Skip to main content Skip to navigation

MA624 Dynamical Systems

Lecturer: Prof. Richard Sharp

Term(s): Term 1

Commitment: 30 lectures and weekly assignments

Assessment: Oral Exam

Content: Dynamical Systems is one of the most active areas of modern mathematics. This course will be a broad introduction to the subject and will attempt to give some of the flavour of this important area.

The course will have two main themes. Firstly, to understand the behaviour of particular classes of transformations. We begin with the study of one dimensional maps: circle homeomorphisms and expanding maps on an interval. These exhibit some of the features of more general maps studied later in the course (e.g., expanding maps, horseshoe maps, toral automorphisms, etc.). A second theme is to understand general features shared by different systems. This leads naturally to their classification, up to conjugacy. An important invariant is entropy, which also serves to quantify the complexity of the system.

Aims: We will cover some of the following topics:

  • circle homeomorphisms and minimal homeomorphisms,
  • expanding maps and Julia sets,
  • horseshoe maps, toral automorphisms and other examples of hyperbolic maps,
  • structural stability, shadowing, closing lemmas, Markov partitions and symbolic dynamics,
  • conjugacy and topological entropy,
  • strange attractors.

Books: R.L. Devaney, An introduction to chaotic dynamical systems, Benjamin.

B.Hasselblat and A.Katok, Dynamics: A first course , CUP, 2003.

S. Sternberg, Dynamical Systems, Dover

Additional Resources

Archived Pages: Pre-2011 2012 2013 2016 2017