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1 Motivation

The aim of this research is to develop further on the idea of a “Poissonian city”, that is we
will try to establish a more realistic framework for this idealized model and at the same time
compare this ideal city with the configuration of real transportation networks (railways and/or
road networks). The Poissonian city was first introduced by Kendall on a follow up work
[Ken11] to the ideas previously presented by Aldous and Kendall at [AK08].
Essentially the original idea was to construct a network to join n points in such a way that it
balanced on the following criteria:

1. Short total length of the whole network. That is, considering railways for example, we
are hoping to get an economic network, as the length of the network can be associated
with costs (construction and/or maintenance). Remember that the shortest network is
given by the Steiner Tree [PS02].

2. Small excess regarding the Euclidean distance in average. That is, however we want an
economic network that still gave us, in average, short routes between either two points
considered in the network. In contrast to the previous criterion, this would be achieved
by the complete network (that which joins all the possible pair of points, therefore it gives
the shortest route between every pair of points).

As a consequence, we can think of this problem as a trade-off between the Steiner tree network
(smallest network use to join n points) and the complete network. See figure 1

The “Poissonian City” provides an idealized model that emerge from the answer to the above
problem presented in [AK08]. Therefore, the main aim of this research is to set down this
model to be more close to reality or practical applications. This could be achieved by different
means, for example: consider segment processes instead of (whole infinite) lines processes,
allow weak curvature of the roads by using fibre processes. Another important approach to be
considered is to compare the roadways configuration of real cities/states (only consider principal
avenues/main roads, not the whole streets network) against the one proposed by the Poissonian
City. However we first need to be clear on the criterion that will be used to compare these
networks.
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Figure 1: Examples of Steiner Trees and Complete Networks for 3, 4 and 6 points. Steiner Trees
figures are based on pictures from [PS02] and [Ski09].

2 Literature Review

We have already mentioned that in the design of a network to join n points, xn = {x1, . . . ,xn},
one can consider two criteria. First, the total length of the network should not be much greater
than the shortest network which connects all the points (Steiner tree, ST (xn)). Second, the
average route length should not be much greater than the average Euclidean distance (straight-
lines between source and destination points), i.e. in average the distance between two points
should stay close to the one in the complete network.
The main problem addressed by Aldous and Kendall in [AK08] is regarding the order of this
excesses, that is, how small can we make them? To answer this question the authors constructed
a random network such as the above excesses are of order O(n) and O(log n), respectively.
First, it is important to be clear on how to measure the mentioned excesses in a given network,
G(xn). The following notation is required to define these measures: ST (xn) denote the Steiner
tree corresponding to the configuration of n points given by xn, `(xi,xj) is the shortest route
length between points xi and xj in the given network G(xn), d(xi,xj) is the Euclidean distance
between the points xi and xj . Hence, the aim is to control the order of the following quantities:

• excess length (G(xn)) = length(G(xn))− length(ST (xn)).

• excess distance (G(xn)) = 1
n(n−1)

∑
i 6=j
(
`(xi,xj)− d(xi,xj)

)
The desired network arises from considering a hierarchical construction. At small scales the
idea is to use the underlying Steiner tree to connect points. However, for long distances the
network will depend on the sparse collection of randomly oriented lines, that is one realisation
of a stationary and isotropic Poisson line process, which turns out to be the key characteristic to
achieve an excess of O(log n). Finally, to simplify calculations an intermediate scale consisting
of grid lines is required. With this in mind, the rest of the paper [AK08] focus mainly on the
following result:
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Theorem 1 (Upper bound on minimum excess network length). [AK08, Theorem 1]
For any configuration xn in square side

√
n and for any ε > 0 there are connecting networks

G(xn) such that

excess length (G(xn)) ≤ εn

excess distance (G(xn)) ≤ O(log n)

Also, this paper analyze a similar result to get lower bounds on the average excess distance as
long as one had an extra condition on the configuration of the n points, xn, which are joint by
the network. Basically, one desires to avoid non-random configurations on these points, that is
we want equidistributed points.

