
NOTES ON LARGE DEVIATIONS

NIKOS ZYGOURAS

1. Introduction

Large deviations should be thought as a principle of the theory of probability.
We are already familiar with the two basic ones, the Law of Large Numbers (LLN)
and the Central Limit Theorem (CLT).

The clasical LLN says that if (Xi)i≥1 is a sequence of i.i.d. variables, on a
probability space (Ω,F , P ), with E[X1] = µ, E[|X1|] <∞, then

X1 + · · ·+Xn

n
→ µ, P − a.s.

The clasical CLT says that, under the additional assumption that the variance
exists, say equals 1, then

P

(
X1 + · · ·+Xn − nµ√

n
> x

)
∼=
∫ ∞
x

1√
2π
e−

y2

2 dy.

That is it tells us what is the asymptotic probability that the sum Sn = X1+· · ·+Xn

has a typical deviation from its mean nµ of order
√
n.

Large deviations study the asymptotic probability of a (large) deviation of Sn
from the mean nµ of order n. This can be summarised by

P (X1 + · · ·+Xn − nµ ∼= nx) ∼= e−nI(x).

The function I(·) that appears is called the rate function and governs the asymp-
totics of such probabilities.

Example Let (Xi)i≥1, such that P (Xi = 1) = P (Xi = 0) = 1/2. Then for all
a > 1/2,

lim
n→∞

1

n
logP (Sn ≥ na) = −I(a),

with

I(z) =

{
log 2 + z log z + (1− z) log(1− z) , z ∈ (0, 1),
∞ , z /∈ (0, 1)

Proof. It is easy to verify the case that a > 1, so we will restrict to the case
1/2 < a < 1. The proof goes by a direct combinatorial computation.

P (Sn ≥ na) =
∑
k≥na

(
n

k

)
1

2n
.

Use know the easy and useful fact that, for every sequence of positive numbers
(an)n≥1,

elemelem (1.1) lim
n

1

n
log

∑
1≤i≤n

an = lim
n

1

n
log max

1≤i≤n
an,

1
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to get that

lim
n

1

n
logP (Sn ≥ na) = lim

n

1

n
log

(
n

na

)
1

2n

Use now Stirling’s formula n! ∼
√

2πnnne−n to get that
(
n
na

)
∼ 1√

2π n
a−na(1 −

a)−n(1−a). The result now follows.

Knowing the large deviations is also very important when we want to evaluate
asymptotically exponential integrals. Consider for example the case of a sequence
of measures µn(dx). You can think of the case P

(
Sn
n ∈ dx

)
. Supose we want to

evaluate the integrals

1

n
log

∫
enθxµn(dx).

Think again of 1
n logE[eθSn ]. If µn(dx) ∼= e−nI(x), then by the Laplace asymptotics,

we have that the integral is asymptotically equivallent to

1

n
log

∫
enθx−nI(x)dx ∼= sup

x
(θx− I(x)) .

Let us give a first definition of Large Deviation Principle (LDP), but don’t worry
about the details now.

Definition 1.1. Let X be a Polish space (complete, separable, metric space). We
say that the sequence of measures µn satisfies a LDP with rate function I, if for
every Borel set Γ

LDPLDP (1.2) − inf
x∈Γo

I(x) ≤ lim inf
n

1

n
logµn(Γ) ≤ lim sup

n

1

n
logµn(Γ) ≤ − inf

x∈Γ̄
I(x)

We want the rate function I : X → [0,∞) to be lower semicontinuous. Often I is
called good rate function if the level sets {x : I(x) ≤ L} are compact.

REMARK: 1. For the moment think of µn(Γ) as P
(
Sn
n ∈ Γ

)
.

2. If infx∈Γo I(x) = infx∈Γ̄ I(x), then limn
1
n logµn(Γ) ≤ − infx∈Γ I(x)

3.We need the distinction between Γo,Γ, Γ̄ to deal with pathological cases e.g.
when µn are non-atomic, i.e. µn({x}) = 0. In this case (

LDP
1.2) cannot hold for

Γ = {x}, without considering Γo. This formulation takes also into account the
possibility of concentration of measure on the boundaries of Γ.

4. Notice that the reason of the presence of the inf in the formulation lies is rela-
tion (

elem
1.1). a way to see it formally is that lim 1

n logµn(Γ)” = ” lim 1
n log

∑
x∈Γ µn(x)

” = ” lim 1
n log maxx∈Γ µn(x)

2. TWO EXAMPLES

We will know show two examples which are very important to understand the
set of ideas used to prove LDP’s. The first one is Crámer’s Theorem.
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2.1. CRAMER’S THEOREM.

Theorem 2.1. Let (Xi)i≥1 a sequence of i.i.d variables. Assume that φ(t) :=

E[etX1 ] is finite for every t ∈ R. Then the measures µn(·) := P
(
Sn
n ∈ ·

)
satisfy a

LDP with rate function I(x) = supt∈R{xt− log φ(t)}.
Before the proof let us remark on the rate function.

Definition 2.2. For any real function φ, we define the Legendre transform φ∗(x) :=
supt∈R{xt − log φ(t)}. This definiton also generalise to many dimensions (even
infinite), by φ∗(x) := supt∈R{< x, t > − log φ(t)}.
Lemma 2.3. Let φ(t) := E[etX1 ] and φ∗(t) its Legendre transform. Then

1. t→ log φ(t) is convex.
2. φ∗ is nonnegative, convex and lower semicontinuous.
3. If µ = E[X1], then φ∗(µ) = 0.
4. For x ≥ µ, x→ φ∗(x) is nondecreasing, and for x ≤ µ it is nonincreasing.
5. For x ≥ µ, φ∗(x) = supt≥0{xt−log φ(t)}, and for x ≤ µ, φ∗(x) = supt≤0{xt−

log φ(t)}.
Proof. 1. and 2. are trivial (for 1. just use Jensen’s inequality ).

