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1 Introduction

1.1 Motivation

Our paper is motivated by the mechanics of the heart. During normal heart activity, the heart
pulsates at a regular rhythm. However, if heart tissue is damaged then the heart rhythm can become
irregular: this is called an arrhythmia. These arrhythmias may be caused by changed electro-
dynamical properties due to damaged heart tissue. This can potentially be fatal, so understanding
such regimes is important.

The heart is in essence a pump and its primary function is to pump blood about the body. To
this end, it expands to draw blood into the heart and contracts to push the blood around the body.
The heart is split into two halves (see Figure 1): one half takes in de-oxygenated blood from the
body and pumps it to the lungs where it is oxygenated, and the other half takes the oxygenated
blood from the lungs and pumps it to the rest of the body. Each half of the heart has two chambers:
the atrium which the blood flows into and the ventricle from which the blood is pumped out of. The

Figure 1: The heart (from [1])

contraction of the heart’s chambers is caused by the contraction of the cells that line the chambers.
The contraction is in turn activated by the arrival of the action potential. The action potential (see
Figure 2 for a graph of a typical action potential and see [12, p. 15] for a more detailed picture)
takes a certain amount of time to dissipate due to the electro-dynamical properties of the cell. In
normal heart activity a pulse of the action potential travels from one end of a heart chamber to the
other end and then dies out. In an arrhythmia, however, the pulsation becomes disturbed which
can be caused by the generation of (re-entrant) spiral waves or turbulence. These spiral waves are
dangerous since they affect the normal functioning of the heart and so it is a worthwhile task to
study and understand the propagation of spiral waves. A much more detailed description of the
biology of the heart can be found at the start of [12].

Our aims Given our time constraints, we will concentrate on simulating spiral waves on differ-
ent surfaces. Specifically, we aim to

• create spiral waves on a 2D plane using both the finite element (FE) and finite difference
(FD) methods
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Figure 2: The action potential (from [17])

• create spiral waves on a static unit sphere and static ellipsoid

• create spiral waves on moving surfaces with a range of different magnitudes of oscillation
and compare to the static case

• simulate inhomogeneities (surface holes and areas of reduced conductivity) in the sphere.

1.2 The Barkley Model

The heart can be modelled as an excitable system: the contraction of the heart is caused by the ac-
tion potential exceeding a certain threshold, and the heart returns to a resting state afterwards. The
well-studied FitzHugh–Nagumo model (and its forebear, the Hodgkin–Huxley model) is perhaps
the prototypical choice to describe the action potential, however we choose to study a different
but similar model (more information on different models can be found in [12]). To simulate the
formation of spiral waves we use a coupled system of partial differential equations (PDEs) that lie
on a surface Γ:

u̇+ u∇Γ · v − a∆Γu = f(u, v) in (0, T )× Γ (1)

v̇ + v∇Γ · v = g(u, v) in (0, T )× Γ, (2)

where

f(u, v) =
1

ε
u (1− u)

(
u− v + b

c

)
g(u, v) = u− v,

with initial conditions

u(0, ·) = u0(·)
v(0, ·) = v0(·),

and model parameters a, b, c and ε all in R+.
The vector v is the surface velocity. It is zero when the surface is fixed. For a moving surface

(Γt)t≤T ,

v(t,Φ(t, x)) =
∂

∂t
Φ(t, x),

where Φ : [0, T ]× Γ0 describes the deformation:

Φ(t, ·) : Γ0 → Γt is a diffeomorphism,

Φ(0, ·) is the identity.

We also define Φt
s : Γs → Γt to be the transporting function:

Φt
s = Φ(t,Φ(s, ·)−1).
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When the surfaces on which we implement this model have no boundary (like spheres), obvi-
ously boundary conditions are not required; when they do have a boundary (for example, spheres
with holes), we use the Neumann boundary conditions

∇Γu(x) · µ(x) = 0 ∀x ∈ ∂Γ,

where µ is the outer unit conormal of Γ. This particular model is known as the Barkley model. Our
justification for using the Barkley model is threefold: it has been shown to produce spiral waves,
is relatively simple and is numerically efficient (see the conclusion of [5]).

Analysis of model For convenience, let us define uth = v+b
c . We focus on a phase portrait

approach in understanding the dynamics of the Barkley model.
Ignoring the diffusion term for now, the nullclines (these are the (u, v) curves where u̇ or v̇ are

zero) of the model are

u =


0

1

uth

and v = u. (3)

Parts of these nullclines are sketched in Figure 3.

Figure 3: Partial phase portrait of the Barkley model (from [10, p. 167])

Clearly, (3) suggests that u = v = 0 is a fixed point of the system as both u̇ and v̇ are zero
here. In fact, this fixed point is linearly stable [10, p. 167], meaning that all points close enough
to the fixed point converge to it. Here by ‘points’, we mean initial conditions. So if the model is
started with initial conditions close enough to (u, v) = (0, 0), we end up in the state u = v = 0.
What do we mean by ‘close enough’? As the diagram suggests, if the initials conditions are such
that u0 exceeds uth, then the system hits u = 1 before reaching the fixed point u = v = 0. If u0

is below uth, then we simply get decay of u to 0 directly. This uth is what is called the excitability
threshold, and we say that the fixed point at the origin is excitable.