Definition 1 (Ln-equidistributed). [AK08, Definition 3]
Let xn, for varying n, form a sequence of configurations in the plane and let Ln > 0. We
said that xn is Ln-equidistributed if a random choice xn of a city point can be coupled to a
uniformly random point yn so that

E
[
min

{
1,
|xn − yn|

Ln

}]
→ 0 as n→∞

It turns out that a wide range of possible point patterns can be seen to be Ln-equidistributed.
For this cases, we have the following lower-bound

Theorem 2 (Lower bound on minimum excess network length). [AK08, Theorem 2]
Given an Ln-equidistributed configurations of cities, xn, in [0,

√
n]2 with Ln = O

(√
log n

)
, then

any connecting network G(xn) with length bounded above by a multiple of n connects the city
points with average connection length exceeding average Euclidean connection length by at least
Ω(
√

log n), that is
excess distance (G(xn)) = Ω(

√
log n)

Thus, lim infn→∞ excess distance (G(xn))/
√

log n > 0.

At the same time, it is important to notice the main two branches that emerge from the network
proposed by Aldous and Kendall [AK08]:

• How to define a good statistic that captures the short-routes property in a given network?
As shown by the hierarchical network the ratio statistic or the excess average doesn’t seem
to work out completely, because this gives an example of a non-realistic transportation
network. Some further thoughts on this direction are presented by Aldous and Shun
[AS10] where they introduced an intermediate statistic between the average distance
excess and the maximum distance excess to achieve this goal.

• What else can be said about a network consisting of one realization of an stationary and
isotropic Poisson line process? Specifically what are its geometric properties and how the
semi-perimeter route (near-geodesic) compare to actual geodesic in this network. This
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and other questions are solved in [Ken11], which will be the approach to be followed along
this research.

The concept of a Poissonian city was first introduced in [Ken11], that is a random network
generated by a unit intensity stationary and isotropic Poisson line process, Π. The idea is to use
such a network to connect n points in a disk of radius n through the semi-perimeter algorithm
that was already introduced in [AK08] to establish the upper bound result, see figure 2. The
results presented in this work explores the following ideas:

• What is the shape of near-geodesics in this network?

• Given a good trade-off between the excess length (G(xn)) and excess distance (G(xn)),
how might the variance of these near-geodesics behave?

• The upper-bound is obtained by controlling these near-geodesic paths. How might true
geodesics behave in comparison to the semi-perimeter route?

• Consider we attach certain amount of traffic to this network. What can be said about
flows of traffic in this network? In particular, how does the traffic behave at the centre
of the Poissonian city?

xi

x′
i

xj

x′
j

Figure 2: Construction of the semi-perimeter paths.

Specifically we will focus on the properties concerning the last two questions.

The main result regarding the shape of true geodesics is actually an improvement to the lower
bound presented by Aldous and Kendall [AK08].

Theorem 3 (Lower Bound from the Poissonian city). [Ken11, Theorem 4]
In the Poissonian city network, consider any path from p− to p+ that is contained in the cell
C(p−,p+) (determined by the semi-perimeter route). If d(p−,p+) = n, then the path must
have mean excess exceeding

2

(
log 4− 5

4

)
log n+ O(log n) = 0.27258872 . . . log n+ O(log n)
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One of the specific aims of my research will be to generalize this result to the case where the
connections are made by a Poisson segment process of fixed length h and intensity λ in such a
way that the length intensity of this segment process is equivalent to the unitary Poisson line
process. Alternative approaches could be to consider fibre processes with weak curvature.

