Theorem (Mikhlin)

Let $m: \mathbb{R}^n \to \mathbb{C}$ be such that

\[
10^m(\xi) \lesssim \frac{1}{1+|\xi|^2}.
\]
The quantified contribution of mathematical science research to the UK economy is estimated to be approximately 2.8 million in employment terms and £208 billion in terms of GVA contribution.

For beauty and pleasure. Mathematics is a monument of human imagination and intuition guided by precision. It is sometimes challenging, but the challenge is like ascending a hill to admire an enchanting vista. It is often also just plain fun.

To make a difference to the world. Mathematical techniques and talent are employed to solve real-world problems across industry, business and government. Take the internet, medical imaging, weather forecasting, encryption, the human genome project, data compression... none of these would be possible without mathematics.

To start the journey towards a rewarding career. Our mathematics graduates are in high demand and enjoy a huge choice of fulfilling and creative opportunities. Working in computing, finance, government and education, they conduct research into machine learning, tomography, data systems and financial products.

For beauty and pleasure.

Mathematics is a monument of human imagination and intuition guided by precision. It is sometimes challenging, but the challenge is like ascending a hill to admire an enchanting vista. It is often also just plain fun.

To make a difference to the world. Mathematical techniques and talent are employed to solve real-world problems across industry, business and government. Take the internet, medical imaging, weather forecasting, encryption, the human genome project, data compression... none of these would be possible without mathematics.

To start the journey towards a rewarding career. Our mathematics graduates are in high demand and enjoy a huge choice of fulfilling and creative opportunities. Working in computing, finance, government and education, they conduct research into machine learning, tomography, data systems and financial products.

WARWICK MATHEMATICS AND STATISTICS IS THE RECIPIENT OF THE
QUEEN’S ANNIVERSARY PRIZE
FOR HIGHER AND FURTHER EDUCATION
Academic 2018

WARWICK MATHEMATICS AND STATISTICS IS THE RECIPIENT OF THE
QUEEN’S ANNIVERSARY PRIZE
FOR HIGHER AND FURTHER EDUCATION
Academic 2018

ONE OF ONLY FIVE
UK MATHEMATICS DEPARTMENTS IN THE
WORLD TOP 50
"QS World Rankings 2019"

IN THE 2014 RESEARCH EXCELLENCE FRAMEWORK, MORE THAN
90% OF OUR RESEARCH WAS RATED AS ‘WORLD LEADING’ OR ‘INTERNATIONALLY EXCELLENT’

WHY STUDY MATHEMATICS?

"The object of pure mathematics [is]... unfolding the laws of... human intelligence."
James Joseph Sylvester 1880

"The quantified contribution of mathematical science research to the UK economy is estimated to be approximately 2.8 million in employment terms and £208 billion in terms of GVA contribution."
Measuring the Economic Benefits of Mathematical Science Research, report for the Engineering and Physical Sciences Research Council (EPSRC) and Council for Mathematical Sciences (CMS), 2012.

91%
OF OUR STUDENTS SAID THAT OUR DEGREE IS INTELLECTUALLY STIMULATING IN THE NATIONAL STUDENT SURVEY 2018

86%
OF OUR 2017 UNDERGRADUATES WERE IN WORK OR FURTHER STUDY SIX MONTHS AFTER GRADUATION*

£28,200
IS THE AVERAGE SALARY ACHIEVED BY OUR STUDENTS SIX MONTHS AFTER GRADUATION*

* DERIVED FROM THE HESA DESTINATIONS OF LEAVERS FROM HIGHER EDUCATION SURVEY FOR 2016/17, CARRIED OUT APPROXIMATELY SIX MONTHS AFTER SUCCESSFUL COMPLETION.
CHOICE AND DEPTH
We offer a huge number of exciting modules allowing you to develop and pursue your interests within mathematics. Many 3rd and 4th year modules offer a glimpse of the latest developments in mathematics research.

FLEXIBILITY OF COURSE COMPOSITION
You are free to do 100% maths if you prefer, but we also offer the opportunity to choose options from several other world-class departments at Warwick. This provides flexibility to tailor your degree to suit your interests, and also your potential career.

STRONG PEER SUPPORT
The whole set-up of our department - the breakout areas and common spaces - are all geared to you sharing, collaborating and making life-long friendships.

OUR INTERNATIONAL REPUTATION
As a centre of excellence we attract research mathematicians from all over world. We offer an intellectually stimulating atmosphere that few institutions rival.

WHY MATHS AT WARWICK?

"You have to be prepared to work hard but once you’re OK with that it’s the most exciting place to study Maths.”

Adday, Mathematics with Intercalated Year BSc student 2015-2019 and Women in Maths representative
We encourage (but do not require) applicants to sit one of the following admissions tests:

- **MAT** - Mathematics Admissions Test
- **TMUA** - Test of Mathematics for University Admission
- **STEP** - Sixth Term Examination Paper

Preparing for one of these tests will help you develop your problem solving skills and deepen your understanding of mathematics.

