay
- [ F@)Da(o - y)dy

where Dgz = fﬁ% eQm(z_y)gdf = ﬁemzfﬂ% = % and so we have Sgf = f ~ Dp.
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Theorem 1.21 [|Sgf - f|l, = 0 if and only if ||Srf|lp < cpll fllp

Proof The forwards direction is the Uniform boundedness principle. The backwards
direction is adding in a g € S and the same as the above theorem. Q.E.D.

We hope that ||Srf — f||, = 0. This is by the above, equivalent to boundedness. We
thus need [|Sgfllp < cpl|fllp or [|f * Drllp < cpl| fllp- We get from Young’s that ||f x Drgll, <
IDRlgIlf]lp with ¢ = 1. The problem is that [ |Dpg| = co. This is somewhat unhelpful. It
turns out that boundedness is true, but just that Young’s inequality is too wasteful. In
n > 2 Fefferman showed that ||Sgrf||, < ¢p||fl]p is only true for p = 2.

Note that Young’s also applies for |f| and |g| if it applies for f and g, and as the
moduli are in general larger, it doesnt see the cancellations involved.

We ask the question, does Sgf — f a.e. for n > 1. We prove this for n = 1 and
1<p<ooand fe LP. Carleson proved this by proving the a.e. convergence when n =1
and 1 < p < 2 by proving the following:

HS%F|SRf(x”HPS(%Hf”p

This is where we fix x, compute Sgf(z) and then supremum over all R > 0. This gives
an example of a maximal function.
The goal we now have is to recover f from f. So far we know that if f € L? then

f € L? and in that case there exists a functional v such that f =f
In history, people gave up on the idea of defining v for f € L? in the sense of hoping

for f = f.
1.5.1 Summability in Fourier series

Suppose we have a function f : [-m, 7] - R and then define Syf = ¥y f(n)e™, an
effort to reconstruct f out of {f(n)}. This convergence though fails sometimes.

If we define Fj; f = % then this gives a notion of Cesaro convergence, if this
sum converges. We can write this sum as ZMM cne™ and note that Fy/f — f a.e. for

1 < p <2 and they converge much faster.
1.5.2 Summability of the Fourier Transform

We have a Cesaro summation formula for the Fourier transform:

Srf(z) = | f(&)e*mmtdg

§l<R

and then we define . R
orf =7 [ Sis@)d

We can then write this as follows

orf = %fORDt*f(x)dt: (}%fORDtdt)*f(x) = Fpx f(2)

]
and it can be computed that Fr(z) = %. Now note that Fp is greater than or equal
to zero and [ Fr(x)dr =1.

We claim that ||orfll, < ¢pl|fllp and orf — f in LP for 1 <p < 2.
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1.6 Approximations to the identity
The Abel-Poisson method

u(o,t) = [ e () de
Gauss-Weierstrass method.

w(x,t) = ‘/]]\gn 6_47rt2|§|2f(§)627rix-§d£

We have that, for f € L', the Fourier transform f € L, which does not guarantee that
/ f e?™ € J¢ makes sense. Then since the above u and w do make sense, do they converge
to fast—0.

Fix ¢ € C° or S such that [ ¢ = 1. Then define ¢¢(2) = ¢ (£).

Theorem 1.22 ¢, x f(x) — f(x) in LP ast — 0 for 1 <p<oo. Moreover ¢  f(x) e C*
and ¢ * f(x) = f(x) uniformly if f € C..

Note we are trying to show ¢; — ¢ in distribution.

Proof
o 9@) = [ awo-iy= 5 [6(2)a-ny= [ o9 12)dz
and then
b1 x 9(x) ~9(a) = [ $(:)[gla—12) - g(a)dz
and thus

[fe * g(x) = g()llp = || f o(2)[g(x —tz) - g(x)]dz[l,

and then using the Minkowski inequality we get

| [ 6@lat-t2)-9Odzly < [ 16 aC-t2)-gO)lndz = [ 16()IlgC-t2)-g()]lpdz

We cannot move a limit inside the integral here. We thus make two claims to get around
this
Claim 1 Ve > 0 there exists a hg such that

lg(-+h) =g(Ollp < 100 [o(2)ldz

Claim 2 there exists a  and tp such that for ¢ < ¢ty we have

g
dy <
SOy < S

Then
J16@lla¢ =12 -9z = [+ [ (6o~ 12) 9Oz =1 + 11
We first consider I1:

g
II = |tz<5|¢(z)|||[9(._tz)—g(-)]||pdzg[|¢(z)|Wdzg

<
100

if(5<h0.
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‘We now consider I:

ﬁzw 69 (- = t2) = 9()]llpd= < f|5 [6(2)12lgllpd=
=2lgl [, I6()ld=

e
<2 —_—
||g||P 100”9”;)
£
< —
50

Q.E.D.

We now prove the claims we made
Proof We take g € CZ° and then for such a g we can use the DCT. We then get that
there exists an h such that

P ° '
f lg(z +h) - g(a)Pdx < (W)

Thus we have the result for g € C7°, and since this is dense in LP, given ¢ > 0, and fixing
g there exists a W e C2° such that ||g — W[, < 6. Then

lg(-+ 1) =gOllp < llg(- + h) =W+ B)llp +[[W(+h) =Wl +IWE) = 9Ol

13
20" 100 [ o(a)lda

<€

Q.E.D.

Proof
ﬁ,pg/t'@f’(y)'dy: [ Xtpsmlo@)ly = [ fidy

and note that fi, (y) < fi,(y) for ¢1 < ts and this is less than or equal to |¢(y)|. Then the
MCT or the DCT means you can exchange limit and integral, and the limit is zero. Thus
you can make it as small as you like. Q.E.D. Back to Cesaro
S?Ei;}? and then define ¢(z) = S(lfz;rf and then
Fr* f=¢¢x f. However, ¢; is not C2° or S. However looking at the above proof, we did
not need this assumption. We only needed ¢ € L' and [ ¢(z)dz = 1.

summation, if we set R = % then Fgr(z) =

Lemma 1.23 o
sin“ 7z
——dz=1
(m2)?

1.6.1 Abel-Poisson
u(e,t) = [ @) g
We hope to prove that e 2™l is the Fourier transform of some function .

Lemma 1.24 t
f 6—27rt|§|627rirv§d€ =cp—— = Pt(l‘)

n+1

(82 + |z*) =

which is called the Poisson kernel.
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This uses the subordination principle, namely that

_5 1 °°e“

Vrdo Vul

e e B gy,
Theorem 1.25 u(x,t) = P, * f(x)

Thus now to check that u(z,t) — f(z) we need only check that P, has integral 1 and is
of the form in theorem 1.22.

t 1 1
P&) = r e = e = P ()
(2 + 2|22 (1+]x[?) 2
where P(z) = ;M and also by a miracle [ P(xz)dz = 1. Thus we have convergence

(1+|z[2) "2
because P is an approximation to the identity.

If we are trying to solve Au =0 in R” x R* with u(x1,...,2,,0) = f(x) where f(z) is
given then a solution is u(z,t) = P,  f(x).

1.6.2 Gauss-Weierstrass
wat)= [ IR f©e g

We try to perform a similar argument to the above, i.e. we try to find an h such that h=
21¢12 21¢12
e~ 4K To compute this we simply take the inverse Fourier transform, as e ™ €7 e s.

Thus
—4mt?|)? 2772335 _ —|z|?/2t
h(z,t) = f U= t)n/Qe

If we define W (z) = —L e 1"/2 then note that

(4)/

_ L el
W)= ZEW ) G

We then know that w(z,t) = h» f(z) = W 4 * f(z) and we remark that [ W(z)dz = 1.
We then have w(x,t) — f(x) because we invoke theorem 1.22.