3. By Jensen’s inequality we have that logE[etX1 ] ≥ tE[X1] = tµ, for every t.
So φ∗(µ) = supt{µt − log φ(t)} ≤ 0, which implies the result by the nonnegativity
of φ∗.

4. It follows from the convexity of φ∗ and the fact that φ∗(µ) = 0.
5. Notice that the slope of log φ(t) at the origin is equal to E[X1]. The result

now follows by the convexity of log φ(t).

We are now ready to prove Crámer’s Theorem.

Proof. Without loss of generality we will assume that E[X1] = 0.

THE UPPER BOUND. The upper bound is an optimization over a family of
exponential Chebyshev’s inequalities. Let us first bound the quantity, let t ≥ 0

P

(
Sn
n
≥ x

)
≤ e−n txE

[
etSn

]
= e−n tx

(
E[etX1 ]

)n
= exp{−n(tx− log φ(t))}.

Since this bound is true for all t ≥ 0 we have that

P

(
Sn
n
≥ x

)
≤ exp{−n sup

t≥0
(tx− log φ(t))}

= exp{−nφ∗(x)}.
where the last equality is due to part 5. of the previous lemma. To conclude the
upper bound notice that φ∗(x) = infy≥x I(y), by part 4. of the previous lemma.

To pass from the event {Snn ≥ x} to a general event {Snn ∈ Γ} we do

P

(
Sn
n
∈ Γ

)
≤ P

(
Sn
n
∈ Γ̄

)
≤ P

(
Sn
n
∈ Γ̄ ∩ [0,∞)

)
+ P

(
Sn
n
∈ Γ̄ ∩ (−∞, 0]

)
≤ e−nφ

∗(x+) + e−nφ
∗(x−),
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where x+ = inf{x ∈ Γ̄ ∩ [0,∞)} and analogously for x−. We then conclude, using
(
elem
1.1) that lim supn

1
n logP

(
Sn
n ∈ Γ

)
≤ −φ∗(x+) ∧ φ∗(x−), and by part 4. of the

previous lemma it is equal to − infx∈Γ̄ φ
∗(x).

THE LOWER BOUND. It is clear that it is enough to prove that for every x
and ε > 0, we have lim infn

1
n logP

(
Sn
n ∈ (x− ε, x+ ε)

)
≥ φ∗(x).

The idea ( which is very important ) to prove this is the following: Remember
that E[X1] = 0, so by the LLN Sn/n → 0, P a.s.. This is the typical event, i.e.
P
(
Sn
n ∈ (−ε, ε)

)
→ 1 . We want though to compute the probability of the atypical

event P
(
Sn
n ∈ (x− ε, x+ ε)

)
. To do this we will introduce a new measure P̂ , such

that Ê[X1] = x and thus P̂
(
Sn
n ∈ (−ε, ε)

)
→ 1. In other words the atypical event

becomes under the new measure typical. The asymptotic probability that we are
after will be captured by this change of measure.

Let’s fix the ideas. Let F (dy) the distribution function related to P . Define the

new measure P̂ by

F̂ (dy) =
eτy

φ(τ)
F (dy).

The value of τ will be chosen as the unique value (if it exists), for which Ê[X1] =∫
yF̂ (dy) = x. Notice that ∫

yF̂ (dy) = (log φ(τ))
′
.

So we are looking for a value of τ for which (log φ(τ))
′

= x. Such a τ exists if
the supt (tx− log φ(t)) is achieved. Suppose that this is the case ( we will deal
with the case that this is not the case separately ), then φ∗(x) = τx − log φ(τ).
Now compute, let δ < ε and also sup’pose that τ ≥ 0 (the case τ ≤ 0 is handled
similarly).

P

(
Sn
n
∈ (x− δ, x+ δ)

)
=

∫
{Snn ∈(x−δ,x+δ)}

F (dy1) · · ·F (dyn)

=

∫
{Snn ∈(x−δ,x+δ)}

e−τ(y1+···+yn) φ(τ)n F̂ (dy1) · · · F̂ (dyn)

≥ e−nτ(x+δ)φ(τ)n
∫
{Snn ∈(x−δ,x+δ)}

F̂ (dy1) · · · F̂ (dyn)

= e−n(xτ+δτ−log φ(τ))P̂

(
Sn
n
∈ (x− δ, x+ δ)

)
.

Finally we have (we will use the fact that P̂
(
Sn
n ∈ (x− δ, x+ δ)

)
→ 1, as n→∞ )

lim inf
n

1

n
logP

(
Sn
n
∈ (x− ε, x+ ε)

)
≥

≥ lim inf
n

1

n
logP

(
Sn
n
∈ (x− δ, x+ δ)

)
= −(xτ + δτ − log φ(τ)) + lim inf

n

1

n
log P̂

(
Sn
n
∈ (x− δ, x+ δ)

)
= −(xτ + δτ − log φ(τ))

= −φ∗(x)− δτ.
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Now, we just need to let δ → 0.
There only remains the case that the supt{xt− log φ(t)} is not achieved. In this

case because of the convexity of log φ(t), and the fact that φ(t) < ∞, for every t,
there must be a sequence tn → +∞ ( assume x > 0, similarly for x < 0), such that

φ∗(x) = lim
tn→∞

(xtn − log φ(tn))

= − lim
tn→∞

log

∫
etn(y−x)F (dy)

= − lim
tn→∞

log

∫
y≥x

etn(y−x)F (dy).