Here are some points you should bear in mind:

- The MAT and TMUA are in November
- STEP is in July - there are three STEP papers and we accept all three
- See our MAT, TMUA and STEP page for helpful resources and links explaining how to register for these tests
 warwick.ac.uk/mathsstep

For further information and updates regarding our admissions processes and entry requirements please check our website:
warwick.ac.uk/mathsadmissions/offer

Applicants for 2020 entry who take MAT or TMUA in November 2019 and do well are likely to receive the following offer:

- A* (Maths), A* (Further Maths), A

Applicants for 2020 entry who do not sit either of the MAT or TMUA (or do not do well in these tests) are likely to receive the following offer:

- Either A* (Maths), A* (Further Maths), A, plus grade 1 in any STEP paper
- or A* (Maths), A* (Further Maths), A*
- or A* (Maths), A* (Further Maths), A, A

Note:
- We don’t interview but we do invite you to attend an offer holder open day to see the department, and meet staff and current students.
- General Studies and Critical Thinking do not count towards A Level requirements.
Applicants for 2020 entry who take MAT or TMUA in November 2019 and do well are likely to receive the following offer:

- 39 points overall, with 6,6,6 in Higher Level (HL) subjects, including HL Maths

Applicants for 2020 entry who do not sit either of the MAT or TMUA (or do not do well in these tests) are likely to receive the following offer:

- either 39 points overall, with 6,6,6 in HL subjects, including HL Maths, plus grade 1 in any STEP paper
- or 39 points overall, with 7 in HL Maths, and 6, 6 in two other HL subjects

YOUR WAY IN...

with the International Baccalaureate

The University of Warwick is home to a vast number of international students from over 140 countries, and the Mathematics staff are recruited worldwide and contribute to the Institute’s cosmopolitan outlook. We warmly welcome applications from international students who share our passion for mathematics. Typical offers for 30 international qualifications can be found at warwick.ac.uk/maths/admissions/ug/otherquals

If your qualification is not listed, or if you have any queries about entrance requirements, please contact us at mathsadmissions@warwick.ac.uk

Further help and advice can be found on our international study pages:
warwick.ac.uk/study/international

English language: All applicants must satisfy the University’s Admissions Requirement, including a minimum level of competence in the English language.

warwick.ac.uk/study/undergraduate/apply/language
We offer two single-subject Mathematics degrees:

G100: Mathematics BSc
This is a 3-year maths degree that is broad and highly flexible.

G103: Master of Mathematics (MMath)
This 4-year degree is a natural route for those contemplating a mathematical career in industry, business or academia.

Course Structure for Maths BSc:
- 1st year: 8 core modules (75% of typical workload).
- 2nd year: 5 core modules plus essay (55% of typical workload).
- 3rd year: no core, but do at least 50% maths.

The remaining modules can be chosen from mathematics or one of many subjects.

Course Structure for MMath:
- Same core as BSc.
- Students must do at least 75% maths each year.

Teaching:
Most of our teaching is through lectures. These are typically 3 hours per week for each module, and delivered by a member of academic staff. Undergraduates usually take around five modules in each of Term 1 and Term 2. Term 3 is mostly for revision and examinations.

Helen, MMath student 2014-2018
“Studying Maths at Warwick is challenging, but a nice challenge. When you put a lot of effort in and manage to work out something you’ve been stuck on for a while, that feeling is so rewarding.”

Three or Four Years Maths?
The Maths BSc and MMath have the same entrance requirements and share the same core in the 1st year. It is easy to switch from the Maths BSc to the MMath until the end of the 1st year, and from the MMath to the Maths BSc until the end of the 3rd year. If you’re struggling to decide, pick either and you can change your mind later.

Taking a gap year before study?
We welcome applicants who wish to take a ‘gap year’ between school and university. Just achieve your admissions offer and your place will be reserved.

Can I study abroad or do a work placement?
You can choose to study abroad or undertake a year-long work placement as part of either the BSc or MMath degrees. More information can be found on page 18.
Modules offered in 1st year

1st Year Core Maths Modules:
Foundations, Differential Equations, Introduction to Abstract Algebra, Analysis I, Analysis II, Linear Algebra, Maths by Computer, Geometry and Motion, Probability A.

1st Year Optional Modules

• From Physics: Classical Mechanics and Relativity, Electricity and Magnetism, Introduction to Astronomy, Introduction to Particle Physics, Quantum Phenomena.
• From Computer Science: Design of Information Structures, Discrete Mathematics and its Applications 2.
• From Philosophy: Mind and Reality, Introduction to Symbolic Logic.
• From Economics: Introduction to Quantitative Economics.
• From the Warwick Business School: Mathematical Programming I.
• The Language Centre at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian, Italian, Portuguese and Spanish at a wide range of levels.