On the other hand, when we consider the flow of traffic through the center of the city, the main
result tell us its mean asymptotic behaviour

Theorem 4 (Mean flow through the centre). [Ken11, Theorem 5]
The mean flow through a line at the center of a Poissonian city that connects n points is given
by the expression

E[Fn] =

∫ π

0

∫ n

0

∫ n

0

exp

{
−1

2
(r + s− ρ)

}
r drs dsθ dθ (1)

where ρ =
√
r2 + s2 + 2rs cos θ. Asymptotically, as n→∞,

E[Fn] ∼ 2n3 (2)

Now, another specific aim for my research is to analyze how the amount of traffic fluctuates
around the city, depending mainly on the Euclidean distance from the analyzed point to the
centre of the city. For example, we can consider the proportion of traffic that is contained in a
disk centered at the centre of the city with varying radius r ∈ [0, n] and see if this behaviour is
similar in some way to real transportation network, e.g. the british railway system, see [Boa63].

3 Development of some ideas

Along this section, I will briefly explained some of the approaches that I have taken during
this year to tackle the above problems. For the time being, the focus of the research is on
the properties of Poisson segment processes. Therefore, the first question addressed in here
is regarding how to define these and get an equivalent expression for the length intensity of
Poisson line processes. At the same time, in the second question we analyzed the work by
Baccelli, Tchoumatchenko and Zuyev [BTZ00] that studies the behaviour of a path of segments
on the Delaunay graph [vL12], in particular they show that the path in question is Markovian
and gave an asymptotic result regarding the excess distance of this path against the Euclidean
distance.

3.1 Question 1

Consider a stationary Poisson segment process of fixed length h. This subsection addresses the
following question: what intensity, νhλ (for the marked point process of intensity λ defining the
segments) leads to a length intensity which is the same as the unit intensity Poisson line process?
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We denote by Ξ the segment process of fixed length h and intensity λ with rose of directions
given by ρ (we measure the angles from the horizontal axis in the anti-clockwise direction). We
seek an expression for its length intensity, given by

νhλ =
E
[
L
(
Ξ ∩K

)]
A(K)

=
E[Leb1([K])]

Leb2(K)
(3)

for K ⊆ R2, any compact convex set on R2. Here we denote by ξ ⇑ K the event “ξ hits K”,
meaning ξ ∩K 6= ∅, then [K] stands for the hitting set, which is defined as the set of segments
of Ξ that hit K, i.e. [K] = {ξ ∈ Ξ : ξ ⇑ K}.
We can identify the segment process Ξ with a marked point process Φ∗ in R2×(0, π]. Here each
point x of the process represents the lower-end point of the segment ξ (in case of horizontal
segments we chose the left-end point). Thus x = (x∗, y∗) where:

y∗ := inf
{
y : (x, y) ∈ ξ for some x

}
x∗ := inf

{
x : (x, y∗) ∈ ξ

}
We can construct the Poisson segment process by requiring that the points (x∗, y∗) form a
Poisson point process of intensity λ and the angular marks θ are independent of each other and
of the positions x and identically distributed with distribution given by ρ( dθ). Viewed as a
point process in (x∗, y∗, θ) space, the intensity mean of this point process is given by λ(Leb2⊗ρ).

The first step in addressing this question is to reduce to the case where the mark distribution
is nonrandom. To achieve this consider the following rotation

R(ξ) = Rθ(x, y) = (x cos θ + y sin θ,−x sin θ + y cos θ, 0) =: (x̃, ỹ, 0)

for each segment ξ = (x, y, θ). The rotated segments will all be horizontal. The rotation
Rθ(x, y) moves the segment ξ in such a way that its reference point, x, is still at the same
distance, ‖x‖, from the origin but it has been rotated θ radians in clockwise direction so that
the segment is now horizontal, see figure 3. This converts Ξ into a new segment process RΞ

for which all segments are horizontal, but such that the length of intersection with any disk
centered at the origin is unchanged.

In particular the new point process is still Poisson.