If now F ((x,∞)) > 0, then by the monotone convergence the last integral converges
to +∞, and this will imply that φ∗(x) = −∞, which is false by the positivity of
φ∗. Thus we get that F ({x}) = e−φ

∗(x). Then

lim inf
n

1

n
logP

(
Sn
n
∈ (x− ε, x+ ε)

)
≥ lim inf

n

1

n
logP (X1 = · · ·Xn = x) = logP (X1 = x) = −φ∗(x)

This completes the proof of Crámer’s theorem.

REMARK: Crámer’s theorem holds also without the assumption that φ(t) <∞,
for every t. In fact it holds even in the case that Dφ := {t : φ(t) < ∞} = {0},
although in this case the rate function φ∗ might be trivial. To prove it in this case
one proves it first for the measures νMn (·) := P

(
Sn
n ∈ ·

∣∣|Xi| < M
)
, which reduces

to the case that we considered and then passes to the limit M →∞.

2.2. EMPIRICAL MEASURES-SANOV’S THEOREM-ENTROPY. Let
us consider the simplest case. Let (Xi)i≥1 i.i.d. variables with marginal distribution
ρs, i.e. P (Xi = s) = ρs, for 1 ≤ s ≤ r, and for every r, ρr > 0.

So far we have considered the case of LDP of the empirical average

X1 + ·+XN

N
.

Consider now the empirical measure

Ln =
δX1 + ·+ δXn

n
.

This is a random measure on Γ = {1, . . . , r} such that

LN (s) =
1X1=s + · · ·+ 1XN=s

N

=
#{i ≤ N : Xi = s}

N
.

Notice that this is a generalisation of the example considered in the introduction.
If we know the asymptotic behavior of LN then we can deduce the asymptotics of

f(X1) + · · ·+ f(Xn)

n
=

∫
f(y)Ln(dy).

EXAMPLE: Let’s compute the asymptotic probability

P (LN (s) ∼= ks, for s ∈ {1, . . . , r}) ,
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where ks ≥ 0 and
∑r
s=1 ks = 1. In other words ν = (k1, . . . , kr) is a probability

measure on Γ.
By elementary combinatorics we have that

P (LN (s) ∼= ks, for s ∈ {1, . . . , r}) =

(
N

k1N k2N · · · krN

)
ρk1N1 · · · ρkrNr

=
N !

(k1N)! · · · (krN)!
ρk1N1 · · · ρkrNr ,

and using Stirling’s formula again we have that it is asymptotically equal to(
1√

2πN

)r−1

k−Nk11 · · · k−Nkrr ρk1N1 · · · ρkrN .

So

1

N
P (LN ∼= ν) ∼= −

r∑
s=1

ks log ks +

r∑
s=1

ks log ρs −
r − 1

N
log
√

2πN

= −
r∑
s=1

ks log
ks
ρs

+ o(1)

Definition 2.4. Consider a measurable space X and two probability distributions
on it µ, ν. Define the relative entropy of ν with respect to µ as the quantity

H(ν
∣∣µ) = {

∫
dν
dµ log dν

dµdµ , ν � µ

∞ , if not

Notice that
∫
dν
dµ log dν

dµdµ =
∫

log dν
dµdν.

We have thus shown that

1

N
logP (LN ∼= ν) ∼= H(ν

∣∣ρ).

To state the result precisely we need to specify the space and the metric. The space
will be the space M1(Γ) of probability measures on Γ with the variational metric,
that is

d(µ, ν)− 1

2

∑
r

|µs − νs |.

Notice that by the LLN of the ergodic theorem we have that d(LN , ρ)→ 0.

Theorem 2.5. Let (Xi) i.i.d variables. Then

1

n
logP (Ln ∈ Bca(ρ))→ − inf

{ν∈Bca(ρ)}
Iρ(ν),

where Iρ(ν) = H(ν
∣∣µ), and Ba(ρ) is the ball of radius a around the measure ρ.

For the proof look at den Hollander’s book. It is basically the previous argument
combined with density and the continuouity of relative entropy.

CONNECTION BETWEEN THE TWO EXAMPLES.

sp_contraction Proposition 2.6.

φ∗(x) = inf
{ν :

∫
y ν(dy)=x}

H(ν
∣∣µ)
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Proof.

φ∗(x) = sup
t
{xt− log φ(t)} = sup

t
{xt− log

∫
etyµ(dy)}

Also by Jensen’s inequality

log

∫
etyµ(dy) = log

∫
ety

dµ

dν
(y) ν(dy)

≥ t

∫
y ν(dy) +

∫
log

dµ

dν
ν(dy) = t

∫
y ν(dy)−H(ν

∣∣µ).

So

H(ν
∣∣µ) ≥ t

∫
y ν(dy)− log φ(t)

= tx− log φ(t).

if
∫
y ν(dy) = x. So

inf
{ν :

∫
y ν(dy)=x}

H(ν
∣∣µ) ≥ sup

t
{xt− log φ(t)}

Equality holds when dµ
dν (y)ety = C , where C will be the normalizing constant,

or

dν =
ety∫
etydµ

dµ.