1.6.3 Heat Equation

The equation wy — Azw = 0 with w(x,0) = f(x) where w(z1,...,2,,t) with time ¢ and f
is the given initial data. We proceed heuristically, and take the Fourier transform. For
fixed t we get w(&,t) = [ w(x,t)e > @8 dx and then

0
—w = wt

ot
and also since 5;7(5) = 27rifjf(§) and 52]7(5) = —47725]2f(§) and so we have

AJ(€) = -4n*(gPf (€)
and so the heat equation becomes, since 1w, — Aw = 0 and then this is

O (&,t) + A ¢Pb(&,t) =0
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. _4n21€12 5
b(E,t) =TI f()
and thus this suggest that a solution is of the form
wa,t) = [ TIF fe)emdg =W g+ (o)

It is an easy exercise to check that this does indeed solve the Heat equation. It also gives
the initial date, as it is an approximation to the identity.

2 Almost everywhere convergence, Weak type inequalities
and Maximal functions

Definition 2.1 (X, M, u) a measure space. Suppose f: X — R then
Ap(@) = plw e X5 |f(2)]> a}
is called the distribution function of f. As:[0,00) - R*
Proposition 2.2 1. s is decreasing, and right continuous. Af(a+¢e) = Af(a)
2. |f] <lg| then A¢(a) < Ap(a)
3. |ful = |f| in an increasing manner then Ay, (o) = Ap(ax)
4. f=g+h) then A¢(a) < Ag(a/2) + Ay (af2).
Proof We only prove 4. It is enough to show that
{reX:|g+h|>alc{reX:|g|>a/2}u{zeX:|h>al2}

which should be clear Q.E.D.

Proposition 2.3 Suppose that ¢ is Borel measurable, and ¢ > 0. Let f: X - R such
that A\¢(a)) < co. Then

[ otr@hdu== [ é(@)ars(a)

Corollary 2.4
f \f () Py = — f0°° oPdAf(a) = ]Ooopap_l)\f(a)da

2.0.4 Weak L? spaces
Definition 2.5 f e L}, the Weak L? space, if and only if

e e X |f(@)]>a} < &
oP

For example f € Lj;, if and only if p{z € X : |f(2)| > a} < /o and so for example 1 ¢ L!
since f| 1 |%|dx =00 = f| 1|%|dw but % € Liy since {z : |%| >af={x: é > |z|} and the
Lebesgue measure of this set is %

o 17l 1 p
For example, in R", e € Ly, and e € Ly,

x|< z|>
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Lemma 2.6 L”c LI;V

Proof We show that if f e L” then f € LZ;V. Chebyshev’s inequality.

IR f{mmm} FPdp > f{m:|f|>a}apdu=apu{x=|f|>a}

ula|fl > o} < (@)

and so

Q.E.D.

Observe that the smallest C' for a given f such that u{x :|f| > a} < (g)p can be taken
as a semi norm for LV,

2.1 Strong-(p,q) operators

Suppose that T': LP - L9. Then we say that T is strong-(p,q) if and only if there exists
Cpq such that ||T'f||q < Cpql| fllp for all f e LP.

In other words it is a bounded operator L? — L9.

When proving convergence of Sgpf — f in LP we saw it was equivalent to |[Sgrf]|, <
Cpl| fllp i-e. equivalent to being strong (p,p). Also, independently of the dimension, S is
never strong (1,1) but it turns out that it is weak (1,1).

Definition 2.7 T is weak-(p,q) if and only if
ClIfll» \*
a1 o < ()

Lemma 2.8 T is strong (p,q) implies that it is weak (p,q).

Proof

00> ChlIFIE > T A= [ 1T A9 [

g T2 % T > 0)

Q.E.D.

Theorem 2.9 Suppose that T is a fanily of operators indexed by t. Ty operators in LP,
we are interested in limyy, Ty f. Define the mazimal operator by T™ f(x) = sup, [Tf(x)].
If T* is weak-(pq, ) then the set {f € LP :limyy, T1f(2) = f(x)a.e.} is closed in LP.

Carlesson showed that Spf — f by showing S* is weak (p,q) and that the result is
true for the Schwartz functions.
Proof Take a sequence {f,} with f, € LP. Assume that T;f,(z) - f.(z) a.e. Assume
also that f, — f in LP. We need to show that T f(z) - f(x) a.e. We look at {x € X :
limsup, 4, |13 f(x) = f(z)] > A} and we want to show that the measure of this set is zero
for all A > 0. This suffices since

{2 € X T Tif (2) - f(2) # 0} € UF o € X slimsup Ty (2) - f(2)|> )
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and the right hand side has measure 0. Now
p{re X : hltnjllp Tof () - f(z)] > A}
<l Tmsup [T () ~ fal)) + (o) ~ F@D)] > A)
<l Tmsup |7 (2) - fu(2))] > S )+
 pf s msup(fa(@) - ()] > 5)
<l s T (F@) - D> 5) + ules 1fu f1> 5)

) (0||an— fllp)q R (an;fnp )”

and this is true for all n, and so the LHS is less than lim RHS =0 Q.E.D.

Corollary 2.10 {T;} in LP , T* as above, and T* weak (p,q) then
{felP:limT,f(x) exists }
s closed
Proof Consider the set {z : |limsupT;f(x) — liminf T} f(z)| > A\} and the part in the
modulus is 27" f(x). Q.E.D.

2.2 Marcinkiewicz Interpolation

Proposition 2.11 Suppose that ¢ : [0,00) — [0, 00) is differentiable and increasing and
#(0) =0 Furthermore suppose f: X — R. Then

[ oUr@Ddu= [~ ¢ Ota e X :17()] > Abax

Proof

2)|
Loots@ = [ [ 6 )irdn
:]X/[; ¢,()\)X{0g/\g|f(x)\}()\)d)\du

) /o o'(A) fXX{OSAs\f(xm(A)deA
= [T 0 Omles1f@)]2 A (A
Q.E.D.
Corollary 2.12 ¢(z) =P for p> 1 then [ |f(z)Pdp = [;7 pAP~ p{|f] > A}dA

Definition 2.13 An operator T is sublinear if |T'(f + g)| < [T f| +|Tg| and |T(ag)| =
|a||Tg| for o eR.

Theorem 2.14 (Marcinkiewicz) Let (X, M,u) be a measure space. Let T be a sublin-
ear operator from LPO + LP1 — [P0 + [P* such that T is weak (po,po) and weak (p1,p1).
Then T is strong (p,p) for po <p<p1.
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We have seen before another interpolation theorem, Riesz Thorin. This gives us
boundedness from other boundedness. However, here for Marcinkiewicz you have much
weaker assumptions.

Definition 2.15 Ly}, = L.

Proof We can assume that py < p1. We have two cases, p; = oo and p; < co. We consider
the former:

We know that ||Tf]|e < A1l|f]leo from weak (p1,p1) and we know from weak (po,po)
that

ol < (Sl )

and we want to show that ||T'f||, < C||f||,- Recall the facts in above corollary 2.12 and
the last property of proposition 2.2, as these will come in handy.
We split up f as follows, for a ¢ to be chosen later.