"One of my favourite things about studying Maths at Warwick is how flexible the degree has been. I was able to choose options from my very first day - and the number of options has only increased as I've gone along, allowing me to pick modules to my interests."
Emily, Mathematics BSc student 2015-2018

2nd Year Core Maths Modules:
Advanced Linear Algebra; Analysis III; Groups and Rings; Multivariable Calculus; Metrics, Norms and Topologies; Second Year Essay.

2nd Year Optional Modules

• From Physics: Geophysics, Hamiltonian Mechanics, Computational Physics, Quantum Mechanics and its Applications, Electromagnetic Theory and Optics, Physics of Fluids, Stars, Experimental Particle Physics, Methods of Mathematical Physics.
• From Computer Science: Algorithms, Logic and Verification, Algorithmic Graph Theory.
• From Economics: Mathematical Economics 1A, Mathematical Economics 1B.
• From Philosophy: Logic II, History of Modern Philosophy.
• Education Studies: Introduction to Secondary School Teaching.
• The Language Centre at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian, Italian, Portuguese and Spanish at a wide range of levels.

* The list of modules varies from year to year and is subject to changes in curriculum and staff research interests. This list is accurate for the 2018-2019 academic year.
Modules offered in 3rd year *

The 3rd year has no core modules.

3rd Year Optional Modules from Mathematics and Statistics

- Algebra and Discrete Mathematics
 Galois Theory, Rings and Modules, Groups and Representations, Commutative Algebra, Algebraic Number Theory, Set Theory, Combinatorics II.
- Analysis
- Geometry and Topology
 Fractal Geometry, Geometry of Curves and Surfaces, Introduction to Topology, Knot Theory, Algebraic Topology.
- Real-World Systems and Applied Mathematics
 Topics in Mathematical Biology, Bifurcations, Catastrophes and Symmetry, Fluid Dynamics, Numerical Analysis and PDEs, Control Theory, Variational Principles, Approximation Theory and its Applications.
- Probability and Statistics
- Other
 Problem Solving, Essay.

Other modules offered in 3rd year +

3rd Year Optional Modules from Other Subjects

- Physics
 Statistical Physics, Weather and the Environment, Physics in Medicine, Quantum Physics of Atoms, Electrodynamics, Scientific Programming, Plasma Electrodynamics, Galaxies, Optoelectronics and Laser Physics, Cosmology, Nuclear Physics.
- Computer Science
- Engineering
 Systems Modelling and Control.
- Warwick Business School
- The Language Centre
 at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian, Italian, Portuguese and Spanish at a wide range of levels.

* The list of modules varies from year to year and is subject to changes in curriculum and staff research interests. This list is accurate for the 2018–2019 academic year.
I've always felt like I can go to a lecturer if I need help. The staff are always happy to answer emails and have office hours so you can speak to them in person. They encourage you to ask questions during lectures if you feel confused, or are happy for you to go to them afterwards if you don't want to speak in front of the class.

Vicki, MMath student 2014-2018

SUPPORT FOR LEARNING

Tutorials
Your Personal Tutor is a member of academic staff. Tutors will advise on module choices, discuss mathematics with you in detail, help you to overcome minor and major problems, guide you through writing your 2nd year essay, and write reference letters for you.

Supervisions (1st & 2nd Year)
Your supervisor is a postgraduate or 4th year student. Being only a little older than you, your supervisor remembers the challenges of being a 1st and 2nd year maths undergraduate and will support you through these. The supervisor marks your homework providing feedback, and endeavours to answer your questions.

Support Classes
Most 2nd, 3rd and 4th year modules have support classes associated with them. These are run by postgraduates who work through examples, provide homework feedback, answer questions, and often offer an alternative point-of-view from the lecturer.

Maths Society
There is also a very active undergraduate Mathematics Society. They organise a weekly Maths Café, a student-led peer support group which offers informal problem-solving sessions and a listening ear, and produce revision notes at exam time as well as organising other academic and social activities.
Although we offer two main degrees students may then elect to follow further pathways on these degrees – typically when choosing to study abroad or undertake a year-long work experience placement. If you’re interested in one of these options you can apply during your second year:

G101: Mathematics with Intercalated Year BSc
You will spend a year studying abroad or on a work placement typically between years 2 and 3 of your degree, adding a year to your degree duration.

G105: Mathematics with Intercalated Year MMath
You will spend a year studying abroad or on a work placement either between years 2 and 3, or between years 3 and 4 of your degree, adding a year to your degree duration.

G106: Mathematics with Study in Europe MMath
This option will not add a year to your degree duration but instead you will spend the third year of your degree at one of 23 European partner universities in Belgium, France, Germany, Italy, Malta, The Netherlands, Portugal, Spain and Switzerland. After your year in Europe you will return to Warwick for your final year.

If you choose to study abroad we can prepare you with the necessary language skills through the Warwick Language Centre.

While we do not offer any formal support with arranging work placements, our departmental careers advisor and the university-wide careers support services are available to students and can provide support sourcing and applying for placements to those who are interested.