Notice that
∫
y ν(dy) =

∫
yetyµ(dy)∫
etyµ(dy)

=
(

log φ(t)
)′

. If we choose t s.t.
(

log φ(t)
)′

= x

( suppose we can do it) then we can construct a measure ν, with
∫
yν(dy) = x and

for which equality holds. this implies the result.
In the case that the equation doesn’t have a solution, we take a sequence of tn

along which we approximate the supt{xt− log φ(t)}, and in this way we construct
an approximating sequence of H(νtn

∣∣µ).

REMARK: The above proposition is a special case of a more general principle,
called the Contraction Principle. We will state it later.

2.3. LARGE DEVIATIONS FOR EMPIRICAL MEASURE OF 2-LETTER
WORDS. Again (Xi) is a sequence of i.i.d. variables on Γ = {1, . . . , r}, and con-
sider the empirical measure

L(2)
n =

∑n
i=1 δ(Xi,Xi+1)

n
.

We assume periodic boundary condition so that there is no ambiguity. Notice that

L
(2)
n ∈ M̃1(Γ×Γ), the subspace ofM1(Γ×Γ) such that

∑
t νst =

∑
t νts. Consider

also the metric

d(µ, ν) =
1

2

∑
s,t

|µst − νst |.

under this metric the space M1(Γ× Γ) is Polish. by the ergodic theorem we have

that d(L
(2)
n , ρ× ρ)→ 0. The large deviations are summarised in
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Theorem 2.7. If (Xi) are i.i.d. then

lim
n

1

n
logP

(
L(2)
n ∈ Bcρ×ρ(a)

)
= − inf

ν∈Bcρ(a)
I(2)
ρ (ν),

where I
(2)
ρ (ν) = H

(
ν
∣∣ν̄ × ρ), and ν̄s =

∑
t νst. Finally Bρ(a) is the ball of radius

a.

Proof. We need to compute P
(
L

(2)
n
∼= ν

)
, We can first do it for ν such that νst =

kst
n , with 0 ≤ kst ≤ n,

∑
st = n and kst integers. Tp count we make a directed

graph whose vertices are the elements of Γ and an edge connects s and t if there is
the word st in the sequence of X ′is. Because of periodicity one can go through all
the edges of the graph passing only ones from each one. We call this Euler circuit.
So

P
(
L(2)
n = ν

)
= O(n)

#{Euler circuits}∏
s,t νst!

∏
s

ρν̄s ns .

The factor O(n) is because the circuit can start anywhere in the sequence of X ′is.
To count the number of Euler circuits notice that this is almost

∏
ν̄s!.

We can now use the Stirling’s formula to conclude the result as in the case of
simple empirical measure.

To prove the LDP just write

max
ν∈Bcρ(a)∩Kn

P
(
L(2)
n = ν

)
≤ P

(
L(2)
n ∈ Bcρ(a)

)
≤ |Kn| max

ν∈Bcρ(a)∩Kn
P
(
L(2)
n = ν

)
and |Kn| = nr

2

. Finally we need the following lemma

Lemma 2.8. The rate function I
(2)
ρ is finite, continuous, convex and affine on

segments αν + (1− α)ν′, where νst
ν̄s

=
ν′st
ν̄′s

.

Also it is nonnegative and equal to 0 only if ν = ρ× ρ.

2.4. WORDS OF LENGTH N.. We can extend the previous result to the em-
pirical measures

LNn =
1

n

n∑
i=1

δXi,...,Xi+n−1
,

with periodic conditions, The periodicity makes the empirical measure an element
of the space M̃1(ΓN ) = {ν ∈ M1(Γ) :

∑
sn
νs1,...,sN =

∑
sn
νsN ,s1,...,sN−1

} We
consider the metric

d(µ, ν) =
1

2
|µs1,...,sN − νs1...,sN |.

The LDP in this case reads as

Theorem 2.9. If (Xi) are i.i.d the

lim
n

1

n
P
(
LNn ∈ Bcρ(a)

)
= − inf

ν∈Bρc (a)
INρ (ν),

where INρ (ν) = H(ν
∣∣ν̄ × ρ), with ν̄ the (N − 1)-dimensional marginal of ν.

Again we have that

Lemma 2.10. the rate function INρ is finite, continuous, convex and affine on

segment αν + (1 − α)ν′, with νs1...sn/ν̄s1...sN−1
= ν′s1...sn/ν̄

′
s1...sN−1

. It is also

nonnegative and equal to 0 only if ν = ρN .
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2.5. THE EMPIRICAL PROCESS.. We now consider words of length n them-
selves i.e.

Lnn =
1

n

n∑
i=1

δXi,··· ,Xi+n−1
.

it is useful to consider a periodic sequence as

Xn = X1, X2, . . . , Xn, X1, X2 . . .

we can also view the measure Lnn as a measure on the space of sequences as

Rn =
1

n

n∑
i=1

δσi(Xn .

where σ is the usual left shift. It is easy to see that Rnσ
−1 = Rn, i.e. Rn is shift

invariant. denote by M̂1(ΓN) the space of shift invariant measures on the space of
sequences. The metric that we will consider will be

d(µ, ν) =
∑
N

2−NdN (πNν, πNµ),

where πN is the projection to ΓN .
Notice that πnν ∈ M̃1(ΓN ).
A simple application of the ergodic theorem shows that P − a.s., Rn converges

weakly to ρN, where the weak convergence is understood as convergence on finite
dimensional cylinders. The LDP for the empirical process is described in the fol-
lowing theorem

Theorem 2.11. Let (Xi) i.i.d. sequence on Γ. For a > 0 let Ba(ρN) the closed

ball in M̂1 of radius a around the measure ρN. Define

J(a) = inf
ν∈Ba(ρN)

I∞ρ (ν),

with

I∞ρ (ν) = sup
N
H(πnν

∣∣πN−1ν × ρ).