It is clear that increasing b
c (which has the effect of moving the u = uth line to the right) in-

creases the excitation threshold. Reincorporating the diffusive term allows for waves of excitation
to travel [10, p. 168].

Heuristically, increasing the parameter a increases the period of excitation and ε denotes the
timescale separation between u and v.
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Choice of parameters We fix the model parameters to be

ε =
1

50
, b =

1

100
, c =

3

4

for all our simulations, leaving the remaining parameter a to be defined later. A justification for
this is given in Section 2.4.

Types of surfaces We consider three different kinds of surfaces Γ:

1. Squares One simple case we are interested in testing is the spiral evolution on a square, in
which Γ ⊂ R2. Here, u̇ and v̇ are the usual time derivatives and ∆Γ = ∆ is the Laplacian.

2. 2D Fixed Surface The walls of heart chambers are a 2D surface that cannot be embedded
in R2, unlike the square. So it is more realistic to model the equations on such surfaces like
spheres and ellipsoids. In this case u̇ and v̇ are again the usual time derivatives however ∆Γ

is now the Laplace-Beltrami operator (The definition can be found in [8]).

3. Moving Surfaces The pulsation of the heart requires us to simulate the spiral waves on
moving surfaces, where u̇ and v̇ are material derivatives (the definition can be found in
[8]) and ∆Γ is the Laplace-Beltrami operator on Γt; we suppress the subscript t when no
ambiguity occurs.

1.3 Numerical Methods

The Barkley model has no known analytic general solution, so we seek a numerical solution. Let
us detail the process of discretising in space and time. A more detailed description of the analysis
behind the numerical scheme with extensive error analysis can be found in [8].

1.3.1 Finite Difference Method

Time Discretisation Starting with the equations (1) and (2), discretise in time with the θ-scheme
with timestep τ to give

Tθu
n+1 = Tθ−1u

n + τ f̃n; (4)

vn+1 = vn + τ g̃n, (5)

where Tθ is the linear operator defined by

(Tθu)(x) = u(x)− θτa∆Γu(x),

f̃n = f̃n(un, un+1, vn, vn+1) is the term involving f and g̃n = g̃n(un, un+1, vn, vn+1) is the
one involving g (which will be discussed later). We also need to discretise the space, which the
following section addresses.

Space discretisation We mainly focus on the excitation variable u because the equation for v
is much more straightforward and will be discussed afterwards. When we are only simulating the
equations on ΩL, a square with side length L, FD is a simple and fast way to produce results.
By dividing each coordinate axis into N + 1 evenly-spaced points which we denote by (xi)

N
0

and (yi)
N
0 , the solution is approximated by interpolations from the vectors (un(xi, yj))

N
i,j=0. Let

h = l/N . Both the Laplacian

∆un(xi, yj) ≈ ∆hu
n(xi, yj)

=
1

h2
(un(xi+1, yj) + un(xi−1, yj)− 4un(xi, yj) + un(xi−1, yj) + un (xi, yj−1)) ,
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and the Neumann boundary condition

un(x−1, yj) = un(x1, yj), un(xN+1, yj) = un(xN−1, yj),

un(xi, y−1) = un(xi, y1), un(xi, yN+1) = un(xi, yN−1),

for i, j = 0, ...N , are approximated using the central difference.
Then Tθ is approximated by matrices Aθ,h = I − θτa∆h operating on vectors un, hence if

(and only if) f̃n is linear with respect to un+1, then (4) is reduced to a system of linear equations:

Aθ,hu
n+1 = Aθ−1,hu

n + f̃n. (6)

1.3.2 Surface Finite Element Method

We then discretise in space using surface finite elment method (FE), about which a more detailed
description of the analysis behind the numerical scheme with extensive error analysis can be found
in [8]. This discretisation can be done on any type of surface. Multiplying by a test function
φ : GT → R

(
where GT =

⋃
t∈[0,T ]({t} × Γt)

)
such that φ(t, ·) ∈ H1(Γt) and integrating, we

obtain the weak formulation of equation (4):∫
Γt

u̇φ+

∫
Γt

uφ∇Γt · v +

∫
Γt

a∇Γtu · ∇Γtφ =

∫
Γt

f(u, v)φ.

By using the Leibniz formula, this becomes

d

dt

∫
uφ+

∫
a∇Γu · ∇Γφ =

∫
f(u, v)φ+

∫
uφ̇.

The work in [8] shows that by considering a set of m-dimensional spaces Vt ⊂ H1(Γt), a set of
basis functions (Zi(t, ·))i≤m can be chosen such that Żi = 0 for all i. Therefore plugging φ = Zi
into the previous equation, we have

d

dt

∫
uZi +

∫
a∇Γu · ∇ΓZi =

∫
f(u, v)Zi.

Therefore discretising in time and applying θ method, we have∫
Γ(n+1)τ

un+1Zn+1
i + θa∇Γu

n+1 · ∇ΓZ
n+1
i =

∫
Γnτ

unZni + (θ − 1)a∇Γu
n · ∇ΓZ

n
i + F̃n,

where un = u(nτ, ·), Zn = Z(nτ, ·) and F̃n is the integral containing f . This yields

an+1
θ (un+1, Zn+1

i ) = anθ−1(un, Zni ) + F̃n, (7)

where anθ : H1(Γnτ )×H1(Γnτ )→ R is a bilinear form defined by

anθ (ξ, η) =

∫
Γnτ

(ξη + θa∇Γξ · ∇Γη).