Mathematics is constantly evolving. The Warwick Mathematics Institute is home to a number of world-leading research groups in pure and applied mathematics that keep our department at the forefront of research developments.

Active research areas include Algebraic Geometry, Number Theory, Probability, Geometric Analysis, Dynamical Systems, Mathematical Biology and Complexity Science.

Research initiatives involving mathematics at Warwick include:

- The Warwick Mathematics Research Centre. Founded in 1964, this was the first such centre in the UK. It runs many workshops and conferences, and hosts hundreds of visiting mathematicians every year from all over the world.
- Mathematical Interdisciplinary Research at Warwick, fosters mathematical research and training across 11 academic disciplines.
- The Centre for Scientific Computing, driving high-performance computational research.
- The Centre for Discrete Mathematics and its Applications, brings together researchers in graph theory, combinatorics and operational research from Mathematics, Computer Science and the Business School.
- The Alan Turing Institute. This is the national institute for data science, founded by the Mathematics, Statistics and Computer Science departments at Cambridge, Edinburgh, Oxford, UCL and Warwick.

“One of the best things about studying Mathematics at Warwick’s Mathematics Institute is that you can be taught by and study under some of the most eminent and leading Mathematicians in their field. If you choose to do a third year essay or fourth year research project you have the incredible opportunity to be supervised by an expert in your area of interest.”

Alexandra, MMath student 2011-2015
Kat Rock is an Assistant Professor in the Mathematics Institute. A Warwick MMath graduate herself, she is a mathematical epidemiologist with a particular interest in vector-borne neglected tropical diseases.

Kat investigates and develops models for human African trypanosomiasis (HAT, or more commonly known as sleeping sickness) and leads the Bill and Melinda Gates Foundation-funded research project ‘HAT Modelling and Economic Predictions for Policy’. HAT is a parasitic infection, affecting large parts of Sub-Saharan Africa, that’s transmitted by tsetse flies, causing debilitating symptoms and is often fatal without treatment.

The project aims to inform decision-making strategies for the elimination of the disease. Bringing together an international, multidisciplinary team of mathematical modellers, researchers and national programmes, the group assesses local elimination strategies, provides cost-effectiveness analyses and will deliver an investment case for elimination.

Kat explains, “There are two options for disease control – you either treat current infections or focus on preventing the future spread of the disease. Prevention measures vary by disease but might include vaccination and insect control. Smallpox remains the only human disease to have been completely eradicated from the globe by our deliberate intervention. Through treatment and tsetse control it is possible to greatly reduce the prevalence of sleeping sickness to manageable levels. But to get from low cases to no cases is much, much harder. My work looks at the feasibility and value of that.”

“When I started my Maths degree at Warwick I had no idea what job I might do afterwards, although my Dad was keen for me to be an actuary. Some of my friends went down that route but I found the flexibility of the course allowed me to develop my own path. I became drawn to the application of maths to solve real-world problems. Even though I only took Biology to GCSE, by taking specialist modules in the second and third years, as well as undertaking relevant projects I was able to shape my degree to nurture my growing interest in the dynamics of infectious diseases.”

“I frequently employ the skills I developed on my undergraduate course even now. Modules in programming, differential equations, population dynamics and systems biology are all directly relevant to my work.”
Here we present a few examples of theorems and ideas due to Warwick mathematicians. These have been chosen because their statements are accessible to A-level students, even though the methods and ideas behind some are very advanced. In perusing these, you’ll notice that they’re not motivated by practical applications. Some of the maths research at Warwick is aimed at solving real-world problems, but most of it is driven by a burning desire to know. You’ll also notice that mathematicians in other countries are involved as collaborators, and this is typical: research is international.

These examples also give rise to further natural questions and new directions. Perhaps you might solve one of these some day?

GLIMPSES OF MATHS RESEARCH AT WARWICK

You’re perhaps curious about the research-level mathematics that takes place at Warwick.

Here we present a few examples of theorems and ideas due to Warwick mathematicians. These have been chosen because their statements are accessible to A-level students, even though the methods and ideas behind some are very advanced. In perusing these, you’ll notice that they’re not motivated by practical applications. Some of the maths research at Warwick is aimed at solving real-world problems, but most of it is driven by a burning desire to know. You’ll also notice that mathematicians in other countries are involved as collaborators, and this is typical: research is international.

These examples also give rise to further natural questions and new directions. Perhaps you might solve one of these some day?

Three Colourings of Maps

You might have heard of the Four Colour Theorem, proved in 1977 by Appel and Haken. A map is n-colourable if we can colour it using n colours so that no two adjacent regions share the same colour. The Four Colour Theorem simply says that any map is four colourable. You should be able (with a little experimentation) to draw a map that isn’t 3-colourable.

