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Historical Context

Content Overview

The Rhind Papyrus is a practical compendium on
how to solve common mathematical problems in
Egyptian society. It would have been used as a sort
of textbook to train scribes, who were expected to
be mathematically literate. This is reflected in it's
original title - 'The correct method of reckoning for
grasping the meaning of things and knowing
everything, obscurities and all secrets' [1].
Nowadays, we refer to it as the Rhind Papyrus,
named after the Scottish lawyer who purchased it
in 1858 in Thebes, where it was discovered [2]. 

The enitre papryus is in 3 pieces, 2 of which are stored
in the British Museum. Orignally the entire document
would have been written on a scroll roughly 17ft
(5.18m) long, so it won’t be surprising that it is the
largest know mathematical text anywhere in the
ancient world [1]. Similar to the Nine Chapters on the
Mathematical Art, it revolves around a set of 84
problems, which are each solved in a manner that
provides a general solution for such problems. The
actual mathematics used would equate to roughly
GCSE level in today's terms. There is a focus on
arithmetic, algebra and geometry, as these areas were
the most useful for daily calculations such as taxes,
exchanging goods, flood levels of the Nile and
managing building works.

A scribe named Ahmes produced a copy of the
papyrus, dated 1650 BCE, so the text is sometimes
also referred to as the Ahmes Papyrus [3].
Although it is from ancient Egypt, it is not written
in heiroglyphs, rather in a form of shorthand. It's
place of discovery is widely believed to have been
a tomb, possibly so the owner could carry their
credentials with them to the afterlife. Papyrus is a
material that rots and burns easily, so there are
few documents remaining from that period [1],
making the Rhind papyrus hugely important!

The papyrus is compactly organised and was used
as a 'cheat sheet' for 550 BCE administrative
exams. The text written in red ink are section titles
[1]. Image source: The British Museum



Egytpian fractions

Areas of shapes

Approximation of pi

Highlight topics

To fully understand how the problems in the Rhind Papyrus are
phrased, it is important to note how the Ancient Egyptians dealt with
fractional quantities. Rather than having the numerator of the
fraction be any number, they exclusively used ‘unit fractions’ (i.e
fractions with a numerator of 1). Any fraction is then written as a sum
of these unit fractions. This can be done in multiple different ways
however, any one unit fraction may only be used once within such a
sum. [4]

The Rhind Papyrus contains a table of unit fraction decompositions
for fractions of the form 2/n, for odd n up to 101 [4]. This is called a
2/n table. 

Egyptian fractions

Areas of shapes
The Papyrus’ second chapter is on geomtry. It covers basic volumes and areas such as the volume of cylindrical
and rectangular granaries, comparing the area of a circle with its circumscribing square and the area of
‘truncated triangles’ [5]. 

Here, a ‘truncated triangle’ really just refers to an isosceles
triangle that has been sectioned in the above manner [5]. Image
source: Mathematical Association of America

Pictured to the left is the triangle from problem
53 of the Rhind Papyrus, in which the objective is
to calculate the area of each section of the
triangle. The solution given in the Papyrus actually
contains some numerical errors, however
nowadays this can easily be solved by identifying
that ABC, DEC and FGC are similar triangles. 

Problems 45 and 46 bear similarity to Chapter 4
of the Jiuzhang Suanshu - Shao Guang -  where the
reader is instructed to calculate a missing
dimension of a rectaungular granary, given the
volume of grain it contains. [5]

An Egyptian Approximation of Pi
By examining the steps given in the Rhind Papyrus on how to calculate the area of a circle, we can determine
what approximation of pi would have been used by the Ancient Egyptians. Below is problem 50 from the
Papyrus; to make sense of the units, 1 khet is a length of 100 cubits (52.5m) and 1 setat is equal to 1 square khet
[6]. 
 

“Example of a roundfield of diameter 9 khet. What is its area? Take away 1/9 of the diameter, namely 1; the
remainder is 8. Multiply 8 times 8; it makes 64. Therefore it contains 64 setat of land.” [5]

More generally, let us take the diameter as        , with r being the radius of the circle. Following this method we
get the expression for the area of a circle radius r as                 . So we can see that the Ancient Egyptians used pi
to be           , roughly 3.16.
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The Nine Chapters on the
Mathematical Art (Jiuzhang Suanshu)

Historical Context

Content Overview

A Unlike Euclid's Elements, to which it is often
compared, the Nine Chapters is less concerned
with proof and more focused on how to solve
practical problems. This is due to the fact that
while slaves were used in ancient Greece, in China
the Zhou Dynasty, which ended in 256 BCE,
introduced a system of governance similar to
feudalism [1]. Farming was a large part of this
system, hence many mathematical problems to do
with area, proportion and solving linear equations 

 became important to understand for the majority of
the population. However in Greece mathematics was
only accessible to the elite, meaning there was less
necessity to solve real-life problems and more room
for a philosophical approach to mathematics.  
'Suanshu', which appears in the title, literally means
'the art of calculation'. Alongside being a
mathematical aid in agriculture, it was also used to
train imperial servants.  Current verisons of the book
are based on a 263 CE edition and commentary by
mathematician Liu Hui [2].