FEM aims at approximating un by its projection on V . This allows us to write un as

un ≈ PV (un) =
N∑
i=1

αni Z
n
i

5



with coefficients αni ∈ R, which are to be solved for. For simplicity we identify un with PV (un).
Then the equation (7) can be rewritten as:

m∑
j=1

αn+1
j an+1

θ (Zn+1
j , Zn+1

i ) =
m∑
j=1

αnj a
n
θ−1(Znj , Z

n
i ) + F̃n

for i = 1, ...,m. Hence if F̃n is linear with respect to αn+1
j , j ≤ m, then (4) is again reduced to a

system of linear equations.

1.3.3 Approximating the right hand side

Now let us discuss how to deal with f̃n and F̃n terms in the time and space discretization. If we
work strictly in line with θ-method, then the respectively f̃n in (4) and F̃n in (7) are

f̃n = τθf(un+1, vn+1) + τ(1− θ)f(un, vn). (8)

F̃n = τθ

∫
Γ(n+1)τ

f(un+1, vn+1)Zn+1
i + τ(1− θ)

∫
Γnτ

f(un, vn)Zni

= τθ

∫
Γ(n+1)τ

f

∑
j

αjZ
n+1
j , vn+1

Zn+1
i + τ(1− θ)

∫
Γnτ

f(un, vn)Zni .

When θ > 0, f is nonlinear with respect to un+1, which would inflict intolerable pains if one tries
to implement (as we no longer have a simple matrix equation), especially when we set θ = 1 for
sake of stability. We consider two ways of solving this problem.

Explicit method One solution is to consider f̃n and F̃n fully explicitly regardless of θ in time
discretisation:

f̃n = f(un, vn)

F̃n = τ

∫
Γnτ

f(un, vn)Zni .

Then the the FD method (6) becomes a system of linear equations:

Aθ,hu
n+1 = Aθ−1,hu

n + f(un, vn).

And the FE method (7):

m∑
j=1

αn+1
j an+1

θ (Zn+1
j , Zn+1

i ) =

m∑
j=1

αnj a
n
θ−1(Znj , Z

n
i ) +

∫
f(un, vn)Zni ; ∀i = 1, . . . ,m.

We call this explict RHS method. It requires a small time step to ensure stability.

Semi-implicit method An alternative method to the explicit method is to test with a semi-
implicit RHS, which is half-way between fully explicit (as described in the previous solution)
and fully implicit (which is what we would obtain in the θ−scheme with θ = 1). It has the ad-
vantage of allowing for a larger timestep without succumbing to numerical instability unlike the
explicit RHS. The idea is as follows. First, consider the FD method. Since our f is a factorized
cubic polynomial, take

f̃n =
1

ε
un1(1− un2)

(
un3 − vn3 + b

c

)
,

6



where n1, n2, n3 are either n or n + 1. When n1 = n2 = n3 = n, f̃n is the fully explicit RHS
described in previous section. When n1 = n2 = n3 = n + 1, f̃n is the fully implicit RHS, i.e.,
take θ = 1 in (8). The semi-implicit method takes two of the ni to be n and the remaining one
to be n + 1 to make f̃n linear in un+1. Exactly which ni is to be taken as n + 1 depends on the
excitability threshold

unth =
vn + b

c
.

When unth < un, take n1 = n+ 1; when unth ≥ un, we take n2 = n+ 1. Then (6) becomes:(
Aθ,h +

τ

ε
un(un − unth)I

)
un+1 = Aθ−1,hu

n +
τ

ε
un(un − unth) when unth < un,(

Aθ,h −
τ

ε
(1− un)(un − unth)I

)
un+1 = Aθ−1,hu

n + f̃n when unth ≥ un,

where I is the identity matrix.
For the FE method a corresponding semi-implicit F̃n is

F̃n =


τ
ε

∫
Γ(n+1)τ

un+1(1− ūn)(ūn − ūnth), if unth < un;

τ
ε

∫
Γnτ

un(un − unth)− τ
ε

∫
Γ(n+1)τ

ūn(ūn − ūnth)un+1, if unth ≥ un,

where the ūn = un ◦ Φnτ
(n+1)τ and ūnth = unth ◦ Φnτ

(n+1)τ are un and unth taking values at mapped
points. Then (7) becomes a system of linear equations:

m∑
j=1

αn+1
j

(
an+1
θ (Zn+1

j , Zn+1
i )− τ

ε

∫
Zn+1
j (1− ūn)(ūn − ūnth)

)
=

m∑
j=1

αnj a
n
θ−1(Znj , Z

n
i )

when unth < un, and
m∑
j=1

αn+1
j

(
an+1
θ (Zn+1

j , Zn+1
i )− τ

ε

∫
Zn+1
j ūn(ūn − ūnth)

)
=

m∑
j=1

αnj a
n
θ−1(Znj , Z

n
i )

+
τ

ε

∫
un(un − unth)

when unth ≥ un

for all i = 1, . . . ,m.

1.3.4 The recovery variable v

Solving v is a much simpler task than u due to its ODE-like equation.
When using FD for space discretisation, gn is treated fully explicitly:

g̃n(un, vn, un+1, vn+1) = g(un, vn).

Hence the scheme for v is explicit:

vn+1 = vn + τg(un, vn).

