
MA472 Theory of Random Graphs Reading course

Assumed knowledge: MA241 Combinatorics and MA3J2 Combinatorics II.

Content

1. Random graphs and applications. The binomial random graph, the First Moment

Method, the Probabilistic Method including applications to Ramsey numbers, a disproof of

Hajos’s conjecture, and high girth and high chromatic number.

2. Thresholds. Increasing properties and coupling arguments, thresholds for graph properties,

the second moment method, minimum degree thresholds, and sharp thresholds.

3. The evolution of the random graph up to connectivity. Appearance of trees, the

subcritical phase, Galton-Watson branching processes, the supercritical phase, and the con-

nectivity threshold.

4. Other random graph and digraph models. The random graph Gn,M , the random graph

process, directed random graphs, and random regular graphs.

5. Small subgraphs and chromatic number. Balanced and unbalanced graphs, thresh-

olds for the appearance of balanced graphs, Janson’s inequality, the lower tail of subgraph

distributions, and the likely value of χ(G(n, p)).

6. Long paths and cycles. Pósa rotation, expansion in random graphs, boosters, edge

sprinkling and Hamiltonicity in G(n, p).

Notes

• Course to be run in Term 1, 2024–2025, moderated by Richard Montgomery.

• An extended syllabus follows this proposal.

Resources

• Lecture notes for MA4M8 2023–24 Theory of Random Graphs, and accompanying sources.

• Lecture recordings from MA4M8 2023–24 Theory of Random Graphs.

• Problem sheets and model answers.

• Exams from 2023, 2024 and model answers.

• Support classes: 11am Fridays 25th October, 15th November, 6th December, plus one to be

organised for Term 2, and a revision session.

https://warwick.ac.uk/fac/sci/maths/currentstudents/ughandbook/year2/ma241
https://warwick.ac.uk/fac/sci/maths/currentstudents/ughandbook/year3/ma3j2/


MA4M8 Theory of Random Graphs Extended syllabus (2023/24)

While all aspects of the course not marked non-examinable are examinable, it should be noted

that the aims of the course are that, having taken it, you should:

• Be able to follow the arguments in detail of the course throughout the lecture notes.

• Be able to make similar calculations to those in the course.

• Be able to construct similar coupling arguments to those appearing in the course, and explain

clearly how they can be used to infer new results, including using conditioning arguments.
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• Know the definition of the binomial random graph G(n, p), a graph property, an isolated

vertex, and be able to define what it means for a property to hold with high probability.

• Know Chernoff’s bound, and be able to apply it in appropriate situations.

• Know Markov’s Lemma, and be able to recognise when the first moment method is useful

and be able to apply it: choosing an appropriate random variable X, and proving an upper-

bound for EX which is o(1).

• Be able to use the probabilistic method to prove results in extremal graph theory, including

possibly modifying the graph (e.g. by deleting vertices in cycles) to get a good extremal

graph after applying the probabilistic method.

• Know Facts 5 and 12 from the course notes, and be able to use them appropriately in

calculations.

• Be able to define an independent set of vertices, the independence number α(G) of a graph

G and the chromatic number χ(G) of a graph G.

• When p is fixed, be able to prove a lower bound for the chromatic number of G(n, p) that

holds with high probability.
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• Know the definition of a threshold, an increasing property, a sharp threshold and a coarse

threshold.

• Be able to prove that increasing the edge probability in G(n, p) does not decrease the prob-

ablity G(n, p) lies in a fixed increasing property.

• Be able to prove that every non-trival property has a threshold.

• Be able to use ‘Big-O’ notation comfortably: ω(1), O(log n), . . . .

• Know Chebyshev’s lemma, and be able to recognise when the second moment method is

useful and be able to apply it: choosing an appropriate random variable X, bounding EX
and E(X2), and showing from this that P(X = 0) = o(1).

• Be familiar with thresholds for minimum degree properties, and how to prove the values of

these thresholds for minimum degree at least k for each fixed k, using the first and second

moment method.
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MA4M8 Theory of Random Graphs Extended syllabus (2023/24)

• Know the likely structure of G(n, p) as p increases to p = logn
n

, as this passes from the empty

graph, to disjoint edges, to increasingly large yet still small trees, to small trees and unicyclic

components, to a giant component and small components, to a single connected component,

and the values of p around which these transitions happen or relevant thresholds.