(@) = F(2)X (a1 (@)zer) + F (X)X (@l (@)5ern) = f1(2) + fo(x)

The former is clearly in L®™ and the latter is in LP°, since

f|f(x)X{x:|f(x)|>cA}|p°du=f|f(§)

C

f)\”
=|C)\|p°f(y X{a:|f(z)en} At

S|c)\|p°[(%) du

< o0

CAX {ai|f (z)|ser [P0 dp

Now

Jrsrdn= [T pn s> Ay
and consider the set u{|Tf| > A}. We have

pT 1> Ny = T (o + F)l > N < TRl > 5} + wIT AL > 5)

We claim that if ¢ = ﬁ then p{|T f1| > %} = 0. To show this, we know that T'f;(z) <
A1l|filleo for a.e. x since ||T fl|oo € A1]|f]|oo- Thus

>

Thi(w) < Aillf xets@)senlloo < Ared < 5

a.e. and the claim is shown.
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Now
[ rspdi= [N T A A)dA
o) 1 )\
< [T NI ol > ShA

o Po
SA p)\p—l(cllfonpo) d)\
= pCP° [0 ||f HPO)\P 1-po 1\
Po p—1-po Po
por [T [ RN ydnd
— PO Po oo A\P~1-po d\d
pC /X |f ()] -[0 X{|f1>5 =) H
2441 f ()]
= pCPo f | f (z)[Po / ! )\p_l_pod)\du
X 0
pc™ [ P @A )PP
pCPO(2A4;)P~ p
AT [ £ 2)P

as we wanted.
We now take p; < co. We take the same decomposition of f as before, namely

(@) = F(2)X (o (@)cen) + F (@)X alf (@)seny = f1(2) + fo(z)

and then we claim that fp e LP° and f; € L' and the proof of this is left to the reader (it
is essentially the same as before).
Then

Jirsrdn= [T pn s> Ay
= [ PN dIT (o + £2)]> AbdA
oo . )\ 00 . )\
S_/O pA? 1M{|T(fo)|>§}d)\+_/o pA? 1M{|T(f1)|>§}d)\
) po 0 p1
:f p)\p—l CO”fOHpO d)\+f p)\p—l Cl”fl”pl d}\
0 A 0 A
= fo ~ pCro \piop f folP dud + /0 = perApip f f1 P dpd A
=f0 pcgo)\p_l_pof|f(33)X{x:|f(z)|>cA}|p°dud)\+

o [T o [ F @ s ogeon P dpdA
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=prC§°/0 APTEPO| FIPON o ey dAD L+
e [ e [N ieen AdH

e o
< [opcur [T adus [ pepisp f NP A

(ij
" ppo)cpp0/|f|p ’”l )pp1|f|f|pdu

stX|f|pd

where K is some crazy ugly constant. Q.E.D.

2.3 Hardy Littlewood Maximal Functions

We first set some notation. B, is the ball centred at 0 with radius r, and B,(x) is the
ball centred at x with radius r. |B,| is the volume of the ball.

Definition 2.16 The H-L maximal function 1s defined to be

) i -y

The following are equivalent ways to write it:

Mf(x):= sup

M)z [ 17wy

= sup Il; | f |f (y)|dy

xB, (y)dy

IB |
=Supf|f(fv—y)|—n><Br(y)dy
r>0 Ccr

1 Y
—sup [ 1= p)|—xm (Ddy
>0 cr r
and then if we define ¢(y) = |B—11|X31 (y) we have that

M () =sup [ |f(@=)lor(y)dy = sup|f] = 60 ()
>0 >0

Observe that it is possible to replace B, by cubes @, (centre zero, of side 2r). Then we
could define

Maf (@) =sup 5 [ 1f(a=w)ldy

and we claim that there exist a, A > 0 such that
aMqgf(x) < Mf(x) < AMqf(z)

with a and A independent of f but dependent on the dimension. If we let |B,| = ¢r™ and
|Qr| = ¢R™ then we have

1

cr”

R" 1
cr™ qR"

[ty s o [ 1f@-wlay< T [ - wldy
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where we choose QQr containing B,.. In R™ with the Lebesgue measure, for a given r we
can take R to be a multiple of r, and so % is independent of r.
We observe that the cubes or balls need not be centred at the origin.

Definition 2.17
i@ = s o [ i)y

all balls 5.t zeB | B|

We then claim that there are a, A such that aM f(z) < M f(x) < AM f(z)

This doesnt work for any sets, note the Architects paradox. Suppose we are in [0, 1] x
[0,1]. Then there exists a set A c [0,1] x [0, 1] such that for all x € A, there exists a ray
emanating from z which does not belong to A and A has measure 1.

Proposition 2.18 Let ¢ be a positive radial and decreasing function, and ¢ € L'. Then
S;u(lj’|¢t « f(@)| <ol M f ()
>
Note that this is pointwise.

Proof Write ¢(x) = f(|z|) and approximate by simple functions, so define
¢n(x) = Z anBrj (x)
j=1

with a; > 0.

We claim that given ¢ there exists a sequence ¢, of the above form so that ¢, - ¢
a.e.

We then show that |¢; » f(2)] < ||| 1 M f(z) < ||¢|l1 M f(x) and it is enough to show
for some t due to scaling. We take ¢t = 1 for simplicity. Then

1)~ (Sarn, 0+ 1) @)
and also
Mf(x)—sup(l |XBl)*!f|(fL’)

and we have

10 = (S, 0+ 7) @

and so

|¢n *f(x)’ < Za]

e, O+ 111) )

IN

Sl lsup e () Ifl)(fv)

|Br|

S0, ) M1(0)
= Mf(2)l|¢nlls
< Mf(@)olh
and sending n — oo we get |¢ * f(z)| < M f(z)||¢]|1 as required. Q.E.D.

Observe that the given ¢ needs almost no restrictions. It suffices that if there exists a
1 that it positive, radial and decreasing such that |¢(z)| < ¥ (z) then the result from the
previous proposition holds.
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Theorem 2.19 M f is weak-(1,1) and strong-(p,p) for 1 <p< oo

Proof Trivially true for strong (oo, 00), and we show later for weak (1,1). Then
Marcinkiewicz implies the rest. Q.E.D.

Lemma 2.20 (Vitali Covering) Let E c R" be measurable wrt the Lebesgue measure
m. Assume that E is covered by a family of balls { By }aea ( of bounded diameter) and A
not necessarily countable. Then there exists a pairwise disjoint subset {B;} and a constant
c such that

m(Bj) > em(E)

™M

Il
—_

J

Proof Let R =sup,c{diam(B,)}. Choose By to be any ball such that diam(B;) > %R.
Assume that we have chosen By, ..., Bi. Then choose By, to be any ball disjoint with
By, ..., B, such that

1
diam(Bg+1) > Esup{diam(Ba) : B, disjoint with By, ..., Bi}

if this is possible.
We thus obtain {B;} which is countable or finite. We have two possibilities

Y m(B;j) = oo > m(Bj) < o0

If the former, then there is nothing to prove. We thus assume the latter. Then
> m(Bj) < o0 = diam(B;) -0
1

We define B; to be the ball with the same centre as B; but five times the diameter. Thus
We want to show that UB; > F because then

5"y m(Bj) =Y m(Bj) 2 m(E)

and this would conclude the proof. We show this by showing that B, c uB; for all a € A,
which gives the result.

We argue by contradiction, and so we assume that there exists an a such that B, is not
contained in UB;. Then pick k to be the first integer such that diam(By1) < %diam(Ba).
Then B, must intersect at least one of the Bjs, else we would have it in the collection.

Let Bj, be the first one which it intersects. Now jg < k because if not then B,, is disjoint
with Bi, ..., Br and so it is the suitable candidate when we choose Bp,1, in other words we
would have chosen B,, instead of By,1, due to our assumption diam(Bg,1) < %diam(Ba).

We claim that B, c B} . We have that diam(B,) and diam(Bj;,) are comparable.
When we chose Bj, we made sure that diam(Bj,) was greater than or equal to half the
supremum of the diameters of the remaining disjoint balls. In particular %diam(Ba) <
diam(Bj,) and so B, c B}, . Q.E.D.

The proof that M f is weak-(1, 1) is still to do, and we do so below. It is an application
of Vitali’s theorem, although initially you wouldn’t expect that; at the least I didn’t.
Proof (Mf is weak-(1,1)) We want m{z : M f(x) > a} < C/a. Define E, = {z :
Mf(xz)>a}. If x € E, then

1 1
Mf =sup— |f(y)|dy >« = 3Fr(z) such that —— / lf(y)|dy > «
T |BT’| By (x) |B7‘(:B)| Br(z)(x)
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and thus F, c ueraBr(x)(ac).
We can apply Vitali’s lemma to find {B;} such that Y, m(B;) > em(E,) and {B,}
pairwise disjoint. Notice that

1
&xs—f d
1B, ()l ” Br(x)(w)lf(y)!y

In general, for any disjoint collection of balls B,.(,y(z) we have

U Bra ()| < 2~ f f(y)ldy = — [ )y < 1l
k=1 k=1 & JBr(a;) (zk) o «
Then we have that
nﬂﬁh)S5”Zhnﬂ%)g5%anBMmcw)Syﬂvm
1 «
Q.E.D.