When using the FE method, we also treat g explicitly and we treat v in the same way as u, i.e.,

m∑
j=1

βn+1
j

∫
Zn+1
j Zn+1

i =

m∑
j=1

βnj

∫
Znj Z

n
i + τ

∫
g(un, vn)Zni , ∀i = 1, . . . ,m,

7



where βnj ’s are the coordinates of vn in Vnτ :

vn =

m∑
j=1

βnj Z
n
j .

For the finite element simulations that we will develop in the later sections, we make use of
the Distributed and Unified Numerics Environment (DUNE) software [14]. Material on the finite
element method can be found at [3], and for information about the iterative solvers used, see [7].
The theory of the DUNE grid is described in [13].

2 Proposed Experiments

In this section, we detail the various experiments that we wish to conduct in our simulations.

2.1 Fixed Sphere

We start with the simplest case where we fix the surface Γ to be a (static) unit sphere. This is
obviously not a very realistic model of the heart as it does not account for the movement of the
heart and the heart is not spherical. Therefore we begin by developing a simulation on a more
realistic ellipsoid. We form the ellipsoid by extending the sphere along the y-axis.

2.2 Moving Surfaces

As stated above, the heart pulsates and so has spatial movement which we wish to incorporate.
We would also like to deform the surface to one that more closely resembles the human heart.
We initially add a sinusoidal deformation onto one of the coordinates so that we have a pulsating
ellipsoid.

2.3 Inhomogeneities

For various reasons, heart tissue can become damaged. This leads to different electro-dynamical
properties. The damaged tissue may not conduct electricity as well as the healthy tissue and so
the action potential cannot travel across these regions unimpeded. This leads to inhomogeneities
or holes in the domain, which we can implement in a number of ways.

In what follows, when we say the diffusive flux or conductivity we mean the coefficient in
front of the Laplacian term in (1).

2.3.1 No conductivity

To model the scenario in which the damaged tissue does not conduct any electricity at all, we can
set the diffusive flux (which models the conductivity) to zero in a region (following [16, p. 2]).
We expect that the finite element method may have some problems in implementing this as there
is a sudden discontinuous jump in the diffusivity constant in the region of the hole. To get around
this, we also consider the possibility of reducing the conductivity in the area of interest by a
multiplicative factor instead of killing it completely.

2.3.2 Reduced conductivity

As alluded to above, we reduce the diffusive flux by a factor of 100 in regions where the tissue is
damaged. This can still lead to jumps but these are not as steep as in the previous case.
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2.3.3 Continuous conductivity

As mentioned above, we expect that the numerical instabilities arising when regions of zero con-
ductivity are created (by setting the diffusion constant to zero) are due to the sudden jump in the
value of conductivity. Here we suggest another remedy for this: multiply the diffusive flux by a
function which ensures that the conductivity decreases to zero at the centre of the hole in a con-
tinuous fashion. If we consider the hole to be circular then we can use a Gaussian function. In the
region of the hole centred at x0 = (x0, y0) we could multiply the diffusion coefficient by

1− exp

(
−|x− x0|2

2σ2
1

)
,

which is zero at the centre of the hole and has variance σ2
1 .

However if our hole has radius R then this coefficient will not be continuous on the boundary
since there will still remain a residue of the Gaussian. We can solve this trivially by adding in the
remainder of the Gaussian to give the multiplicative factor as

1 + exp

(
−R2

2σ2
1

)
− exp

(
−|x− x0|2

2σ2
1

)
,

so that on the boundary of the hole, this factor is exactly 1. But this is no longer zero at the center
of the hole. Therefore we supplement this with another exponential factor so that the factor decays
quickly to zero at the centre:

1 + exp

(
−R2

2σ2
1

)
× exp

(
|x− x0|2 −R2

2σ2
2

)
− exp

(
−|x− x0|2

2σ2
1

)
where σ2

2 � σ2
1 . The values of these variances must be carefully chosen. A small variance σ2

1

gives holes where the coefficients agree on the edges but the sides of the hole are very steep, and
for most of the hole the diffusion coefficient is close to its unadulterated value. If, on the other
hand, we have a large σ2

1 , the contribution of the second Gaussian is greater and we are further
from the true Gaussian (as the remainder term from the first Gaussian is larger). Using the standard
belief that five standard deviations of the mean is statistically significant we take σ2

1 = 5R and we
choose σ2

2 such that 1
2σ2

2
= 1000.

With these choices we have

1 + exp

(
−R
10

)
× exp

(
1000

(
|x− x0|2 −R2

))
− exp

(
−|x− x0|2

10R

)
as the multiplicative factor of the diffusive flux.

2.3.4 Surfaces with holes

The heart is punctured by various blood vessels like veins and arteries. The correct way to simulate
this is to filter out various elements used to construct the sphere and apply zero Neumann boundary
conditions on the new boundary. This method is also suitable for approximating areas of heart
tissue where the wave can no longer propagate.