Then
a. lim infn

1
n logP (Rn ∈ Bca(ρN)) ≥ −J(a)

b.lim supn
1
n logP (Rn ∈ Bca(ρN)) ≤ −J(a−).

The proof is fairly easy and we refer to den Hollander. It uses the following
lemma

Lemma 2.12. A. N → INρ (πNν) is nondecreasing on M̂1(ΓN).
B. a→ J(a) is right continuous and nondecreasing.

C. infν∈M̂1(ΓN) : πMν=µM
I∞ρ (ν) = IMρ (νM ), for M ∈ N and µM ∈ M̃1(ΓM )

Proof. The proof of A. uses Jensen’s inequality together with the shift invariance
of the measures. The proof of B. is elementary. The proof of C. is nontrivial.

We need to construct a measure µ on the space of sequences such that the
projection to the M -dimensional subspace is µM and

ent_eqent_eq (2.1) I∞ρ (ν) = IMρ (νM ).

This will imply that the left hand side of C. is less or equal to the right hand side.
The other direction follows from A.
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To construct this measure we will use Kolmogorov’s constistncy theorem. We
thus need to construct a consistent sequence of measures on any N−dimensional
subspace, with N ≥ M , i.e. πN−1µN = µN−1. One cheap way to get the equality
(
ent_eq
2.1) is to construct the measures µN in such a way that IN+1

ρ (µN+1) = INρ (µN ).
In fact, the solution of this equation will produce the correct measures. Notice that
A. gives us that

3. General Theory.

We will now present some general principles. First let us recall some definitions.

rate_function2 Definition 3.1. A function I : X → [0,∞] is called a rate function if it is not
identically equal to +∞ and lower semicontinuous. It is often called a good rate
function if its level sets are compact.

Recall also the definition of the LDP. A very easy consequence of the definition
of the LDP and the lower semicontinouity of the rate funtion is the following:

Proposition 3.2. The rate function I is unique.

Remark 3.3. Once again let us point out that the distinction between the closure
and the interior in the LDP is related to the fact that there might me concentration
of measure on the boundary of the set. This is in the same spirit as in the weak
convergence of measures. In particular, we know that a sequence of measures Pn
converges weakly to a measure P if and only if lim supn Pn(C) ≤ P (C), for every
closed set C, and lim supn Pn(O) ≥ P (O) for every open set O.

exp_tight Definition 3.4. A sequence of measures Pn on X is called exponentially tight if
for every M > 0 one can find a compact set KM such that

lim sup
n

1

n
logPn (X \KM ) ≤ −M.

Notice that a LDP with a good rate function implies exponential tightnes.
In many cases it is difficult to prove a full LDP directly. On the other hand

it is easier to prove the following weak version of it. If also one has exponential
tightness the one can derive the full LDP.

weakLDP Definition 3.5. We say that the sequence Pn satisfies the weak LDP if the upper
bound in the definition of the LDP is replaced by

lim sup
n

1

n
logPn(K) ≤ − inf

x∈K
I(x),

for every K compact.

It is easy to check that the weak LDP together with exponential tightness imply
the full LDP.

The first basic result in the theory is Varadhan’s lemma, which is a generalisation
of the Laplace asymptotics.

Varadhan Theorem 3.6. Let (Pn) satisfy the (full) LDP with good rate function I. Let also
F be a continuous function on the Polish space X , such that

conditioncondition (3.1) lim sup
M

lim sup
n

1

n
log

∫
{F>M}

enF (x) Pn(dx) = −∞.
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Then

LaplaceLaplace (3.2) lim
n

1

n
log

∫
X
enF (x) Pn(dx) = sup

x∈X
(F (x)− I(x) ) .

Proof. Both for the upper and the lower bound we will be using the fact that if f
is a l.s.c. function and Br(x) a ball (open/closed) around the point x, then

lsclsc (3.3) lim
r→0

inf
Br(x)

f = f(x).

UPPER BOUND
Assume first that F ≤ M for some M positive. Pick L large enough and write

X = {I ≤ L} ∪ {I > L}. Then by the LDP

lim sup
n

1

n
log

∫
{I>L}

enF (x)Pn(dx) ≤M − inf
{I>L}

I(x) ≤M − L,

and this can be done very small as L→∞. Thus, by (
elem
1.1), (

Laplace
3.2) is asymptotically

equivalent to

lim sup
n

1

n
log

∫
{I≤L}

enF (x)Pn(dx).

By the goodness of I, the set {I ≤ L} is compact and so it can be covered by
a finite number of closed balls, say N , Bri(xi) where xi are points in this set
and ri are chosen so that infBri (xi) I > I(xi) − δ ( this can be done by (

lsc
3.3) and

supBri (xi)
F ≤ F (xi) + δ (this can be done by the continuouity of F We take closed

balls instead of open, just to use the upper LDP bound. We now have

lim sup
n

1

n
log

∫
{I≤L}

enF (x)Pn(dx)

≤ lim sup
n

1

n
log
∑
i

∫
Bri (xi)

enF (x)Pn(dx)

≤ lim sup
n

1

n
log
∑
i

en(F (xi)+δ)Pn(Bri(xi))

≤ max
i

(
F (xi) + δ − inf

Bri (xi)
I

)
≤ max

i
(F (xi) + δ − I(xi) + δ)

≤ sup
x

(F − I) + 2δ.