A list R,S,T,U of four regions in a map is called a cycle of length 4 if R shares a border with S, and S shares a border with T, and T shares a border with U and U shares a border with R. You can define a cycle of length 5 in the analogous way. A famous problem in graph theory (from 1976) is known as Steinberg’s conjecture. This claims that a map that doesn’t have cycles of length 4 or 5 is 3-colourable. Many graph theorists have tried to prove Steinberg’s conjecture.

In 2016 Steinberg’s conjecture was disproved by Warwick graph theorists Daniel Král and Michael Hebdige, working with colleagues in France and Chile. In fact they constructed a map with 123 regions that doesn’t have cycles of length 4 or 5 and isn’t 3-colourable.

Open problem: Is there a map that doesn’t have cycles of length 4 or 5 and isn’t 3-colourable?

Irrationality of Odd Values of the Riemann-Zeta Function

We call a number rational if it can be written as a ratio of two whole numbers, and otherwise we say it is irrational. In your first week at university you’ll probably see a proof that $\sqrt{2}$ is irrational. Another famous irrational number is π. For a whole number $n \geq 2$ we let:

$$\zeta(n) = 1 + \frac{1}{2^n} + \frac{1}{3^n} + \frac{1}{4^n} + \ldots$$

This is the Riemann-Zeta function, one of the most fascinating functions in mathematics, and intimately related to the distribution of primes. If n is even then $\zeta(n)$ can be written in terms of π for example:

$$\zeta(2) = \frac{\pi^2}{6}$$
$$\zeta(4) = \frac{\pi^4}{90}$$
$$\zeta(6) = \frac{\pi^6}{945}$$

These expressions can be used to show that $\zeta(n)$ is irrational for even n. For odd n, it seems that $\zeta(n)$ is unrelated to π. For a long time mathematicians have been trying to prove the irrationality of these odd values of the Riemann-Zeta function, with the only success being due to Roger Apery who showed in 1978 that $\zeta(3)$ is irrational. Warwick mathematician Keith Ball, in collaboration with Tanguy Rivoal at Grenoble, showed that there are infinitely many irrational odd values of the Riemann-Zeta function.

Open problem: Is $\zeta(5)$ irrational?
The French mathematician Joseph Lagrange proved in 1770 that every positive whole number can be written as the sum of four squares of whole numbers. Ever since, number theorists have been trying to prove similar theorems with squares replaced by higher powers. In the 19th century a huge experiment was carried out by hand where all numbers up to 12,000 were decomposed as sums of cubes of non-negative whole numbers. On the basis of this experiment the German mathematician Carl Jacobi suggested in 1851 that every whole number bigger than 454 is the sum of seven cubes. This is now a theorem and many mathematicians have contributed towards the proof with the first steps being taken in the 1940s by Russian mathematician Linnik. But the final breakthrough that completed the proof came in 2016 and is due to Warwick number theorist Samir Siksek; we now know indeed that every number bigger than 454 is the sum of seven cubes. Amazingly, besides ingenuity the last step did not require very advanced mathematics and the proof can be understood by a first-year undergraduate.

Open problem: Can you design a mechanism with four interlocking gears?
As a Warwick graduate with a mathematics degree, you will have excellent prospects for a wide range of careers, the most popular areas being the Financial Sector (Accountancy, Actuarial and Investment Banking), Computing and Education.

Recent graduate job titles have included: Actuary, Business Intelligence Consultant, Chief Analytics Officer, Computer Games Designer, Consultant Software Engineer, Financial Consultant and Adviser, Financial Software Developer, Investment Banking Analyst, Market Risk Manager, and Mathematics Teacher.

Firms that have employed recent Warwick graduates from Mathematics and Statistics include: Adder Technology; Merrill Lynch; Brainlabs; Civil Service; Conduent; Darktrace; Deloitte; Department of Helath; eBay; Ford Motor Company; Fore Consulting; Goldman Sachs; Government Actuaries; Investec; Jane Street Capital; KPMG; Lloyds; MBDA; Metaswitch; Met Office; Software; Solid Solutions; Sword Apak; Ten10; Xafinity.

Our Careers Service works for you, providing skills training, careers advice and information, and will continue to support you after your graduation. See warwick.ac.uk/careersandskills

During a Warwick Mathematics degree you will develop many of the qualities of intellect and temperament needed to meet new challenges, including:

- Analytical skills
- Logical thought processes
- Problem-solving ability
- Investigative skills
- Communication skills
- Effective working habits

YOUR FUTURE STARTS HERE

During a Warwick Mathematics degree you will develop many of the qualities of intellect and temperament needed to meet new challenges, including:

- Analytical skills
- Logical thought processes
- Problem-solving ability
- Investigative skills
- Communication skills
- Effective working habits

Why is a Warwick Maths Degree an Excellent Career Move?

In today's workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

The Mathematics degree at Warwick is challenging but as a result it is extremely rewarding. As soon as you have understood one topic/module, the next one is never too far away. The flexibility to pursue the areas of Mathematics that you most enjoy is extremely helpful - being able to tailor your degree to what you are most interested in allows you to get the most from it.