2.4 An Excursion on Parameter Choice and Numerical Stability

Before moving on, it is necessary to explain the choice of parameters we use to simulate the
Barkley equation. Define Ωc for c ∈ R+ to be the interval [0, c]2. From a former experiment we
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know that by setting

Γ = Ω150, ε =
1

50
, a = 1, b =

1

100
, c =

3

4
,

u0 = I y
150

> 51
100
, v0 =

3

8
I x
150

< 1
2

(9)

a spiral u : Ω150 → [0, 1] can be successfully produced using FD with the semi-implicit method.
Because we want to test the model on a unit sphere, some rescaling is necessary. Suppose we want
to simulate a spiral with similar relative scale on ΩL, i.e., we want to solve ũ, ṽ : ΩL → [0, 1]
satisfying

ũ(t, x) = u

(
t,

150

L
x

)
and ṽ(t, x) = v

(
t,

150

L
x

)
.

Plugging u into the equations (1) and (2) with the previous parameters we can obtain the Barkley
equation for ũ:

ũt −
L2

1502
∆ũ = f(ũ, ṽ),

ṽt = g(ũ, ṽ),

with the same parameters (9) except for Γ and a. Because we want to test on a unit sphere and
also on a square with the same area, we set

L = 3.5 ≈ 2
√
π,

and
a =

1

1790.49
≈ 4π

1502
.

For the effect, see Figure 4.

Figure 4: The solution with different scales, at time 25, using FD semi-implicit
method.
Left: Γ = Ω3.5, a = 1

1790.49 . Right: Γ = Ω150, a = 1.
The two figures are scaled to the same size and the spirals are almost the same.

Usually we have two criteria in deciding whether a simulation is stable. The first is, regarding
the FD semi-implicit code as reliable, comparing the results of all other codes to those of the
FD semi-implicit code. The second is to observe whether the maximum principle holds. If the
approximate solution u of a simulation noticeably exceeds [0, 1], we suppose that the simulation

10



fails. Based on these standards we find that the FEM does not give stable results for such small
values of a. Therefore we reset

a =
1

179.049

and obtain thicker spirals. We tested various possibilities in between; for example,

a =
2

1790.49
,

1

500
,

1

350
,

1

250
,

all of which gave unstable results. See Figure 5 through to Figure 7.

Figure 5: Using FEM semi-implicit method on a unit sphere with a = 2
1790.49 .

Left: at time 6.5, the red part at the top is supposed to disappear but instead starts growing.
Right: at time 7.1, the maximum of u has grown far more than 1, which implies instability.

Figure 6: With a = 1
250 , result is better than the case a = 2

1790.49 : the spiral is more
regular and the top red part is vanishing as expected, however the overshoot is still
unacceptable.

We will be concerned with numerical stability frequently in the following sections.
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Figure 7: Tests on Ω3.5 with a = 1
1790.49 at time 10.

Top left: using FD explicit method. Top right: using FEM explicit method.
Bottom left: using FD semi-implicit method. Bottom right: using FEM semi-implicit method.

3 Planar 2D Simulation

As we mentioned in Section 2.4, to ensure that the FEM implementation for fixed surfaces, mov-
ing surfaces and inhomogeneous surfaces are correct, we start with tests on the square Ω3.5 and
compare it with the FD implementation.

3.1 Results

Taking

Γ = Ω3.5, ε =
1

50
, a =

1

179.049
, b =

1

100
, c =

3

4
,

we compare the results by FD and FEM. In FEM we take the initial conditions:

u0(x, y) = Iy>1.751;

v0(x, y) = Ix<1.75.

Figure 8 contains the results of different methods. One can see that they are almost identical.
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Figure 8: Simulation of spirals on Ω3.5 using various methods at time 10.
Top left: FD explicit method. Top right: FEM explicit RHS method.
Bottom left: FD semi-implicit method. Bottom right: FEM semi-implicit method.

4 Fixed Spherical Surface Simulation

Instead of using Heaviside functions (denoting the spatial variable x = (x, y, z))

u(0,x) = u0(x) = Iy>0.01

v(0,x) = v0(x) =
3

8
Ix<0,

we use its continuous version

u(0,x) = u0(x) =
1

2
(tanh(30y) + 1)

v(0,x) = v0(x) =
1

2
0.375(tanh(30(−x+ 0.01)) + 1)

as our initial conditions. For a visualisation of these conditions, see Figure 9.

Figure 9: The initial conditions on a sphere. Left: Heaviside initial condition. Right: Continuous initial
condition.

We use the semi-implicit method in all of these simulations.
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4.1 Fixed Spherical Surfaces

Grid refinement Before working on further experiments, we refine the grid until the difference
in the solutions between two consecutive refinements is negligible. Then we pick the less well-
refined of the two refinements (since it is more efficient to compute and is almost as good as
the better refinement). This ensures that we are looking at sensible results, i.e., that the results are
solutions that are convergent, and not just a by-product of instability or happenstance, for example.

Figure 10: Change of resol. makes no diff.

Analysis Using the semi-implicit method (the explicit method also gives similar results) with
diffusion coefficient a = 1

179.049 on the unit sphere, we obtain the following results in Figure 11.
A spiral (call it the front spiral) can be seen to develop at time 6.7. Actually two spirals exist; the
other one (call it the back spiral) is on the opposite side of the view in the figures. It can be seen
from the last three figures that the location of the front spiral is slowly and steadily moving.

Because we will simulate spirals on the deforming ellipsoid (described later in Section 5), we
are also interested in observing the spirals on a fixed ellipsoid. Using the same method, we test
the Barkley model on an ellipsoid which has been deformed from a unit sphere by extension by a
factor 1.5 along the y-axis. The results are displayed in Figure 12. This time we display it in an
angle which allows the back spiral to be partly seen in the last two figures, symmetrically joining
the front spiral. Although due to the difference in angle this cannot be compared directly with
Figure 11, there is no qualitative difference in the evolution of the spirals between this ellipsoid
and the sphere.