If F is not bounded from above, consider the function F ∧M . The previous com-
putation shows that

lim sup
n

1

n
log

∫
X
enF∧M (x) Pn(dx) ≤ sup

x∈X
(F ∧M(x)− I(x) )

≤ sup
x∈X

(F (x)− I(x) )

Now, we just need to split the integral over the sets {F > M}, {F ≤ M}, for
some large M and then we use (

condition
3.1) combined with the elementary equality (

elem
1.1).
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In more detail

lim sup
n

1

n
log

∫
X
enF Pn(dx)

= max

(
lim sup

n

1

n
log

∫
F>M

enF Pn(dx), lim sup
n

1

n
log

∫
F≤M

enF Pn(dx)

)
= lim sup

n

1

n
log

∫
F≤M

enF Pn(dx)

≤ sup
x∈X

(F (x)− I(x) )

LOWER BOUND

lim inf
n

1

n
log

∫
X
enF (y) Pn(dy)

≥ lim inf
n

1

n
log

∫
Br(x)

enF (y) Pn(dy)

≥ inf
Br(x)

F − inf
Br(x)

I.

Since r is arbitrary, we can use the continuouity of F and the l.s.c. of I via (
lsc
3.3)

to let r → 0 and get that

lim inf
n

1

n
log

∫
X
enF (y) Pn(dy) ≥ F (x)− I(x).

. The result now follows by the arbitrariness of x.

Remark 3.7. Notice that in the proof we used the full LDP through the estimate

lim sup
n

1

n
logPn(Br(x)) ≤ − inf

Br(x)
I,

which might not be true if we only have the weak LDP, since closed balls in Banach
spaces might not be compact.

Remark 3.8. It is interesting to check the above Lemma in the case that F (x) =
λx, say X = R. In this case we have that

lim
n

1

n
log

∫
R
enλy Pn(dy) = sup

x
(λx− I(x)) = I∗(λ)

Let’s denote by Λ(λ) the right hand side of the above equation. If we know that I
is convex, then I∗∗ = I and so I(x) = Λ∗(x) = supλ (λx− Λ(λ)). Compare this
with the form of the rate function in Crámer’s theorem. This observation gives us
a way to identify the rate function.

The following lemma provides a converse of Varadhan’s lemma.

Theorem 3.9. Let

Λn(F ) =
1

n
log

∫
X
enF (x)Pn(dx),

for F ∈ Cb(X ). If (Pn) is exponentially tight and Λ(F ) = limn Λn(F ) exists for
every F ∈ Cb(X ), then (Pn) satisfies a LDP with rate function

I(x) = sup
F∈Cb(X )

(F (x)− Λ(F ))



NOTES ON LARGE DEVIATIONS 13

Proof. Both the upper and the lower bound follow the ideas in Crámer’s theorem.
UPPER BOUND
For the upper bound we will imitate the exponential Chebyshev inequality. By

the exponential tightness of the (Pn) it is enough to prove the weak LDP. Let C be
a compact set. Then

Pn(C) =

∫
C

Pn(dx) ≤
∫
C

en(F (x)−infC F )Pn(dx)

So,

lim sup
n

1

n
logPn(C) ≤ − inf

C
(F (x)− Λ(F ))

Since the choice of F was arbitrary we have that

lim sup
n

1

n
logPn(C) ≤ − sup

F∈Cb(X )

inf
C

(F (x)− Λ(F ))

So far we haven’t used the fact that C ic compact. We now need to interchange
the inf with the sup and here is where we will use the compactness of C. Because
of its compactness we can cover it by a finite number of balls Bri(xi) where x′is are
points in C and r′is are chosen such that infBri (xi) F ≥ F (xi)− δ, this can be done
by the continuouity of F .

Using now the elementary equality (
elem
1.1) we have that

lim sup
n

1

n
logPn(C) ≤ max

i
lim sup

n

1

n
logPn(B̄ri(xi))

≤ −min
i

sup
F∈Cb(X )

inf
B̄ri (xi)

(F (x)− Λ(F ))

≤ −min
i

sup
F∈Cb(X )

(F (xi) + δ − Λ(F ))

≤ − inf
C

sup
F∈Cb(X )

(F (x)− Λ(F ))− δ

LOWER BOUND
Let O open set x ∈ O and r small enough such that Br(x) ⊂ O Choose a function

FM which is bounded, continuous, nonpositive, FM (x) = 0 and FM (x) = −M for
x ∈ Bcr(x), the complement of a ball around x. Then∫

X
enF (x)Pn(dx) = e−MnPn(Bcr(x)) +

∫
Br(x)

enF (x)Pn(dx)

≤ e−Mn + Pn(Br(x)) ≤ e−Mn + Pn(O).

By the elementary equality (
elem
1.1) and the fact that F (x) = 0, we have

max

(
−M , lim inf

n

1

n
logPn(O)

)
≥ lim

n

1

n

∫
X
enF (x)Pn(dx)

= − (F (x)− Λ(F ))

≥ sup
F∈Cb(X )

(F (x)− Λ(F )) .

To conclude let M →∞.