Theorem 5. If Φ∗ is a marked Poisson point process in R2× (0, π], with intensity λ and rose
of directions ρ then Φ̃ = {(x̃, ỹ) : (x̃, ỹ, 0) = Rθ(x, y) with (x, y, θ) ∈ Φ∗} is a Poisson point
process of intensity λ.
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ξ

θ
(x, y)

R(ξ)

Rθ(x, y)
(x̃, ỹ)θ

(x, y)

Figure 3: Illustration of the rotation Rθ(x, y).

Proof.
The family of avoidance probabilities determines the distribution of a point process [Kin92], so
it is enough to show that:

P[Φ̃ ∩ Ẽ = 0] = exp (−λLeb2(Ẽ))

for all measurable Ẽ ⊆ R2.
For Ẽ any measurable subset in R2, we define E ⊆ R2 × (0, π] as follows:

E =
{

(x, y, θ) : (x cos θ + y sin θ,−x sin θ + y cos θ) ∈ Ẽ
}

Therefore {Φ̃ ∩ Ẽ = 0} = {Φ∗ ∩ E = 0}. By the rotation invariance of the Leb2 measure and
the fact that ρ is a probability measure we can compute the intensity measure for Φ̃:

λ(Leb2⊗ρ)(E) = λ

∫ π

0

(
x

R2

1E(x, y, θ) Leb2( dx dy)

)
ρ( dθ)

= λ

∫ π

0

(
x

R2

1Ẽ(Rθ(x, y)) Leb2( dx dy)

)
ρ( dθ) = λ

∫ π

0

(
x

R2

1Ẽ(x̃, ỹ) Leb2( dx̃ dỹ)

)
ρ( dθ)

= λ
x

R2

1Ẽ(x̃, ỹ) Leb2( dx̃ dỹ) = λLeb2(Ẽ)

Hence,

P[Φ̃ ∩ Ẽ = 0] = P[Φ∗ ∩ E = 0] = exp (−λ(Leb2⊗ρ)(E)) = exp (−λLeb2(Ẽ))

as required. 2

Now we relate the length intensity at (3) to the lengths of the segments h. From the above
construction we only need to consider the case where all segments are horizontal, because if K
is a disk centered at the origin we know that E[L(Ξ ∩K)] = E[L(RΞ ∩K)]. Hence, as RΞ can
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be represented by Φ⊕ [0, h], where Φ is a planar Poisson point process of intensity λ. Therefore
in (3) we get

νhλ =
E[Leb1([K])]

Leb2(K)
=

E
[
Leb1

(
(Φ⊕ [0, h]) ∩K

)]
Leb2(K)

However if h1 ∈ (0, h), it is clear that we can express Φ⊕ [0, h] as the following disjoint union
(Φ⊕ [0, h1]) ∪ (Φ⊕ [h1, h]). So νhλ is linear in h

νhλ =
E
[
Leb1

(
(Φ⊕ [0, h]) ∩K

)]
Leb2(K)

=
E
[
Leb1

(
(Φ⊕ [0, h1]) ∩K

)]
Leb2(K)

+
E
[
Leb1

(
(Φ⊕ [h1, h]) ∩K

)]
Leb2(K)

= νh1λ (K) +
E
[
Leb1

(
({Φ + h1} ⊕ [0, h− h1]) ∩K

)]
Leb2(K)

= νh1λ + νh−h1λ

Here Φ + h1 has the same distribution as Φ, since Φ is a stationary Poisson point process. As
a consequence we may deduce νhλ = hν1λ.