4.2 Fixed Sphere with Inhomogeneities

We simulate the effects of the inhomogeneities as described in Section 2.3 on a fixed sphere.

4.2.1 No conductivity

The results of setting the diffusive flux to zero in the region

{(x, y, z) : 0.3 < x < 0.4, 0.3 < y < 0.4, z ≥ 0}

are shown below in Figure 13.
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Figure 11: The simulation of the Barkley model on a fixed unit sphere.
Top left: at time 1; Top right: at time 2;
Middle left: at time 3.1; Middle right: at time 6.7;
Bottom left: at time 100.3; Bottom right: at time 200.

Analysis One can see that there are artefacts of the hole remaining after the spiral wave has
passed the hole (see Figure 14).

The same figure shows that there is an overshoot (u is unreasonably bigger than 1 on these
artefacts; recall that the solution should lie in the interval [0, 1]) in the solution on this artefact:
this is as a result of numerical instability. So, like we anticipated, it seems that the method cannot
properly handle a discontinuity in the diffusive flux.

4.2.2 Reduced conductivity

We want to test the Barkley model with the diffusive coefficient significantly smaller in certain
regions (say ΓI ) than the rest of the unit sphere, i.e.,

a(x) =

{
1

17904.9 , x ∈ ΓI
1

179.049 , otherwise.

We test two cases in which the inhomogeneities ΓI are defined by:

Test case 1: ΓI = Γ ∩ {(x− 0.15)2 + y2 < 0.01} ∩ {z > 0}, (10)

Test case 2: ΓI = Γ ∩ {(x− 0.35)2 + y2 < 0.09} ∩ {z > 0}. (11)

We put the inhomogeneities close to the centre of the front spiral that develops in the fixed sphere
case (see Figure 11) because we want to see the effect on the location of the spirals.
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Figure 12: The simulation of spirals on a fixed unit ellipsoid x2 + 4
9y

2 + z2 = 1.
Top left: at time 0; Top right: at time 1;
Middle left: at time 3; Middle right: at time 5;
Bottom left: at time 6.1; Bottom right: at time 7.4.

Analysis The results of the first test are displayed in Figure 15. One can see that the evolution
at locations away from the inhomogeneity is not affected, especially the middle left picture, which
resembles the middle left picture of Figure 11. One can also find an overshoot of 1.167 in the top
right picture of Figure 15. From the last three images, a downward movement of the centre of
spiral can be noticed. Comparing it to the one in the fixed sphere implementation, we find that the
hole affects the location of the centre of the spiral.

After testing the second case, we obtain some different animations. However, like the failure
in the case of no conductivity in Section 4.2.1, the overshoot at time 3.4 implies instability (see
Figure 16).

4.2.3 Continuous conductivity

For the case where the conductivity is smoothly reduced to zero, we consider two circular holes:

• Hole A; centred at (0.3, 0.3,
√

0.82) with radius 0.1, and
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Figure 13: Sphere with region of zero conductivity.
Top left: at time 2.3; Top right: at time 3.1
Second row left: at time 5.1; Second row right: at time 5.5
Third row left: at time 5.7; Third row right: at time 6.5
Bottom row left: at time 6.8; Bottom row right: at time 20

Figure 14: Overshoot on sphere with region of zero conductivity.

• Hole B; centred at (0.3,−0.3,
√

0.82) with radius 0.2.

See Figures 17, 18 and 19 for the results. Each image contains two simulations; the sphere with
hole A is shown on the left and the sphere with hole B is on the right.

Analysis One can see that, in both cases, as the wave travels, the part of the wave that hits the
hole slows down, with some regions of the hole appearing impenetrable at first (for example, see
the bottom right image of Figure 17). One can also see artefacts (or excitation) left behind inside
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Figure 15: The first test on reduced conductivity (10).
Top left: at time 0.5; Top right: at time 2;
Middle left: at time 3.1; Middle right: at time 7;
Bottom left: at time 100.3; Bottom right: at time 200.

Figure 16: The second test on reduced conductivity (11) at time 3.4.

the hole long after the passage of the wave, as in the case of the top left image in Figure 18.

4.2.4 Surface with holes

In this, we remove a part of the sphere so as to model a physical hole. More precisely, we study
two circular holes:

• Hole A; centred at (0.3, 0.3,
√

0.82) with radius 0.1, and

• Hole B; centred at (0.5, 0.5,
√

0.5) with radius 0.4.
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Figure 17: Sphere with region of continuous conductivity. Top left: at time 0, Top right: at time 1.5.
Bottom left: at time 2.3, Bottom right: at time 2.7.

Refer to Figure 20 to see a graphic of the holes and the initial conditions.
The results of running the Barkley model on these domains is shown below in Figures 21, 22

and 23, with the two experiments displayed side-by-side with hole A on the left.
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Figure 18: (continued) Sphere with region of continuous conductivity. Top left: at time 3.9, Top right: at
time 5.5. Bottom left: at time 7.5, Bottom right: at time 8.3.