Corollary 2.21 Let ¢: R™ > R such that |¢p(z)| < (x) for some positive ¢ that is radial
and decreasing. Then

tim g0 « /() = ( [ d(@)dr) £(2) ace
Proof We have seen that if sup, ¢; » f is weak (p,p) then the set
{ferPilimpinf=fac }
is closed. Also we know that

Stljgl@ * f(@)] < [lga||M f ()

and also if M f(z) is weak (p,p) for all p then we have sup,.|¢: * f(z)]| is weak (p,p) for
feS. Since S is dense in LP and the set of functions {f € L” : limyo ¢ » f = f a.e. } is
closed and contains S it must be LP Q.E.D.

Corollary 2.22 This applies to Gauss- Weierstrass, Abel-Poisson and Cesaro, but not to
Srf
Proof The functions ¢ in GW and AP in the expressions are

ct

(2 +|22) "

and

1 _R?
e 4t
(4rt) 2
and these are radial, decreasing and positive. For Cesaro, the function ¢ is less that the
1 r<l1
function ¥(z) ={ Q.E.D.
=z x21
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2.4 Dyadic Maximal functions

This is an effort to make everything more computable, or manageable.
In R, if O is an open set then O = )1, a union of disjoint open intervals, but in R™
one cannot write an open set in this manner.

We denote by @ the set [0,1)" = [0,1) x...x[0,1) and Qp is the set of all cubes

n times
congruent to ) with vertices in Z". We let Q. = 2%@ the “shrunk ” cube for k£ € Z and
Oy, the set of all cubes congruent to () with vertices on (%Z)”
We remark that for all x € R™ there is a unique cube in Q) that contains z, i.e.
R'= U Q
QreQx
Also note that any two dyadic cubes (allowing different generations) are either disjoint

or one is contained in the other. Also every dyadic cube in Qj is contained in a unique
cube of the previous generation and itself contains 2" cubes of the next.

Definition 2.23

Epf(x) = f fy)dyxq(x)

QGQk |Q|

Observe that

/Ekf(:c)dx:ff(x)da:

and also that
1 1
f%@/f(y)dym(x)dx:;/@XQ(x)dfof(y)dy:quf(w)daf

Definition 2.24 The Dyadic maximal function is defined to be

Maf (@) =sup B (@) = sw |2 [0 s

QreQx
reQy,
keZ

Observe that in the above supremum there is only one Q) for each generation.

Theorem 2.25 1. Myf is weak-(1,1) and strong-(p,p) for 1 <p < oo

2. if fe Lllac then
klim Eif(x) = f(x) a.e.

Proof (an example of Calderon-Zygmund decomposition) Without loss of gener-
ality we can assume that f > 0. We then need to show that

[z e R™: Myf(z) > ad| < <
«
We first claim that
{CL' eR"™: Mdf(:E) > a} = UkeZQk

for some sets Q. Define Qi = {x e R": E} f(z) >« and E; f(x) < aVj < k}. Suppose that
re{reR": Myf(xz)>a} for fixed . Then f e L' implies that

1

— fdxr - 0as k- -0
Qx|
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as it is bounded above by ‘Q—1k||| fll1- Thus for a « fixed there exists a K such that

1
— d
er|fij““

for all j < Ko. This implies that Q; = @ for all j < K.

Once we have defined €); for j < Ky we define the rest inductively.

For the claim, if z € {z € R" : Myf(z) > a} then there exists an index k such that
Eif(z) > a. We know this set of indices is bounded below by Ky. Then trivially x € Q.
This shows the inclusion

{.75 eR™: Mdf(x) > a} C UkeZQk

To show the other inclusion, if z € Q then Ejf(x) > o and so Myf(x) > a so x € {x €
R™: Mdf(:L’) > a}

Observe that () are pairwise disjoint.

Now if x € Q we have Ej f(x) > a and if z € Qj, for Q a dyadic cube then

and so
|Q | < / f(y)dy
Each Q is a union of dyadic cubes and so
104 < ka f(y)dy
@

To conclude

. o 1 1 ||f||
o R .Mdf<$)>a}|—|UQk|—k§0|ﬂk|sazfgkﬂy)dysa[ Fy)dy < PR

For the second part, if f € L} then limy_ o Exf(x) = f(z) and if 2 € Q) then

loc
1
Bf (@)= 15 /g?kf(y)dy

and given {Exf(z)} we have Myf is the maximal operator associated to them by defini-
tion. We have seen that if Myf(x) is weak (p,q) then the following set

{felLPl: kh_)m Eif(z)=f(x) ae. }

is a closed set. Moreover the result is trivially true for S and so the result is true for LP.
Q.E.D.

Note that if f >0 then

{z: Mqf(z)>4"a}| <2"[{z: Maf(x) > o}

o Mof(2) > M| < 27w s Maf () > )
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Corollary 2.26 (Lebesgue Differentiation Theorem) Suppose that f € Llloc then

. 1
lim
|B,|~0 | By |

[, fwdy=f(@) ac.

Corollary 2.27 Suppose that f € Llloc then

fing ) =)= F(@)ldy =0 e

Proof (sketch) Let T, f(z) = ﬁ/&n |f(x—vy) - f(x)|dy and also T* = sup, T;.. Then
{f e LP:limy, T f(z)} is closed provided T* is weak (p, q) for some p and g. The limit
exists and is trivially zero for f € C? or S. Then T* is weak (1,1) and

T @< g f, V= ldy 1)

<sup o [ 17 - u)ldy + S @)
<2M f(x)

and so T*f <2Mf. Q.E.D.

3 Hilbert Transform

We saw before the Poisson kernel u(z,t) = P, » f(z) where Pi(z) = ¢, n R”

t
T T n+l
(le2+62) "3

with ¢; = % This function has fourier transform 4 = 6_27”5'5‘]5(5). Now for n =1 we have

U(ZL‘, t) _ A e—27rt|§\f(é—)e27ri:b§d€
_ Aoo e—27rt£f(€)627ri:p§d€ I [i e27rt§f(§)627rix§d€
_ Aw f(g)e%ri(xﬂ't)fdg_,r fjo f(£)€2m(x_it)§d£

and if we rewrite this with z = z + it we get

oo . 0 . _
u(z) = [T R©F g+ [ f(e)erma

and then if we define the function v(z) by

i ! 0 . .
w(z) = /0 f(€)€2ﬂzz§d£_ [oo f(§)€2ngd€
and we can then write
’U(.I‘,t) = —Z/ Sgn(é')e—?ﬂt‘ﬂf(§)€27rix§d€

In exactly the same form that w defined above can be written as a convolution with P,
we can also write v as a convolution with Q¢ where

X

Qu(z) = -

T a2+ 12
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and note that Qy(€) = —isgn(&)e 2™, Q, is called the conjugate Poisson kernel. Observe
that

@) +1Qu(0) = — (o b ) = o = 2
which is an analytic function for Imz > 0.

Now P,f — f because P; is an approximation to the identity. But what happens to
Q¢ > f(x)? If we write formally, we see that

TZZ TZ

1 1
Qo f@)=— [ 7=y

and this expression is not defined, even for f € S. The problem is not at oo, it is at the
origin. In some sense, lim;_,o Q; = % and is it possible to make sense of % * f7

Definition 3.1 We define the principle value to be, for p € S, (or ¢ € C°)

p.Vé(¢) = lim @dx

e=>0Jzl>e T

and we claim that this is well defined. Note first that f1>\ - %dm = 0, since it is symmetric
about the origin. Then

Mdac=/1|| @dx+ Mdaz

|z|>e @ x lz|>1 @

The latter is independent of 1 and |¢| < W as it is Schwartz or with compact
support. The former is

¢(z) ,  _ ¢(x) 1 ¢(x) - 6(0)
ﬂ>|z|>z—: de - ﬂ>|x|>€ wa - ¢(0) 1>|z|>e ;dl’ - ﬂ>|z|>z—: x de

and if ¢ has one derivative then the integrand is less than the infinity norm of the deriva-
tive, and since the domain of integration is compact, we have it bounded.