I now model pension fund assets and liabilities, helping to advise trustees on potential investment strategies to best meet benefits payable to members.

I applied for the graduate scheme in my final year of university, and have since progressed within the company. I wanted to work in an industry where I could use some of the skills that I had developed throughout my Mathematics degree, and Investment Consulting looked like the right choice.

My main motivation is to keep learning and to keep challenging myself. Where that will take me only time will tell, but I’m looking forward to finding out.

The Mathematics degree at Warwick enabled me to choose some modules outside of Maths which I have since found useful in my chosen career: a Principles of Finance module gave me a basic introduction into corporate finance, and an Advanced Spanish module was particularly useful when working on a Spanish transaction.

I hope to continue to develop and gain experience in my role with the short term goal of progressing to a more senior level. Within banking in London there are few women in senior roles so I’d like to help rebalance this and inspire the next generation of women.

Why is a Warwick Maths Degree an Excellent Career Move?

In today's workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

The Mathematics degree at Warwick is challenging but as a result it is extremely rewarding. As soon as you have understood one topic/module, the next one is never too far away. The flexibility to pursue the areas of Mathematics that you most enjoy is extremely helpful - being able to tailor your degree to what you are most interested in allows you to get the most from it.

I now model pension fund assets and liabilities, helping to advise trustees on potential investment strategies to best meet benefits payable to members.

I applied for the graduate scheme in my final year of university, and have since progressed within the company. I wanted to work in an industry where I could use some of the skills that I had developed throughout my Mathematics degree, and Investment Consulting looked like the right choice.

My main motivation is to keep learning and to keep challenging myself. Where that will take me only time will tell, but I’m looking forward to finding out.

Why is a Warwick Maths Degree an Excellent Career Move?

In today's workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

The Mathematics degree at Warwick is challenging but as a result it is extremely rewarding. As soon as you have understood one topic/module, the next one is never too far away. The flexibility to pursue the areas of Mathematics that you most enjoy is extremely helpful - being able to tailor your degree to what you are most interested in allows you to get the most from it.

I now model pension fund assets and liabilities, helping to advise trustees on potential investment strategies to best meet benefits payable to members.

As a Warwick graduate with a mathematics degree, you will have excellent prospects for a wide range of careers, the most popular areas being the Financial Sector (Accountancy, Actuarial and Investment Banking), Computing and Education.

Recent graduate job titles have included: Actuary, Business Intelligence Consultant, Chief Analytics Officer, Computer Games Designer, Consultant Software Engineer, Financial Consultant and Adviser, Financial Software Developer, Investment Banking Analyst, Market Risk Manager, and Mathematics Teacher.

Firms that have employed recent Warwick graduates from Mathematics and Statistics include: Adder Technology; Merrill Lynch; Brainlabs; Civil Service; Conduent; Darktrace; Deloitte; Department of Helath; eBay; Ford Motor Company; Fore Consulting; Goldman Sachs; Government Actuaries; Investec; Jane Street Capital; KPMG; Lloyds; MBDA; Metaswitch; Met Office; Software; Solid Solutions; Sword Apak; Ten10; Xafinity.

OUR FUTURE STARTS HERE

During a Warwick Mathematics degree you will develop many of the qualities of intellect and temperament needed to meet new challenges, including:

- Analytical skills
- Logical thought processes
- Problem-solving ability
- Investigative skills
- Communication skills
- Effective working habits

Why is a Warwick Maths Degree an Excellent Career Move?

In today's workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

The Mathematics degree at Warwick is challenging but as a result it is extremely rewarding. As soon as you have understood one topic/module, the next one is never too far away. The flexibility to pursue the areas of Mathematics that you most enjoy is extremely helpful - being able to tailor your degree to what you are most interested in allows you to get the most from it.

I now model pension fund assets and liabilities, helping to advise trustees on potential investment strategies to best meet benefits payable to members.

As a Warwick graduate with a mathematics degree, you will have excellent prospects for a wide range of careers, the most popular areas being the Financial Sector (Accountancy, Actuarial and Investment Banking), Computing and Education.

Recent graduate job titles have included: Actuary, Business Intelligence Consultant, Chief Analytics Officer, Computer Games Designer, Consultant Software Engineer, Financial Consultant and Adviser, Financial Software Developer, Investment Banking Analyst, Market Risk Manager, and Mathematics Teacher.

Firms that have employed recent Warwick graduates from Mathematics and Statistics include: Adder Technology; Merrill Lynch; Brainlabs; Civil Service; Conduent; Darktrace; Deloitte; Department of Helath; eBay; Ford Motor Company; Fore Consulting; Goldman Sachs; Government Actuaries; Investec; Jane Street Capital; KPMG; Lloyds; MBDA; Metaswitch; Met Office; Software; Solid Solutions; Sword Apak; Ten10; Xafinity.