Remark 3.10. Notice that the rate function that appears in Bryc’s lemma need
not be convex.
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Now we will give the contraction principle. We already saw a version of it when
we related the entropy with the Legendre tranform in Crámer’s theorem.

Theorem 3.11. Let (Pn) a sequence of measures on a Polish space X that satisfies
a LDP with rate function I. Consider also another Polish space Y and a continuous
maping T : X → Y as well as the induced sequence of measures Qn = PnT

−1. Then
Qn satisfies a LDP with rate function

(3.4) J(y) = inf
x∈X : Tx=y

I(x).

Proof. We will only show the upper bound. The lower bound is the same. Let C
closed set in Y. Then, notice that T−1(C) is also closed,

lim sup
n

1

n
logQn(C) = lim sup

n

1

n
logPn(T−1(C))

≤ − inf
x∈T−1(C)

I(x) = − inf
y∈C

inf
x : Tx=y

I(x).

Remark 3.12. Proposition
sp_contraction
2.6 is a special case of the contraction principle where

X = M1(Γ), Y = R, Tν =
∫
xν(dx), I(ν) = H(ν|µ) and J(x) is the Legendre

transform of the moment generating function of µ.

Remark 3.13. We can also use the contraction principle to relate the LDP’s for
the empirical measures for words of different lengths. For example we can con-
sider the X = M̃1(ΓN ) and Y = M̃1(ΓM ) for M < N and the transformation

T : M̃1(ΓN ) → M̃1(ΓM ) as the projection of an N -dimensional measure to the
M -dimensional subspace. Then we can obtain that

IMρ (νM ) = inf
ν∈M̃1(ΓN ) : πMν=νM

INρ (ν).

In the same way one could immediatelly obtain the third conclusion of Proposition
??. The only problem would be that one needs to know a priori the LDP, while we
used that property in order to obtain the LDP.

3.1. CONVEXITY. We will now prove Crámer’s theorem in an abstract setting
that makes use of convexity considerations. We should expect that convexity plays
an important role since the rate function in Crámer’s theorem is a convex function,
namely the Legendre transform of the log-moment generating function.

The setting we will be working is this of a Polish space X . We will also assume

convexity Assumption 3.14. 1. X is a convex subset of a linear space.
2. X is locally convex.
3. limβ→α d(αx+ (1− α)y, βx+ (1− β)y) = 0.
4. In X the closed convex hull of a compact subset is compact.

Theorem 3.15. Let X a polish space that satisfies the assumptions
convexity
3.14. Consider

a sequence (Yi) of i.i.d. variables in this space and define the sequence of measures
(Pn) by

Pn(A) = P

(
1

n

n∑
i=1

Yi ∈ A

)
.

Then
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A. For every open, convex set A ⊂ X we have that

lim
n

1

n
logPn(A) = −Î(A),

exists and is finite iff Pn(A) > 0 for some n.
B. The function

I(x) = sup
A : x∈A,open,convex

Î(A)

is a rate function.
C. I is convex.

Proof. We will only give an outline of the proof. The details are in den Hollander’s
book.

A. Here the crucial thing is subadditivity. This is a general tool that often
underlines LDPs. We will obtain the subadditivity by the convexity of A.

Pn+m(A) = P

(
1

n+m

n+m∑
i=1

Yi ∈ A

)

≥ P

(
1

n

n∑
i=1

Yi ∈ A;
1

n

n+m∑
i=n

Yi ∈ A

)

= P

(
1

n

n∑
i=1

Yi ∈ A

)
P

(
1

n

n+m∑
i=n

Yi ∈ A

)
= Pn(A)Pm(A)

So − logPn(A) is subadditive. One now uses the elemntary fact that if an is a
subadditive sequence of positive numbers, then limn an/n = infn an/n. One finally
needs to check that if Pn(A) is positive for one n then it is positve for all greater
n′s.

B. For the lower semicontinuouity we refer to den Hollander.
C. The convexity follows the same strategy as A. Let x1, x2 two points. Let

A1, A2 open convex such that x1 ∈ A1 and x2 ∈ A2. Consider the set A =
1/2A1 + 1/2A2. Then

−Î(A) = lim
n

1

2n
logP

(
1

2n

2n∑
i=1

Yi ∈ A

)

≥ lim
n

1

2n
logP

(
1

n

n∑
i=1

Yi ∈ A1

)
· P

(
1

n

n∑
i=1

Yi ∈ A2

)

= −1

2
Î(A1)− 1

2
Î(A2).

So we get,

Î(A) ≤ 1

2
Î(A1) +

1

2
Î(A2) ≤ 1

2
I(x1) +

1

2
I(x2)

and now take the supremum over all open, convex A′s

Theorem 3.16. (General Crámer’s Theorem) The sequence of measures (Pn)
defined above satisfy a weak LDP with rate function I defined in the above proposi-
tion.
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Proof. UPPER BOUND
Consider the function Iδ(X) = min(I(x) − δ, 1

δ ). We take into account the
possibility that I might equal infinity at some point, and that’s why we truncate
by 1

δ . By the definition of I, we can find open, convex set Aδx, that contains x, such

that Î(Aδx) > Iδ(x). Also, by the previous proposition we have that

lim
n

1

n
logPn(Aδx) = −Î(Aδx) ≤ −Iδ(x).

Let now C be a compact subset of X . then, for every δ > 0, there is a finite covering
of C by sets of the form Aδxi , i.e. C ⊂ ∪iAδxi . Then using the elementary equality
(
elem
1.1) we have that

lim sup
n

1

n
logPn(C) ≤ max

i
−Iδ(xi) ≤ − inf

C
Iδ(x).