Proposition 3.2

1 1
limQ¢ = —p.v.—
t—0 ™ X

where the limit is understood in the sense of distributions.

Proof For all € >0 let ¢.(z) = %X{\x|>s} (z) and then p.v.%(gb) = lime_0 ¥ (2)(¢) where
we think of the function . as a distribution by

Vo@)(@) = [ ve(2)p(w)da
Then .
b2 () =t [we(@)orar =t [y

0Jjzfse
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and we want to show that lim;-o[Q¢(¢) - 1p.v.1(¢)] = 0. We have

ln[Q:(8) - ~pv-~(9)] = Im(Qu(6) - — [ di()o()da]
i [ o@dn - [ o]

>0 |

[ T 1
=1m| [ mﬂx)d@” =" L]
[ T 1 x 1
BN [ y g
tLHOl_ |z|<t x2+t2¢(x) x+7r et \x2 +t2 o(x)d
—lim—/ S (ty)d f (t—y 1) o(t )td]
0 [ Syt t2y+t2 vy >t \ 2y +t2 ty yrey

:}ti—{rol —.@|<1 Y+ 1¢( y)dy + ./y\ 1 (yi/- 1 i)gzﬁ(ty)dy]
=0

since we can take the limit inside using DCT and then we have integrals of odd functions
over symmetric domains. Q.E.D.

Note that e — 0 in the same sense. This is Riemann-Lebesgue.

Corollary 3.3

1 —
limQ; * f(z) = - lim =9,
10 Tem0ybe  y

Corollary 3.4

(p:v.)(€) = —isgn(©)
Proof We only give a sketch
(Qi * 0)(§) = —isgn(&)e ™Kl (¢)

and also . - -

—(pv.= % 0)(§) = (P ) (€)(E)
and since

lim (@1 > 9)(€) = - (pv. = 6)(©)

— i .
we get

~isgn(§)3(€) = (bv.2)(€)(0)

as required Q.E.D.

Definition 3.5 (Hilbert Transform)
1 - 1 -
Hf(z) = Tpv. f @)y Ly [ 1@,
T Y

me0Jye Y
We could have alternatively defined this as
H () = lim Qy + [ (2)

or as

i —

F(&) = —isgn(&) £(€)
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Proposition 3.6
I fll2 = [1fl2

Proof R R )
[H fll2 = [[H fllz = [| = isgn(€) F(E)llzz = [l/]l2 = [l /]]2

Q.E.D.
and thus we have that H is strong (2,2).

Proposition 3.7
H(Hf)=-f

fng=—f(Hf)g

The proof of this uses the Fourier transform definition. Due to the propositions here, H
can be extended to L?. We will see that H can be extended to LP for 1 < p < co.

and also

Theorem 3.8 H can be extended to f € LP for 1 <p< oo and furthermore

1. (Kolmogorov) H is weak (1,1), that is

Clif Il

«

{zeR:|Hf(z)]>a}| <

2. (M. Riesz) H is strong (p,p) for 1 <p< oo, i.e. there exists a ¢, such that
1 fllp < cpll £l

Theorem 3.9 (Calderén-Zygmund Decomposition) Let f € LY(R™) and f >0 and
fitraa>0. Then

1. R"=Full
2. f(x)<a for ae. xeF

3. Q is a union of cubes Q) = UQy where Qi have disjoint interior and

1 n
a<m/;kf(y)dyg2 e

Observe that |Qg] < é[Qk f(y)dy and

l=lvQil <t [ s <1

Proof Given a, since f € L' there exists m such that

G Jo Wy <a

and this implies that if @) is a dyadic cube of side 2™ then ﬁ fQ fdy < a.
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Consider the family of dyadic cubes of side 2™. Take a cube in this collection, and
bisect every side. Let Q' be one of the resulting 2" cubes. We have two options

|5,| fQ, fy)dy <o |5,| fQ, fy)dy > o

If in the latter then we keep Q' for our collection. Then we have

i Q1 )
<@ Jo T i S -

If Q' satisfies the latter, we bisect every side and look at every sub-cube. Iterate this
procedure. We thus gain 2 as a disjoint union of such cubes. We define F' := Q2°. We are
left to check property 2.

Let x € F' so that x is in one cube from every generation of dyadic cubes. Then we
have ﬁ fQ f(y)dy < «a for every dyadic cube containing x. We have a family of cubes

{R;} such that if x € R; then ﬁ ij f(y)dy < a.. Lebesgue’s differentiation thereom gives
that

1
lim—f fly)dy = f(x) a.e.
i o7 Jo (%) (2)
and if z € @, for all r and |Q,| = e¢r™ then we have
f(z) = lim Lf f(y)dy <aae
i~e |Rj| JR; T

Q.E.D.

Proof (of theorem 3.8) We prove this in R. Suppose f > 0. From Calderon-Zygmund
decomposition we write R = F'u () where () = ul; with disjoint interior and

a<—f fdxr <2«
|1

and [Qf < 2[|f]l1-
Decompose f into a good part and a bad part, so f = g + b where

@) f(x) zeNC
) =
g ﬁfljfdx zel;

and b(z) is defined as whatever it has to be, i.e. b(z) = f(z) — g(x). We think of b as
b(z) = X321 bj(z) with

o) = (£ o, ) o) )
We need to study [{x : |H f| > a}| and show it is < £||f]];. We have

{a:|Hf|>a} e {a:|Hgl> Sy u{: |Hbl> 5}

Now
2\? 5 (2)? 5 (2\%(a)? '
(5) .[|Hg| 2(5) >/{:c|Hg|>;‘}|Hg| 2(5) (5) »[{x|Hg>°2“}_|{$|Hg|>a}|
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From the Fourier transform definition of Hg, we immediately get that ||[Hgl|3 = ||g||3 and

(Z) [ vma=(2) wmal=(2) 161z =(2) [ volars(2) [ loi2ade< s,

since |g| < 2a by definition and

fg:wang:fFﬂ?flj%ﬂfljf(y)dyd%fFf+;fljf(y)dy=ff

For {z : [Hb| > a} take Q = U2, 1; and define Q" := U2,2[; with 2I; meaning the
interval with the same centre but double length. Observe that

. 2
17 <219 < —[|f[l1
o
and then
* * (0% 2 * «
[{a: [Hb| > o} < Q7|+ [{z € (@) : [HD| > 5il< EHfIIHI{UCe Q) : [Hb| > 51

To finish we need c
. «
[ e (@) s b2 Y1 < <

We have

e @) b2 SH <> |

. |Hb|dx<z f o Vb ld

and it is enough to show that }; f(Q*)c |Hbj|dz < ||f][1. Observe that if 2I; c Q* then
(21;)¢ c (2*)°. Also observe that

fbj(x)d:czfljbj(x)dxzfljf(x)dx f |I|ff(y dydz = ff(a:)dm ff(at)dx 0

We then have
2
E;[( o [l - %jfmj)c |\H b, |d
= 2 Z / p-v. f (y) y|dz
a 5 J2I)¢ ' R - y

b
= 2 Z f lim[ REALES () dy‘ dx
a7 (21;)¢ |e=0 J|z—yl>e T — Yy

b
= EZ/ lim / b(W) dy|dx
a (21;)¢ |e—=0 -y

lz—y|>e
yEIj

ZEZf fbj(y)dy
a7 (QIj)CI r-y

J

dx
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dx

2 [ f [ 1 1 ]
== b - d
a%: (21,)° 7 i) T-y x-¢j Y
2 / / ly - ¢l
<= bi(y)|—=—L— dydx
a2 Jarpe ) POy ™
J
2 [ / |1;]
=z b dydz
Oz; (2Ij)clj |](y)|’$_cj|2 Yy
3
— [ |bi(y)|dy
%}a ]jlg( )]
< [1r@ls | [ | ar

4
<] f 1w [ 1wl

8
< afuljlf(y)ldy

8
< —[Ifllx
o

IN

IN

|z—c;]
-

1; 2 2
[ 1l dacz/ —adxzf —ady=2
(21;)¢ ’CC - Cj|2 |z—cj|>2a ’1’ - Cj‘Q ly|>2a ‘yP

Now for strong (p,p). We know that H is weak (1,1) and strong (2,2) and so by
Marcinkiewicz H is strong (p,p) for 1 < p < 2. We now use duality to deduce for p > 2.