Figure 19: (continued) Sphere with region of continuous conductivity. Left: at time 9.2, Right: at time
13.9

Figure 20: Initial conditions on sphere with holes. Left: sphere with hole A. Right: sphere with hole B.
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Figure 21: Simulation on spheres with holes. Top left: at time 1.6, Top right: at time 2.5. Bottom left: at
time 3.1, Bottom right: at time 8.1.

Figure 22: (continued) Simulation on spheres with holes. Top left: at time 8.6, Top right: at time 9.8.
Bottom left: at time 111.9, Bottom right: at time 244.3.

Figure 23: (continued) Simulation on spheres with holes. Time: 399.4

Analysis One can see from the outset that the holes have a pinching effect on the travelling
waves, which appears more dramatic for the larger hole. This is the expected behaviour since the
waves have an impenetrable barrier ahead of them so they must slow down and travel around the
holes.

Comparing the final graphic (Figure 23, which is almost 400 seconds into the simulation) with
the first figure, one can notice that the tip of the spiral has moved closer to the hole. This is called
spiral locking in the literature. As the name suggests, the idea is that the centre of the spiral will
eventually reside in the hole — unfortunately we do not have the computer resources to see this
ourselves.
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5 Moving Surfaces

5.1 Moving Sphere

Deformation To make the model more realistic, we need to add movement to the surface. Start-
ing with a unit sphere with the same initial conditions as in the fixed sphere case (see the start of
Section 4), we apply a deformation along the y-axis of the form

1 + α sin (2πβt) (12)

where t is time, α ∈ [−1, 1] is the scale of the deformation and β defines the period of the
oscillation.

Clearly we cannot choose α to be greater in absolute value than 1 since this will lead to a
collapse of the sphere (because then (12) can become negative). We also want α to be sufficiently
large so that the movement is noticeable. We consider a range of different values of α fulfilling
these conditions: 0.1, 0.2, 0.3, 0.4, 0.5.

Justification of choice of results We also need to carefully select the period of oscillation. If it
is too long (i.e., when β is restrictively small) then we need to have a long simulation to see any
effects and this is computationally expensive. If the period is too short then we have numerical
instabilities arising from the fact that the period is short compared to the timestep τ . We start
by fixing β = 0.1 (which means that the period of one oscillation is 10 time-units). We run the
simulation for 5 time periods; i.e., a total of 50 time units.

Choosing the correct time points to review our results is important. Obviously if we choose
once a period we will be unable to see the oscillation. We decide to take the result at the end of the
period for all five periods, the mid-point of the first period, and at the points with the maximum
and minimum deformation in the first period. We also take two time images during the first time
period, the reason for this is explained below. A animation of the whole period can be found at [2].

For each deformation we show the deformed sphere at the times 1.5, 1.95, 2.5, 5, 7.5, 10, 20,
30, 40, 50. Obviously the multiples of 10 are just the end of the periods, multiples of 5 are half-
way through the first period and multiples of 2.5 and 7.5 are the times of maximum deformation
of the sphere.
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5.1.1 Deformation with α = 0.1

(a) Time: 1.5 (b) Time: 1.95

(c) Time: 2.5 (d) Time: 5

(e) Time: 7.5 (f) Time: 10

(g) Time: 20 (h) Time: 30

(i) Time: 40 (j) Time: 50
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5.1.2 Deformation with α = 0.2

(a) Time: 1.5 (b) Time: 1.95

(c) Time: 2.5 (d) Time: 5

(e) Time: 7.5 (f) Time: 10

(g) Time: 20 (h) Time: 30
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5.1.3 Deformation with α = 0.3

(a) Time: 1.5 (b) Time: 1.95

(c) Time: 2.5 (d) Time: 5

(e) Time: 7.5 (f) Time: 10

(g) Time: 20 (h) Time: 30

(i) Time: 40 (j) Time: 50
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5.1.4 Deformation with α = 0.4

(a) Time: 1.5 (b) Time: 1.95

(c) Time: 2.5 (d) Time: 5

(e) Time: 7.5 (f) Time: 10

(g) Time: 20 (h) Time: 30

(i) Time: 40 (j) Time: 50
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5.1.5 Deformation with α = 0.5

(a) Time: 1.5 (b) Time: 1.95

(c) Time: 2.5 (d) Time: 5

(e) Time: 7.5 (f) Time: 10

(g) Time: 20 (h) Time: 30

(i) Time: 40 (j) Time: 50
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Figure 24: Top left: arrival of first wave at time 0.5. Top right: half-way through first
wave at time 2.75. Centre: vanishing of wave at time 4.75.

Analysis

We can see that in all deformations we successfully generate spirals. Also in contrast to the case
of the static sphere we get a sudden reduction of the solution at the time points 1.5 and 1.95 for
all cases. We can also see that the wave-form of the solution is deformed dramatically when the
sphere is at its most deformed. Finally we can see by looking at the final time period that the
centre of the spiral is moved by the deformation, this is especially prominent between the α = 0.4
and α = 0.5 deformation.

5.2 Pulse on Moving Sphere

We now demonstrate another aspect of how the Barkley model is physically relevant. To do this,
we change the initial conditions to

u0 = v0 = 0

and add
(1− u) Iy>0.95 · Iu<0.99 · IZ≤t≤Z+0.05

to the right hand side of (1). Here, the function IZ≤t≤Z+0.05(t) equals 1 if t ∈ [n, n + 0.05] for
some n ∈ Z and equals zero otherwise. This allows us to observe a pulse passing from one side
of the oscillating sphere to another.