As a Warwick graduate with a mathematics degree, you will have excellent prospects for a wide range of careers, the most popular areas being the Financial Sector (Accountancy, Actuarial and Investment Banking), Computing and Education.
One of the best things about the MMath course at Warwick is the opportunity to study a wide range of modules. During my first two years, I followed courses in maths and physics. I discovered that my interest was in number theory and algebra, and I was able to develop this interest by following many advanced courses in these areas. In my final year I was fortunate to work with Prof. Samir Siksek, who supervised my MMath research project in number theory. This was a real turning point: Samir was extremely enthusiastic and helpful, and I enjoyed this project so much I began to think seriously about a career in research.

After graduating from Warwick, I began studying for a PhD at Royal Holloway. My background in number theory and algebra gave me a solid foundation for my specialism, cryptography.

The highlight of my PhD was an internship in the Cryptography group at Microsoft Research, Redmond, USA. I went on to a postdoctoral position at Sorbonne Université in Paris, before returning to Royal Holloway.

My current role is varied and involves conducting research, writing papers, giving talks, teaching, organising workshops, and peer-reviewing others’ work. Research is a dream job for me not only being paid to work on interesting problems, but also the opportunity to travel and discuss ideas with colleagues around the world. I regularly present my work at national and international conferences – my next trip will be to New Zealand!

Dr Rachel Player
MMath 2009-2013
Now Postdoctoral Researcher, Information Security Group, Royal Holloway

Dr Rachel Player investigated factorials that can be written as sums of three Fibonacci numbers, for example:

\[6! = F_8 + F_{11} + F_{15}\]

Rachel found all such examples, and proved that there aren’t any others.

How many can you find?

Matthew Marshall, MMath 2007 - 2011
Now Data Scientist

My first job out of university was doing fraud analytics on social networks for banks and insurance companies. The ‘Programming for Scientists’ module gave me the minimum amount of programming knowledge I needed for this role, and in my interview I gave a presentation based on my fourth year project.

Within this role I was always interested in the machine learning side of analytics as it involved more maths, so I moved to working at a start-up where this is core to their business. I now work on prototyping and implementing models that take into account location, device profiling and a user’s behaviour (through how they handle their smart phone for example) to provide authentication.

The way the degree encouraged me to think deeply and logically about abstractions helps me to think about systems; imagining how things are going to work without knowing every detail and before they’ve been built.

My degree also gave me the self-belief that even if something seems as complicated as algebraic topology then if I apply myself to it then I’ll crack it eventually.

Matthew Marshall,
MMath 2007 - 2011
Now Data Scientist

Now Associate in Model Risk, JP Morgan

My work involves looking at the validation of risk models, particularly those used for risk management; from setting risk limits on individual trading desks to ensuring the firm has sufficient capital so that the bank can adequately mitigate its potential exposures during severely adverse market conditions.

Prior to my undergraduate degree I was fascinated by unique applications of maths, from Differential Equations to Brownian Motion. I therefore always tried to choose modules with a more applied focus, such as Topics in Mathematical Biology, Dynamical Systems, Probability, Statistics and Stochastic Processes and their Applications. These modules gave me an in-depth and diverse understanding on how to construct and test mathematical models observable phenomena which definitely influenced my career.

After my undergraduate degree I wanted to continue studying maths but with more of a focus on ‘real world’ applications leading to my Masters and PhD, and after these I decided to join the ‘real world’ and see how maths is used in the financial industry.

I really enjoy that I am continually learning new features and applications of maths for modelling real world behaviour.

Thomas Rafferty,
Now Associate in Model Risk, JP Morgan

My work involves looking at the validation of risk models, particularly those used for risk management; from setting risk limits on individual trading desks to ensuring the firm has sufficient capital so that the bank can adequately mitigate its potential exposures during severely adverse market conditions.

Prior to my undergraduate degree I was fascinated by unique applications of maths, from Differential Equations to Brownian Motion. I therefore always tried to choose modules with a more applied focus, such as Topics in Mathematical Biology, Dynamical Systems, Probability, Statistics and Stochastic Processes and their Applications. These modules gave me an in-depth and diverse understanding on how to construct and test mathematical models observable phenomena which definitely influenced my career.

After my undergraduate degree I wanted to continue studying maths but with more of a focus on ‘real world’ applications leading to my Masters and PhD, and after these I decided to join the ‘real world’ and see how maths is used in the financial industry.

I really enjoy that I am continually learning new features and applications of maths for modelling real world behaviour.

Matthew Marshall, MMath 2007 - 2011
Now Data Scientist

My work involves looking at the validation of risk models, particularly those used for risk management; from setting risk limits on individual trading desks to ensuring the firm has sufficient capital so that the bank can adequately mitigate its potential exposures during severely adverse market conditions.

Prior to my undergraduate degree I was fascinated by unique applications of maths, from Differential Equations to Brownian Motion. I therefore always tried to choose modules with a more applied focus, such as Topics in Mathematical Biology, Dynamical Systems, Probability, Statistics and Stochastic Processes and their Applications. These modules gave me an in-depth and diverse understanding on how to construct and test mathematical models observable phenomena which definitely influenced my career.