• Know the definition of a complex component and unicyclic component and be able to prove

no complex components exist with high probability in the subcritical phase, while few vertices

are in unicyclic components.

• Know the Breadth First Search Algorithm and be able to use it to analyse the components

of G(n, p). Be able to use this, and a coupling argument to show that with high probablity

the components of G(n, p) in the subcritical phase will have size O(log n).

• Be able to define a Galton-Watson branching process defined by X, and know when its

extinction probability is < 1 based on the value of EX.

• Be able to use coupling arguments to compare the growth of the component containing a

vertex v in the Breadth First Search (BFS) algorithm running on G(n, p) from v to the

growth of a Galton-Watson branching process (to either bound below or above the size of

the component) in the supercritical phase.

• Be familiar with how to use the BFS algorithm to show that that in the supercritical regime

there are with high probability no components with size between fc log n and n2/3 (in G(n, p)

with p = c/n, for some fc), and that there are is at most 1 component larger than n2/3 with

high probability.

• Be familiar with how to show the size of the giant component is concentrated around its

mean in the supercritical phase and therefore give a good bound on its likely size when given

the extinction probability of the required Galton-Watson branching process.

• Be able to show that when p is broadly around logn
n

, with high probability any two vertices

with degree ε log n (for some ε > 0) are not neighbours. Be familiar with how to use this

and the likely non-existence of medium-sized components to conclude that around p = logn
n

,

G(n, p) is likely one giant component, and hence give a sharp threshold for connectivity in

G(n, p).
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• Know the definition of Gn,M , the random graph process, directed graphs (digraphs), the

binomial random digraph D(n, p), and the random r-regular graph Gr(n).

• Know what it means for a property to hold in almost every random graph process.

• Know a broad outline for showing that in almost every random graph process the first graph

with minimum degree at least 1 is connected.

• Be able to couple Gn,M and G(n, p) to translate results for increasing graph properties in

each direction.

• Be able to prove (using McDiarmid’s coupling argument for one bound and a simpler coupling

argument for the other) that if we direct the edges of a graph H to get F , then the threshold

for a copy of H in G(n, p) is the same as a copy of F in D(n, p).
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MA4M8 Theory of Random Graphs Extended syllabus (2023/24)

• Know the ‘configuration method’ for studying random regular graphs, including why use it

and that, for each fixed r the relevant random configuration produces an r-regular (simple)

graph with at least some constant probability.

• Know what a loop and a multiple edge is, and be able to prove for fixed r that there are

likely to be few loops and multiple edges in π(F ) for a relevant uniformly at random chosen

configuration.

• Be familiar with switching arguments and their use to prove that for each fixed r the relevant

random configuration produces an r-regular (simple) graph with at least some constant

probability.

• Be able to prove that for each fixed r ≥ 3 Gr(n) is with high probability connected (assuming

the result on the probability a random configuration gives rise to a simple graph).

• Be able to define a perfect matching.
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• Know what a balanced, unbalanced, and strictly balanced graph is.

• For any fixed balanced graph H, know and be able to prove what its threshold of appearance

is in G(n, p).

• Be familiar with Janson’s inequality, and, given its statement, be able to apply it bound

above the probability that no copy of H appears in G(n, p).

• Be familiar with Janson’s inequality, and be able to apply it when given its statement, in

particular to show the likely existence of independent sets in large vertex subsets of G(n, p),

with p fixed.

• Given the result of Lemma 73 from the course, be able to prove, when p ∈ (0, 1) is fixed, an

upper bound for χ(G(n, p)) that holds with high probability that matches asymptotically

the lower bound you are able to prove holds with high probability.
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• Know the threshold for Hamiltonicity in G(n, p) and be able to related it to the existence of

vertices with degree at most 1.

• Understand Pósa rotation, and be able prove Pósa’s lemma (Lemma 83) using it.

• Know a typical definition of expansion useful for Hamiltonicity in G(n, p).

• Understand that if p = logn+log logn+ω(1)
n

, G(n, p) is with high probability a (2, n
4
)-expander,

and a broad outline for proving this.

• Know the definition of a booster, and be able to prove that every (2, n
4
)-expander has many

boosters.

• Know a broad outline for using Pósa rotation, boosters, and edge sprinkling to find the sharp

threshold for Hamiltonicity in G(n, p).
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