But νhλ is also linear in λ: apply the superposition theorem to decompose the original Poisson
point process Φ of intensity λ into two independent Poisson point process Φ1 and Φ2 with
respective intensities λ1 and λ2, such that λ = λ1 + λ2. Therefore

νhλ = νhλ1 + νhλ2

In sum, we conclude that νhλ should be of the form cλh. We determine the value of c = ν11

by considering the case when K is the unit square [0, 1]2. If we denote by N(K) the amount
of points from Φ (a Poisson point process with intensity λ) that falls in K we get (recall
N(K) ∼ Po(λLeb2(K)))

νhλ = hν1λ = h
E
[
Leb1

(
(Φ⊕ [0, 1]) ∩ [0, 1]2

)]
Leb2([0, 1]2)

= hE

 ∑
ξ⇑[0,1]2

Leb1(ξ ∩ [0, 1]2)


= hE

N([0,1]2)∑
k=1

U(0, 1) +

N([−1,0]×[0,1])∑
k=1

U(0, 1)

 = 2hE[N([0, 1]2)]× E[U(0, 1)] = hλ

Here we use the fact that if ξ ⇑ [0, 1]2 then its marker point x falls either in [0, 1]2 or in
[−1, 0]× [0, 1]. Either way, Leb1(ξ∩ [0, 1]2) is distributed according to a U [0, 1] random variable
(recall the construction of the Poisson point process where we draw N([0, 1]2) points scattered
as independent and identically distributed uniformly on [0, 1]2).
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(0, 0) (1, 0)(−1, 0)

(0, 1) (1, 1)(−1, 1)

x

x∗

Figure 4: Explanation for the fact that Leb1(ξ∩ [0, 1]2) has distribution 2U(0, 1). If there is a left-end
point x = (x1, y1) in the square [−1, 0]× [0, 1] then the length of the intersection of that segment with
the square [0, 1]2 is given by 1 + x1 which is Uniform on (0, 1). Similarly, if there is a left-end point
x∗ = (x2, y2) in the square [0, 1]2 then the length of that segment with the square [0, 1]2 is given by
1− x2 which is again Uniform (0, 1).

Now, recalling that the unit Poisson line process Π (where λ = 1/2, since we are considering
undirected lines) has length intensity equal to π/2. To obtain this result one need to notice that
the length of a chord in B1(o) of a line at a distance r from the origin o is given by 2

√
1− r2,

see figure 5. Therefore the calculations for the length intensity leads to:

νλ =
E
[
L
(
Π ∩B1(o)

)]
Leb2(B1(o))

=
λ

π

∫ π

0

∫ 1

−1
2
√

1− r2 dr dθ =
2λπ

π

∫ 1

−1

√
1− r2 dr = λπ =

π

2

o

r

1

√
1−

r 2

`

Figure 5: Illustration of the length of the chord in B(o, 1).

Therefore c = π/2 gives the similar desired result for segment processes. Our particular interest
is with the case where ρ is a uniform distribution. Notice that a Poisson segment process of
length h with intensity λ = 1/h has the same length intensity as an unitary Poisson line process.
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3.2 Question 2

Alternative explanation of the Markov property for the Markov path in the Poisson-Delaunay
graph as constructed by Baccelli, F., Tchoumatchenko, K., & Zuyev, S. (2000) [BTZ00]

First, we explain the construction of this Markov path on the Poisson-Delaunay graph (trian-
gulation). The idea is to join two random, but fixed points, say s and t, through the edges of
the Delaunay graph constructed with respect to the vertex set Φ, given by a planar stationary
Poisson point process. The construction of the Delaunay graph can be expressed as follows:
connect all the pair of points {Zi,Zj} from Φ such that there exists a disk having Zi and Zj

on its boundary and no points of Φ in its interior. Notice, that whenever the points of Φ are
distributed in a general position, that is no three points are co-linear and no four points are
co-circular, then the Delaunay graph constitutes a triangulation of the plane.

The Voronoi tessellation with respect to the set Φ is another geometrical object related to
the Delaunay triangulation. The construction of the Voronoi tessellation consists of all the
Voronoi cells VZi

with nucleus Zi (a point from Φ). Here a Voronoi cell VZi
is the con-

vex set of points in the plane that are closer to Zi than to any other Zj ∈ Φ, that is
VZi

= {x ∈ R2 : ‖x − Zi‖ = dist(x,Φ)}. The Voronoi tessellation and the Delaunay tri-
angulation are dual: there is an edge between Zi and Zj in the Delaunay triangulation if and
only if their respective Voronoi cells VZi

and VZj
share an edge.