We have that
1fllp= sup { [ fg)
geLd

since |y - ¢;| < 5|1;] and |z - y| > The above is true, because, if I; = (¢; — a,c; + a)

then

llgllq=1
where %+%:1. If p> 2 then
| flly = sup { [ (Hf)g} = sup (- [ f(Hg)}

geLd geLd

llgllq=1 llgllq=1
Now

[ rHgda <511 Hgl, < I fllpeqloly

and so

|l =sup{- [ fHg} <l fll,
Q.E.D.

The moral of this is to work out the result for (2,2) and (1,1) and then use duality.
The reason is that (oo, 00) is most of the time false.

3.1 Natural Generalisations

We look for maps

Q'
Ty =tm [ 29 5y
=0 Jly|>e |y|
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where y' = ” €S 1. A necessary condition is that [g,1 Q(y")do = 0.
Suppose we are solving —Awu = f and f € LP. Then

Cnf| 2 f(z-y)dy = Cnf| Y- Zf(y)dy

and then
—0f| |nf(y) y+ f| |n+1f(y)dy

where g and h are polynomials and are essentially constants, and g happens to satisfy the
property of € above.
A more useful generalisation is

Tf(x)= [ K@-y))dy

Theorem 3.10 Suppose that K is a tempered distribution, that agrees with a function
on R"\ {0}, and is in L}, (R™\ {0}) such that

1. |K(€)| < A for some A
2. [‘x|>2|y| |K(z-y) - K(x)|dz < B for some B. This is called Hormander’s condition.

Then Tf = [ K(x-y)f(y)dy is weak (1,1) and strong (p,p) for 1 <p < co.

The next stage would be Tf(z) = [ K(2,y)f(y)dy which is used for Green’s functions.
The proof of the above is very similar to the proof that the Hilbert transform is weak
(1,1) and strong (p,p).

Proof We first show that 7'f is strong (2,2).

I fllz = 11T fll2 = 1K) F (2 < 1K ool fllz < Allfll2

where we have used Plancherel twice. We now show that T'f is weak (1,1) and then use
Marcinkiewicz and the duality argument to conclude the result.

Without loss of generality we can assume f > 0. If it isnt, then we can decompose
f=/f"-f and then look at T f* -Tf~.

We use a Calderon-Zygmund decomposition for f > 0 and a > 0 fixed in R"™ so that
R" = F uQ where f(z) < a for z € Q¢ and

1 n
a<m[Qkf(y)dy£2 «

where Q = U;Q; and @; have disjoint interior.
We construct good and bad functions such that

(2) = f(z) reQf
P G o fWdy ey

and b(x) = Y1, by where

bi(a) = (f(w) : f(y)dy) Yo, ()

Q]

Then o o
{z:|Tf]>a} <{z:[Tg|> §}| +{@:|Th| > §}|
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and we want each one less than or equal to %H fll1- Then

o 2\ 2\ 2\?
gl> i< (2) [ima?=(2) imal < (2) 4ol
(6 (6 (6

and notice that g(z) < 2"« and thus

2\? 2\2
(Z) 203 < () 2
a a
since [ by =0so [ g= [ f like before. This concludes bounding the good part.

Call Q}, the cube centre ¢, with side length 2\/n times the side length of Q). Then
let Q% := upQ;. Then

2n+2

lglls = =A%l

* (7 (j
@lscilsCR i< Y [ Fwdy< iflh
and then

« * * « C * (0%
{70 > 5} < Q7]+ [{z € (2 )< < |Tb] > S Sl + Ha e (2 )< < |Tb] > 51

Then
{ze()C: |Tb]>—}|<— - |Tb|dzx

g%;f( o [Telda

gzzf o Thilde

<§§ Jrorye [ K- by do
s%%;L%W~éyK@—ywaw@¢m

sgg Jranye Lo, S =) = K =) 1)
<o o) Jiye VG0 = K (=)l by

<C

<28 [, ety

<—z@$mmmﬂfumm]
S O
<22l

and now for f(QZ)C |K(x-y) - K(x - )| |be(y)|dy < C note that R" N Q; c {z: |z —ci| >
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Qu

X-Ck|

A [y-Cy

—

12./n

Figure 1: Explaining last part of proof above

2|y — x|} and so

Jrge KG9 =K el be(wldy < [ K (2 =y) = K (= ) I (w)ldy

lz—cr|>2ly—ck|

<B

and see figure 1. We thus need B > 2A from the picture below. Then if we suppose [ is
the side length of Q) we have [2\/n as the side length of of Q} so 2B =12\/n > 4/1>n/4
as required. Q.E.D.

4 Bounded Mean Oscillation (BMO)

Recall that f e L}, if and only if for all K c R" compact we have [} |f|dz < oo.

Definition 4.1 )
=— d

1
Mif(@) =swp = [ 1f -1
(D=awig) Jo\ el
BMO is the space

{feLi,:M'feL>®}

For an f € BMO we write ||f||. = [[M!f||lc. The reason for the strange notation is that
this object is not quite a norm, as if f is constant then it is zero. There is a way to
construct a norm on BM O, which is usually denoted by ||-||zao by taking equivalence
classes. We do not do that here.
Observe that
M ()] < e M f(2)

where the M is the Hardy Littlewood maximal function and ¢, depends only on the
dimension.
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Proposition 4.2 1.

||f|| <sup1nf

£ jcfz F(y) - aldy < | f]].

for a given f e BMO

MF|f|(x) <2M1 f ()
Proof

supink 1 [0 1£) —aldy <sup 25 [ 1) = aldy < M5 () = 151,

which shows the second 1nequahty. For the first, observe that

[Q|f—fQ|=[Q|f—a+a—fQ|sfQ|f—a|+[Q|a—fQ|s2[Q|f—a|
for all ) and a. Then
5 | 1F) = foldy <inf [ |7(s) - aldy

since the left hand side doesn’t depend on a. Now divide by |Q| and take the
supremum over () > x to get that

%Wﬂk%wm

ol fQ £ () - aldy

To prove that fQ |fo—al < fQ |f(y) - aldy we note that we can assume that a = 0, as
if not, consider g = f — a. Then

legQ\dm= fczﬁ‘ny(y)dy dx
= ‘ng(y)dy‘fQ@dx

as required.
2. We have
VS < Il
o L 191) = dldy

<2 sup 1nf

Q)
<2sm o [ 15~ ol

2
< 8515 |flf(y) faldy

<2M'f(x)
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Q.E.D.

Corollary 4.3 If f €e BMO (IM"f(2)||oo < 2) then |f| € BMO, i.c. ||MYf|(z)] < 2c.

The converse is false however.

1
log o] TS 1
0 z>1
in one dimension. Then consider sgn(z)f(z). We claim that f = |f| is in BMO but

sgn(z) f(x) is not.
The moral of this is that for BMO, size is not the only thing that matters.