After my undergraduate degree I wanted to continue studying maths but with more of a focus on ‘real world’ applications leading to my Masters and PhD, and after these I decided to join the ‘real world’ and see how maths is used in the financial industry.

I really enjoy that I am continually learning new features and applications of maths for modelling real world behaviour.

Matthew Marshall, MMath 2007 - 2011
Now Data Scientist
I'm currently a Maths teacher with a leadership role that involves planning the A Level Maths, Further Maths and Core Maths curriculum, monitoring student progress and raising achievement. I am also in my dissertation phase of a masters in Professional Education part-time at Warwick.

In my second year at Warwick I completed the Student Associate Scheme*, which involved a term-long placement in a secondary school and a two-week teaching experience and convinced me that I wanted to go into education.

I am and always will be a mathematician at heart so it’s great that in my current job, I get to spend at least 80% of every working day doing maths. But even better than that, I also spend that time spreading my love of maths to others. The school I work in is situated in a very deprived area, and many of my students have significant socio-economic barriers to their learning. Smashing these barriers and seeing students succeed against all odds is what motivates me to wake up each morning with renewed passion.

*Although this particular scheme is no longer available there are numerous other opportunities for Maths students interested in teaching. For example, our optional module ‘Introduction to Secondary Teaching in Mathematics’ which includes a ten-day placement in a local school, or the Warwick In Africa programme.

I am training to be a classical opera singer which seems like quite a change from Maths! However I always say that both music and maths are universal languages - they’re both built on very simple foundations but have the power to communicate complex ideas and emotions no matter what language you speak.

I’ve been singing and performing since the age of four, and at Warwick I had so many opportunities to pursue music and performance alongside my studies. I now study a wide range of repertoires, including contemporary music which is often very complex so my maths degree certainly comes in handy for that. To support my studies I also work as a private maths tutor for school pupils which is very rewarding.

One of the best things about the mathematics degree at Warwick, apart from the world-class teaching and facilities, is the flexibility of the course. In second year, we had to do an essay on a mathematical topic of our choice, and I decided to research the relationship between maths and music. This research covered a wide range of topics such as abstract algebra, geometry and partial differential equations, and it was fascinating to see the connections to my other maths modules. I also had the opportunity to study language modules and interdisciplinary modules such as ‘The Science of Music’, which have proved extremely useful now as I have to sing in a variety of languages and understand the mechanics of vocal production and resonance.

I think one of the key messages from my story is that everybody has their own unique path in life. My path from maths to music may seem strange or unusual, but it was the right path for me. It is okay to go to university without knowing what you want to do when you leave - in fact this can often make you more open-minded when it comes to career possibilities. It is important to work hard at your degree, but it is just as important to pursue your hobbies and interests so that you develop as a well-rounded individual. Doing a Mathematics degree at Warwick is challenging in many ways, but once you’ve accomplished that you will seriously feel like you can achieve anything in life!
How to apply

Applications are made through UCAS ucas.com

If you are made and accept an offer, and get the required grades in your exams we will confirm your place and look forward to warmly welcoming you at the start of your life here at Warwick.

For more information about how we process applications please visit: warwick.ac.uk/study/undergraduate/apply

Overseas Applicants

With a student population from over 145 countries, you’ll be part of an international community here at Warwick. We have a dedicated team available to advise, as well as a global network of Agents and Representatives.

See www.warwick.ac.uk/io for information on applying from your country.

Student fees and funding

For more information about fees and funding for both Home/EU and Overseas students see: warwick.ac.uk/services/academicofficefinance/fees

We want to ensure that, wherever possible, financial circumstances do not become a barrier to studying at Warwick and therefore we provide extra financial support for qualifying students from lower income families.

warwick.ac.uk/study/undergraduate/studentfunding

Accommodation

Warwick Accommodation manages over 6,700 rooms on campus across a range of self-catered residences. There is an excellent network of support staff in the Residential Life Team, and wider University.

warwick.ac.uk/accommodation

Visit Us

Open Days

The university organise four open days in early summer and in autumn for students wishing to visit the university, including opportunities to visit the academic departments of your choice.

warwick.ac.uk/opendays

Maths Offer Holder Days

If you receive an offer from us, you will be invited to one of our Maths Offer Holder Days between January and March 2020. These give you a chance to meet members of staff, talk to current students and to get a feel for and ask questions about the course, campus life and the style of mathematics we teach.

warwick.ac.uk/study/undergraduate/apply/offerholders/ohod

This course information was accurate at the time of printing. Our course and module content and schedule is continually reviewed and updated to reflect the latest research expertise at Warwick, so it is therefore very important that you check the relevant course website for the latest information before you apply and when you accept an offer. For full terms and conditions, please visit warwick.ac.uk/ugtermsandconditions