Since the Poisson point process is invariant under translations and rotations then without loss
of generality we can focus on the case where s = (0, 0) and t = (t, 0). Therefore, the line ` that
joins s and t is given by the x-axis. The path considered by Baccelli et al [BTZ00] consists of
those segments {[Zk−1,Zk] : k ∈ N} such that the sequence of vertices {Zk : k ∈ N} corre-
sponds to the nuclei of the Voronoi cells VZk

that are crossed by the line that joins s and t, in
our case, the x-axis. Notice Z0 corresponds to the nearest point of Φ to s, that is s ∈ VZ0 .

An alternative construction of this Markov path is given by the following recursive relations:

1. Define the nearest point of Φ to s as Z0.

2. Consider the line ` which connects s and t, in our particular case the x-axis. Move from
s towards t until one hits the first point in ` for which Z0 is not the only nearest point
from Φ. Denote this point by T1 = (T1, 0). Notice, since s ∈ VZ0 , and the Voronoi
cells are convex, then the whole line segment from s = (0, 0) to T1 belongs to VZ0 , i.e.
[0, T1] ⊂ VZ0 . So we can define T1 as follows:

T1 := sup {u ∈ R : [0, u] ⊂ VZ0} equivalently T1 := inf
{
v ∈ R : (v,∞) ⊂ V c

Z0

}
Remark : If T1 > t, as t = (t, 0), then join Z0 with t and finish.
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3. Recall that the points Φ are in general position, therefore almost surely there exists only
one other point from Φ that is as close to T1 as Z0, we denote this point by Z1. Notice
that by construction the disk centred at T1 with radius ‖T1−Z0‖ = ‖T1−Z1‖ contains
both points: Z0 and Z1 on its boundary and contains no points from Φ in its interior,
otherwise if Zk ∈ B0

‖T1−Z0‖(T1) we will have ‖T1 − Zk‖ < ‖T1 − Z0‖, a contradiction
to the fact that T1 ∈ VZ0 . Therefore, there exist an edge on the Delaunay graph which
connects Z0 and Z1.

4. Again, move from T1 along the line ` towards t until one hits the first point in ` for
which Z1 is not the only nearest point from Φ. So we can define the point T2 = (T2, 0)

as follows:

T2 := sup {u ∈ R : [T1, u] ⊂ VZ1} equivalently T2 := inf
{
v ∈ R : (v,∞) ⊂ V c

Z1

}
If T2 > t then join Z1 with t and finish, else iterate step 3 with T2 instead of T1.

Thus, in general, if we consider T0 := s and first define Z0 as the nearest point from Φ to T0,
we can construct the sequences {Tk = (Tk, 0) : k ∈ N} and {Zk ∈ Φ : k ∈ N} with the following
recursion: While Tk < t, define

Tk+1 := sup {u ∈ R : [Tk, u] ⊂ VZk
} = inf {v ∈ R : (v,∞) ⊂ V c

Zk
} (4)

Zk+1 := (a.s.) unique point of Φ \ {Zk} such that ‖Tk+1 −Zk+1‖ = ‖Tk+1 −Zk‖ (5)

Here, once we stop the recursion, say at n∗, we join Zn∗ to t = (t, 0) to end the Markov
path p̂(s, t,Φ) = {[Zk−1,Zk]}n∗

k=1, plus the extra segments [s,Z0] and [Zn∗ , t]. Notice that
the end points are essentially not relevant in this construction (they only determined the be-
ginning and ending of the recursion), to create the recursion we only required the line ` that
joints them in order to create such a path, the end points only provide a criterion where to
start and when should we end this recursion. Actually, it is clear that the sequence of vertices
{Zk : k = 0, 1, . . . , n∗} of the path p(s, t,Φ) is a finite subsequence of the sequence {Zk : k ∈ N}
of the nuclei of the Voronoi cells crossed by the line ` starting at s ∈ `. We denote by p(0,∞,Φ)

the infinite path created by the segments {[Zk−1,Zk]}k∈N.