Observe that L ¢ BMO and BM O is larger that L*. Consider f(x) =

Theorem 4.4 Consider Tf(x) = [ K(:B—y)f(y)cgy such that K is a tempered distribution
agreeing with a function on R™ \ {0} such that |K(&)| < A and K satisfies a Hormander
type condition f|x‘>2|y| |[K(x -y) - K(x)|de < B for all y. Then T maps L* into BMO
and

1T fllBro < Cllflleo

Note that the BMO norm measures the oscillations. Also oscillations are really im-
portant, recall Riemann-Lebesgue. f (¢) — 0 mainly due to the oscillations of e~27¢,

The BMO norm measures the oscillations of f at every scale. |f — fo| measures the
difference between f and its average fg. Then M ! measures that difference, at every
scale.

Theorem 4.5 (Interpolation) T a bounded operator on LP, ||T fllps < cpollfllps and
bounded from L% to BMO. Then T is bounded in LP for p > pg.

This in some sense generalises Marcinkiewicz.

Theorem 4.6 (John-Nirenberg) Suppose that f € BMO, then there exist Cq,Cy such
that

[{zeQ:|f - fol > A} < Cre NI ||

5 Weak Derivatives and Distributions.

5.1 Weak Derivatives

We look carefully at the integration by parts formula. Suppose that  c R™ is open,
e C(Q) and ue C1(Q). Then

fﬂaijd:c:—fﬂuaqusdx
and if u € C1% then
0 bd :_f e bd
fﬂ&puqb x Quargb x

Definition 5.1 Letu,v e L}OC, and o a multiindex. We say that v is the a-weak deriva-
tive of u if

f védr = (-1) f udy pdx
forall p e C
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Observe that this is unique if it exists. If we consider f(x) = |x| then f'(x) = sgn(z).
If g(7) = X[0,00) then this has no weak derivative.

Consider u; +uy = 0 for z € R and ¢ > 0. This has a solution f(z —t) for some f. If we
add u(z,0) = f(x) then u(x,t) = f(z —t) should be the unique solution.

Suppose f € LP ~ C'. Then assuming you can, for ¢ € C2° we have

0:f(ut+ug;)¢dxdt:fut¢+uz¢>dxdt:—fu¢t+u¢xdxdt:—fu(¢t+q§x)d:rdt

and the right hand side exists if u € Llloc. We say that u is a weak solution of u; +u, =0
if it satisfies [ w(dy + ¢z )dadt = 0 for all ¢ € C. One can check that if f has a weak
derivative then u(z,t) = f(z —t) is actually a weak solution.

An example is to solve —Au = f in R". First look for radial solution of —Au = 0
and for n > 3, one such is u(z) = c"\xl% from formal calculations. Away from z = 0

we have —Au = 0 and so u(z) = ¢, [ = yl‘n > f(y)dy solves -Au = f. Formally —Au =
en [ (- A)|x i > f(y)dy = f(x) and this works because = |n —— is essentially the distribu-
tion dz.

5.2 Distributions

Suppose that X, c R" are open.

Definition 5.2 Let u be a linear form on CZ°. Then u is called a distribution if it
satisfies: For all compact K ¢ X there exists C = C(K) and N = N(K) € N such that

(@)l = [(u,¢)| < C . sup|0”d|

lajl<N %
for all p e CX(K).

Note that C° is not a Banach space, so has no natural norm. However it is a Fréchet
space so has a family of seminorms, and these make up the sum above.
One would like to write the following. w a distribution if it is a bounded linear
functional on CZ°. The reason for the strange definition is that C° has no natural norm.
We observe that CZ° ¢ § ¢ C*°. The useful one of these for us is S. We call these
tempered distributions. For C' we have distributions of compact support. D’ is the
space of distributions.

Theorem 5.3
CO . D/

Proof f e C¥ define (f, ) = [ fodx for all ¢ € C°. Then

(.o <liollo [ 1Flde

for ¢ € C°(K) and then
< [ Ifldaole
Q.E.D.

We observe that L}, c D’ and so LP c D'
We define § by (9, ¢) = ¢(0) and note that |(, ¢)| < ||¢]|« and here C, N are independent
of K. 0, is defined by (dy,¢) = ¢(y).
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5.2.1 Convergence of Distributions

We think first of convergence in C°.
Definition 5.4 X c R" open. Then ¢; € C°(X) converges to 0 in C°(X) if
1. spt(¢;) c K for some K c X compact for all j. K is thought of as being fized.

2. For all o, 0%¢; — 0 uniformly as j — oo.
Theorem 5.5 u: CZ(X) — R is a distribution if and only if

lim (u, ¢;) =0

j—o0
for all ¢; that converge to 0.

Proof “==" is trivial. We have [(u, ¢;)| < C(K) ¥|q<n [|0%¢]|ec by definition and the
right hand side tends to zero as ¢; - 0 in C°(X).
“«<—==" By contradiction we have that

{ [(u, &)

_ BBON _ heCe(K
Yl 10%9]|oo pe el )}

is unbounded in [0, c0) for every N. Thus for every N there exists a function ¢ € C°(K)
such that
[, o)

>N
Yl 107N ][

Construct

_ ON
N ¥jaen 100N || oo

and a direct calculation shows that ¥y — 0 in C°(K), and [(u,¥n)| > 1. We have a
contradiction since by hypothesis if ¢; - 0 then |(u, ;)| = 0 Now

{u, o)
1> = [(u,
§ N ¥jajen [[10%d]| 0 s o)

YN

Q.E.D.

Definition 5.6 If the N = N(K) in the definition of a distribution can be taken indepen-
dent of K then we say that the lowest possible such N is the order of the distribution.

It is left as an exercise to construct a distribution without finite order.

Definition 5.7 Suppose X ¢ R"™ and u € D'(X). Then the support of u is defined by
the complement of {x € X :u =0 on a nbhd of z}

This set is open by definition, so the support is always closed. u =0 on a neighbourhood
of z if and only if there exists 23 z open such that (u,¢) =0 for all ¢ € C°(2).

For example the J-distribution has support {0} and if f € L} . then its support as a
distribution is the same as its support as a function.

The set of distributions of compact support can be identified with the dual of C*.
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Definition 5.8 Let X c R™ be open, and uj € D'(X). Then u; - u in D'(X) if and only
if

The same is true for a continuous parameter.

Riemann-Lebesgue says that ¢*¢ - 0 in D’. Approximations to the identity p € L!
then pc(x) - § in D’.

We have seen p, * f(x) — f(x) for f e L¢ which is much stronger than the above, in
other words we have proved

1

on

o(“=2) 1wy - 1)
€
but here we only need .
Y
= [ o(Y) ey > o)

as ¢ = 0.

5.3 Derivatives of Distributions

We use integration by parts. Suppose that u,¢ € C2° and then

[uxigbdazz—fu@miqﬁdx

Definition 5.9 Suppose that u € D'(R™) and then define the ath derivative of u by
(0%u,¢) = (-1)\*(u, 0°0)

We now check that this definition makes sense. Observe that u € D’ then 0%u € D’.
Given K c X compact then there exists C, N such that

(u, @) <C 3 11070l

|BlsN

and we want to have

(0%u, ) <C 3 11070]le0

I8l<N

but
(07w, )| = |(-1)Nu,0*¢) < C Y 10w

|BI<N+|af

and so the above definition does indeed make sense, as we have 0%u € D'.
Proposition 5.10 uj,ue D" and u; - u in D' then

0%uj - 0%u
in D' for all .

Proposition 5.11 Suppose that f,g e CV and consider them as distributions, i.e. (f,¢) =

[ fodx. Assume that % equals g in the sense of distributions. Then ng exists in the

classical sense and equals g.

The hypothesis is (g, ¢) = <§_:£’ ¢) for all ¢ e C°
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Definition 5.12 If f € C* and u € D' then define the product fu by
(fu, @)= (u, fo)
for all p e C.

Theorem 5.13 (Product rule) Suppose that f € C*, and uweD'. Then

|
*(fuy= Y —a°for

For example consider the § distribution and take f e C*. Then
(f6,0) = (6, fo) = F(0)p(0) = f(0)(4, &)
and so people write f6 = f(0)d. Also be careful to note that

5.4 Distributions of compact support

We denote by £’ the dual of C*°, and these are the distributions of compact support.