Let now δ → 0.
LOWER BOUND
Let O be an open set. The because we assume that X is locally convex we can

find open, convex set x ∈ A ⊂ O. Then

lim inf
n

1

n
logPn(O) ≥ lim inf

n

1

n
logPn(A) = −Î(A).

The result now follows by taking the supremum over such A′s.

4. Large Deviations for Path Processes- Exit Problems.

Consider the problem ε 1
2uxx + b(x)ux = 0 in [−1, 1] with boundary conditions

u(−1) = A and u(1) = B. The problem is to determine what is the limit as ε→ 0
of the solution uε(x). One could guess that the limit is the the soltuion of the
equation b(x)ux = 0 with boubdary values u(−1) = A, u(1) = B. But there is
some ambiguity if b(x) 6= 0, and A 6= B, since then ux = 0, which means that u is
constant with different values at 1,−1.

One needs to make a more carefull analysis and we will see that LDP for the
measure Pε, which corresponds to the distribution of the path

√
εβ(t), where β(·)

is Brownian Motion, plays an important role.
The first result states this LDP

Schilder Theorem 4.1. (Schilder) Let Ω = C
(

[0, T ];Rd
)
, and Pε the distribution of

√
εβ(·).

Then we have that

lim sup
ε→0

ε logPε(A) ≤ − inf
f∈A,f(0)=0

I(f)

for A ⊂ C
(

[0, T ];Rd
)

closed, and

lim inf
ε→0

ε logPε(G) ≥ − inf
f∈G,f(0)=0

I(f),

The rate function I(f) = 1
2

∫ T
0
|ḟ(s)|2ds if ḟ ∈ L2

(
[0, T ];Rd

)
and infinity if not.

The topology that we consider on the space of continuous functions is the uniform
topology.
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For the proof we will need some preliminaries on the Wiener measure. AS we
know the Wiener measure has the property that the joint distribution of (x(t1), . . . , x(tn))
is joint Gaussian with covariance matrix (ti∧ tj)i,j . Another way to put this is that

EP
[
e
∑n
i=1<λi,x(ti)>

]
= e

1
2

∑
i,j ti∧ti λiλj ,

for any vector λi ∈ Rd. This formula can be generalised by the taking approxima-
tion to

EP
[
e
∑n
i=1

∫ T
0
x(t)λ(dt)

]
= e

1
2

∫ T
0
t∧s λ(dt)λ(ds),

for any R valued Borel measure λ(dt) on [0, T ].
Let’s define

ΛW (λ) =
1

2

∫ T

0

t ∧ s λ(dt)λ(ds),

the log-moment generating function of the Wiener measure. and let’s define the
Legendre transform of the log-moment generating function by

Λ∗W (φ) = sup
λ
{< λ, φ > −ΛW (λ)}

= sup
λ
{
∫ T

0

φ(t)λ(dt)−
∫ T

0

∫ T

0

t ∧ sλ(dt)λ(ds)}.

for any function φ ∈ C
(
[0, T ];Rd

)
.

Lemma 4.2. Λ∗W (φ) = 1
2

∫ T
0
|φ̇(s)|2ds, where the interpretation of the integral is

infinity if φ̇ does not belong in L2
(
[0, T ];Rd

)
.

Proof. For the proof look at the book of Deutschel-Strock, on Large Deviation.

Let’s now give the proof of Schilders Theorem.

Proof. We will prove the weak LDP. To get the full LDP one needs to prove ex-
onential tightness of Pε. For this we refer to the book of Deutschel-Stroock. An
alternative proof can be found in the book of Varadhan on Large devitaion. The
proof we follow here follows very closely the steps of Cramer’s Theorem.

UPPER BOUND. Let B(ψ, r) = {φ : ‖φ− ψ‖Cb < r}. Let’s compute

Pε
(
B(ψ, r)

)
= P

(
B(

ψ√
ε
,
r√
ε
)
)
≤
∫
B(ψ,r)

e
< λ√

ε
,θ>− inf

φ∈B(ψ, r√
ε
)
< λ√

ε
,φ>

P (dθ)

≤ sup
φ∈B(ψ, r√

ε
)

e
−< λ√

ε
,φ>
∫
B(ψ,r)

e
< λ√

ε
,θ>

P (dθ)

≤ sup
φ∈B(ψ, r√

ε
)

e
−< λ√

ε
,φ>
∫
e
< λ√

ε
,θ>

P (dθ)

≤ sup
φ∈B(ψ, r√

ε
)

e−
1
ε (<λ,ψ>−r‖λ‖−ΛW (λ))

If Λ∗W (λ) < ∞, then choose λ such that < λ,ψ > −ΛW (λ) > Λ∗W (λ) − δ
2 , and

r − δ
2(1+‖λ‖) , to get that

lim sup
ε→0

Pε(B(ψ, r)) ≤ −Λ∗W (λ) + δ.
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If Λ∗W (λ) =∞ then choose λ such that < λ,ψ > −ΛW (λ) > 1 + 1
δ , and r = 1

1+‖λ‖
to get that

lim sup
ε→0

Pε(B(ψ, r)) ≤ −1

δ
.

Let K be a compact set. Then choose a finite covering of K with balls with center
ψk’s and radii rk’s such that the estimate just proved for Pε(B(ψk, rk)) is true. Then
the upper bound on lim supε→0 ε logPε(K), follows the standard procedure.

LOWER BOUND.