Following the work from above, we oscillate the sphere by a factor of 1.1 along the y-axis with
a period of 10 time units.

To create a wave, we need to alter u. To do this, every time unit, we have an impulse that
occurs every time unit and lasts 0.05 time units. The impulse is confined to the region y > 0.95 of
the sphere and the impulse only occurs if the previous wave is almost extinguished (i.e., u < 0.99).
This is similar to the action potential in the heart when the pulse travels from one side to the other.

See Figures 24 and 25 for the first and second occurrences of the wave.
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Figure 25: Left: arrival of second wave at time 5.5. Right: half-way through second wave at time
7.5.

6 Closing Remarks

We set out to provide a framework in which to run simulations of the Barkley model on surfaces
that can model the behaviour of spiral waves in the heart. Furthermore, we formulated and carried
out simulations on surfaces with inhomogeneities and on moving surfaces. This showed interesting
behaviour such as the tendency of the spiral waves to move towards inhomogeneities — such
behaviour is known to occur on flat surfaces but accounts of our version on the spherical surface
is less well-established in the literature.

Whilst we were successful in the sense that we wanted to provide a method for conducting
simulations on non-trivial surfaces, there is, however, still plenty of work that would we like to
have completed had we had more time.

Table 1 sums up what we have accomplished and what remains to be done. We discuss some
of these and others below.

Stability From the table we can see that one direction of possible further research is to fix the
instability problems in various simulations; for example the implementation of thinner spirals, i.e.,
larger diffusion coefficient a.

Period of oscillations Another example is to simulate a faster oscillating rate of the moving
surface because the current rate 0.2π is a bit too low.

Parameter testing For our simulations to truly model the heart accurately, we need to set the
parameters of the Barkley model correctly so that they reflect the properties of the heart. This
would require the study of biological data and collaboration with experts in the field.

Different spiral wave equations In the heart, spiral waves often break up to create a turbulent
environment. The results above suggest that our current model is very stable (we see no breakup
even with very large oscillations). Thus we suggest altering the equations so that breakup is
achieved. To do this, we change the source term g (following [6]) to

g(u, v) = u3 − v.

This is still linear in v so the numerical methods are exactly the same, however the relation between
v and u is more complicated. On a static sphere we need to alter both the parameters and the initial
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Surface Γ Diffusion coefficient a Inhomogeneity Method Result
Ω150 1 None FD Stable
Ω3.5 1/1790.49 None FD Stable
Ω3.5 1/179.049 None FD Stable
Ω3.5 1/1790.49 None FE Unstable
Ω3.5 1/179.049 None FE Stable
Unit sphere 1/179.049 None FE Stable
Unit sphere 1/1790.49 None FE Unstable
Unit sphere 2/1790.49 None FE Unstable
Unit sphere 1/500 None FE Unstable
Unit sphere 1/350 None FE Unstable
Unit sphere 1/250 None FE Unstable
Ellipsoid 1/179.049 None FE Stable
Unit sphere 1/179.049 Zero conductiv-

ity
FE Unstable

Unit sphere 1/179.049 Reduced con-
ductivity 1 (see
(10))

FE Stable

Unit sphere 1/179.049 Reduced con-
ductivity 2 (see
(11))

FE Unstable

Unit sphere 1/179.049 Continuous con-
ductivity

FE Stable

Unit sphere 1/179.049 Physical hole FE Stable
Moving surface (0.1, 2) 1/179.049 None FE Unstable
Moving surface (0.01, 2) 1/179.049 None FE Unstable
Moving surface (0.1, 0.2) 1/179.049 None FE Stable
Moving surface (0.1, 0.4) 1/179.049 None FE Unstable
Moving surface (0.2, 0.2) 1/179.049 None FE Stable
Moving surface (0.3, 0.2) 1/179.049 None FE Stable
Moving surface (0.4, 0.2) 1/179.049 None FE Stable
Moving surface (0.5, 0.2) 1/179.049 None FE Stable
Moving surface 1/179.049 Any type FE TODO
Fixed heart geometry Any Physical holes

and damaged
tissues

FE TODO

Pulsating heart geometry Any Physical holes
and damaged
tissues

FE TODO

Table 1: The results of experiments done and list of experiments to be done in further research.
The (α, β) next to “Moving surface” in the first column means the scale of deformation is α and
the rate β (see (12)).

conditions. Our parameters become

a =
1

179.049
, b = 0.06, c = 0.75, ε = 0.06
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and our initial conditions are

u(x, y) = Iy>0.3

v(x, y) =
3

8
Ix>0,

See Figure 26 for a graphic. Although the initial stages before forming a spiral are different, in the

Figure 26: Initial conditions for turbulent Barkley model

end we still end up with the same spiral waves (see Figure 27) that we witnessed in Section 4. Our
attempts to simulate this turbulent regime on an oscillating sphere gave us numerical instability
and unfortunately we did not have enough time to run the simulation with a higher level of time
refinement.

Figure 27: Spiral wave on the sphere

Other experiments Simulating the equation on a more realistic heart-shaped geometry would
be better; for example see [12, p. 79]. Also, applying the inhomogeneities we formulated above
to moving surfaces would be a natural first progression. This would be slightly harder to achieve
because the domain is moving but it is certainly possible.
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