Definition 5.14 Suppose that we have a sequence ¢; € C*(X). We say ¢; converges to
0 if for all K ¢ X compact we have

0%; -0
for all o uniformly on K.

Definition 5.15 We say that u € €' is a distribution of compact support if it is a
linear map on C' such that there exists a compact set K, and constants C;, N > 0 such
that

(u, @) < C 30 N10%Gllre=(x)

la|l<N
for all ¢ € C.

The following theorem links D’ and &£’ together.

Theorem 5.16 Suppose that v € D'(X) and X is open. If the support of u is compact
then there exists a unique extension of u to C*° that is in £'(X).

Given v € E' the restriction of v to C° is a distribution, i.e. V|ce € D'. Moreover it
has compact support.

Theorem 5.17 Suppose that u e D'(X) and ¢ € C(X xY). Then
(u(@), (2, )) € (V)
Suppose that u e E'(X) and ¥ € C®(X xY). Then
(u(2), (z,y)) € C=(V)
Suppose that f(z) € L'(R) and ¢(x,&) = e 2™%¢ then
(f(@).0(@.) = [ f@)e

which is the Fourier transform, so the weirdness in the theorem above is not that weird.
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5.5 Convolutions

Suppose that f, g are functions. Then we had before that f«g(z) = [ f(z-y)g(y)dy and
we use this to define the convolution with distributions.

(f < 9(@).0() = [[ 1z -)o(y)dyo(z)ds
- [] 1)9)dyo (= + y)az

where we set x =y + z in the x integration. Then the natural definition for distributions
would be the same:

{uxv,¢) = (u(x), {v(y), o(x,y)))

If v € D' then (v(y),¢(z,y)) is not necessarily in C° and so this doesnt work. It is
impossible to define u v for u,v € D’ even if v is a function. The way to get around it is
to demand that either v or v is in £, say. Then

(uxv,9)=(u(z),(v(y), ¢(z,y)))

works because (v(y), ¢(z,y)) is in C*.
We have various properties: If u € £’ and v € D’ then

0j(uxwv) =0;(u) xv=ux(0;v)
Also

dxu=1u

for all ueD'.

5.6 Tempered Distributions
Recall that S is the space of C* functions ¢ such that

19]las = sup |2*07¢] < C

for all a, 8. Then these define a family of seminorms. Convergence in § is given by ¢; — 0
if and only if

[¢lla,s =0
for all o, B.

Definition 5.18 Let u be a linear functional on S. We say it is a tempered distribu-
tion if it satisfies: there exists N such that

(o)l < > [l2%07¢(x)l|eo

la,[Bl<N

Observe that C2° ¢ S and so every tempered distribution is a distribution.

Theorem 5.19 The space of tempered distributions equals the space of distributions that
have an extension to S.

We now introduce the Fourier transform, using the Plancherel formula

/fg=ff§

for f,geS.
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Definition 5.20 Given u € S’ we define the Fourier transform i by
(i1, 6) = {u, )

Definition 5.21 u; € S’ converges to we S’ if and only if
(uj, @) > (u, 9)

forall peS.

Theorem 5.22 (Structural theorem) FEvery tempered distribution is the derivative of
a function with polynomial growth, i.e. ue S’ then u=0%f where f satisfies

(@) < (1+]2)"
for some k

We hope that if we Fourier transform as a function and as a tempered distribution,
then the two methods should agree.

Theorem 5.23 Ifue L' defines a tempered distribution then its Fourier transform as a
tempered distribution agrees with the distribution generated by U, where A is the Fourier
transform of a function.

Theorem 5.24 A in S’ is an isometry.

Proof A is clearly linear. Now

0) = () = (1, ) = (u,0)

o

{

~

where f(z) = [ f(y)e*™*¥dy and we had ¢ =¢ for ¢ €S. also note that ¢ = ¢.
Since A is linear, proving it is injective reduces to proving that 4 =0 == w« =0 in the
sense of tempered distributions. If we assume that

(2,0) = 0

for all ¢ € S then this immediately implies that
{u,9) =0

for all ¢ € S. Since the inverse Fourier transform is an isometry, we have
(u, ) =0

for all ¥ € S, as required.
To prove that A is surjective, note that

<SPPI
Il
>

Q.E.D.
Theorem 5.25 IfueS’ then
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1. 9®ueS' and 8u = (2mi€)™4 in the sense of distributions
2. 2% eS8’ and % = ()00 in the sense of distributions
3. Every formula we know for the Fourier transform translates to S’.

and
Theorem 5.26 Every distribution with compact support is a tempered distribution.

Theorem 5.27 The Fourier transform of every distribution with compact support is a

function. Moreover

4= (u(x), 6_2””'5)

The last part of this means that the map given by 4, i.e. (@, ¢) is the same as the map

((u(z),e?m%), ¢)

Example 5.1 The § distribution. Clearly this is a distribution with compact support.
Then

(6,0) = (3,6) = $(0)
and also (&) = [ ¢(x)e > Edx and so $(0) = [ ¢(z)dz and so

0(0) = [ o)z = (1.9)

and so (6,¢) = (1, ¢)
We saw that if u € & and v € D’ then u * v makes sense. Now we have

Lemma 5.28 If u,v €&’ then uxv exists and is in €' and moreover

(u*xv) =00

6 Sobolev Spaces

Suppose f:Q cR"™ - R with 2 open. We have a notion of a weak derivative as we saw
before, using integration by parts.

Definition 6.1

2
dx < oo for |a| < k}

o f
oz

H={f:R">R:f ELQ,% exists weakly and f

H* is a Banach space with the norm

11l = lZ [10% fll2

al<k

or equivalently
1

£ e = (lZ Ha“fH%)

al<k
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We define

(67

o p
WkP = {f:R" > R: felLP, (‘3_‘]: exists weakly and f
x

o7 dx < oo for |a| < k}
ox®

This is a Banach space with the norm

1 fllwe = 22 110% £l

|| <k

In H* we only know how to differentiate for orders in N, and we could use the Fourier
transform to compute the norm. We use Plancherel:

10° fll2 = 182 Fllz = Cll F ()2

and for f € H* we need

1€ F(E)ll2 < € F(©)Il2 < €

for o < k.

Definition 6.2 We define the Sobolev space H®, s € R, using distributions as follows
s oo~ . . 2\5/2 ~ 2
H? ={ueS":4 is a function for whzch/ ((1 +€1%) u(§)|) dé < oo}

We claim that if s € N then this definition is the same as the one before. We also
observe that if s € R then we are allowed fractional orders of differentiation, and negative
orders as well.

We could equivalently have said

[ (i) de < oo

because there exist ¢, C' such that

c(L+[EP) P < (L+ el < C(1+[gf)*

6.1 Sobolev Embeddings

Theorem 6.3
HS - C°

provided s > n/2 where n is the dimension of the space.

Proof We are going to show H® c (C'nL*). If u € H® then u € 8" and so 4 is a function.
We show @ € L' as then we have

u(@) = [ a(€)e™ = dg

and this immediately gives uv € L* and u is continuous by properties of the Fourier
transform.
We know that

[ (iR de < oo
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and so

2 2
([ 1acra) ( [ W(lﬂﬁlz)s/zlﬂ(éwdf)

older 1 2
[ (P maor) o f (o) o
and so we need

1
1= | Gt <=

and so m needs to decrease faster than —— and so we need 2s > n to make it finite.

HE
Q.E.D.

Corollary 6.4 Ifue H® and s>n/2+k for k€N then u e C*.
Observe that H® c¢ H' if s > t and so in a sense s measures the regularity of the
functions. There is a pairing structure between H° and H ° as follows. If uw € H® and

v € H™% it is possible to define (u,v) that satisfies

[(w, 0)| < lull s o] -
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