Therefore, with the above construction it can be deduced that the sequence of segments given
by {[Zk−1,Zk]}k∈N form a Markov chain. To get an idea of this fact, fix the history of the
process up to the n-th step, that is up to the segment [Zn−1,Zn], so we have the truncated path
given by {[Zk−1,Zk] : k = 1, 2, . . . n}. Since we already know the direction in which we are
moving along, given by the line `, we only required the last segment [Zn−1,Zn] to determine
the point Tn over the line `, such that Zn−1 and Zn are both on the boundary of the disk
Bn(Zn−1,Zn) = B‖Tn−Zn‖(Tn) and there is no points from Φ on its interior. Then notice, that
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with this disk we can partition the plane in three regions:

i)Dn+1 := {x = (x, y) ∈ R2 : x > xn} \Bn

ii)Dc
n+1 \Bn

iii)Bn

where Zn = (xn, yn). Notice, that we can forget about the disk Bn because by construction
we already know there are no points of Φ in its interior. Finally, due to the strong Markov
property of the Poisson point process, the points distributed on Dn+1 are independent from the
ones on Dc

n+1 \Bn and due to its construction it is clear that all past segments from the chain,
that is {[Zk−1,Zk] : k = 1, 2, . . . n− 1}, belongs to Dc

n+1 \ Bn, while the next point Zn+1 will
belong to Dn+1.
Finally, taken advantage of this fact the authors establish the convergence of this path to the
stationary regime and find its stationary distribution. With this, it can be seen that the class
of Markov paths described above 4/π-approximates in mean and asymptotically the Euclidean
distance, that is to say respectively

`(Zi,Zj) =
4

π
d(Zi,Zj) and lim sup

d(Zi−Zj)→∞
`(Zi,Zj) =

4

π
d(Zi,Zj)

4 Future Research

Along the following months I’ll be dealing with new problems that emerge from considering
segment processes instead of lines processes. Fundamentally, there are two aspects to be con-
sider:

• Percolation of paths: If we made connections through a Poisson segment process, we will
need to consider the fact that there might not exist a continuos path from one point
to another. Some papers that can provide some insight in this matter are [Roy93] and
[RT03].

• The presence of a convex hull, as the one given by the cell C(p−,p+) in the semi-perimeter
algorithm, made the computations on [Ken11, Theorem 4] feasible. However, what can
be done in the absence of this convex hull? as is the case for segment processes.

Also, regarding the comparison between the Poissonian city and real transportation networks
still need to be done and compare the shape of the plots (% network against % traffic) as in
the next figure shown part of the analysis realized by the British Railways Board on [Boa63].
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Figure 6: Cumulative Distribution of different types of Traffic over Route Miles in the British Railways
system, figure taken from the Appendix 1 of [Boa63, Figure 1].

From figure 6 one can notice the concentration of traffic in a small amount of the network,
say around 40% of the total traffic take place only on 10% of the route miles in the railways
system. Intuitively, one will guess this occurs at the centre of the network, in case for the
British railways system that is London. We will analyze if a similar phenomenon take place in
the Poissonian city, for this case the centre of the network will correspond to the centre of the
disk. In order to achieve this goal one approach is to generalized the result referring to the mean
flow of traffic through the centre [Ken11, Theorem 5] to a general point. After that, we will be
able to establish the proportion of traffic that goes through a contained disk at the centre of the
city for any radius r ∈ [0, n] and conclude if its behavior is similar to the one observed in the
British railways system at 1963 (see figure 6) as r increase. Nevertheless, as computations for
this could be troublesome, an alternative would be to only analyze the asymptotic behaviour of
a scaled version of this flow, which gives rise to the improper anisotropic Poisson line processes
studied in [Ken14].
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