The book is structured around a set of 246 practical problems, which are solved in turn and then the methods
of solution are explored and given in general terms [2]. Each of the nine chapters focusses on a different area
of problem solving that would be useful in day-to-day life as a farmer, citizen or member of the civil service.

1. Fang Tian - calculating areas of
shapes commonly used for
farming.
2. Su Mi (Millet and Rice) - ratio,
proportion and exchanging goods
3. Cui Fen - distribution by
proportion; useful for tax paying,
and arithmetic and geometric
progressions

4. Shao Guang- calculating
unknown dimensions from a
known volume or area
5. Shang Gong - area and volume
of shapes used in architecture 
6. Jun Shu (Fair levies)  - wages
and tax (a continuation of chapter
3)

7.  Ying Bu Zu - solving linear
equations algorithmically, not with
algebra
8.Fang Cheng (rectangular arrays -
using matrices to solve linear
equations
9. Gou Gu (Right Triangles) -
solving geometric problems using
right triangles 

九章箅术

[3]



Highlight topics

x

We now have

a copy of the

Nine Chapters

in the

university

library!

Ying Bu Zu, which translates literally to 'too much and not enough' is an algorithmic method of solving linear
equations. Nowadays in modern mathematics, one may immediately jump to using algebra, however algebra as
we know it originated in Baghdad in c.820 CE, with Al-Khwarizmi's book 'Kitab al-Jabr wa-l-Muqabala' [4].  The
algorithm is based on the manipulation and treatment of fractions, namely the processes of creating a common
denominator (tong) and cross multiplying (qi) [5]. 

Let's examine this problem, from chapter 7 : 
“An item is purchased jointly; everyone contributes 8 [coins], the excess is 3; everyone contributes 7, the
deficit is 4. Tell: The number of people, the item price, what is each?” [5] 

So we have that 8 coins per person gives us 1 item and 3 coins excess, and that 7 coins per person plus an
additional 4 coins gives us 1 item exactly. We begin by using qi to cross-multiply the excess with the defecit;
multiply the quantities in the first statement by 4 and the second by 3. So, 32 coins per person gives us 4 items
and an excess of 12 coins, and 21 coins per person plus an additional 12 coins gives us 3 items. Adding these
new equations, we can see that our excess and defecit cancel out:

Now, we can clearly see that to buy 1 item requires 7 people to contribute 53 coins each.

Ying Bu Zu

Fang Cheng
Fang cheng  in modern day China is taken to mean equations or
functions, however it directly translates to 'rectangular arrays',
which is how it is used within the Nine Chapters.  In other words -
matrices! In chapter 8 we are introduced to a method of solving a
3x3 system of linear equations, which you will recognise as being
incredibly similar to Gaussian elimination, despite predating it by
over 1500 years! [6]

Example from chapter 8:
“Now there are 3 bundles of top grade cereal, 2 bundles of
medium grade cereal and 1 bundle of low grade cereal, [which
yield] 39 dou [of grains] as shi; 2 bundles of top grade cereal, 3
bundles of medium grade cereal and 1 bundle of low grade cereal
[yield] 34 dou as shi; 1 bundle of top grade cereal, 2 bundles of
medium grade cereal and 3 bundles of low grade cereal [yield] 26
dou as shi. Find the measure [of grains] in each bundle of the top,
medium and low grade cereals.” [3]

The solution provides instructs the reader to create a 4x3
rectangular array and use the operations of scalar multiplication
and zhi chu, or 'direct subtraction', on the columns until the array
is in triangular form [6]. After this is achieved the desired
quantities are easily found by substitution. 

So, 1 bundle of low grade
is dou.

x

x
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The 6 categories of quadratics
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The Kitab al-Jabr wa-l-Muqabala

Historical Context
Al-Khwarizmi is widely regarded as the father of
algebra. In fact, the Latin translation of his name is
where we get the word ‘algorithm’ from. He worked
in Baghdad as a scholar for “House of Wisdom” (Dār
al-Ḥikma) [1]. This was a vast library and place of
intelligence, supported by the Islamic government.
The Kitab al-Jabr is probably his most famous work,
as it is the origin of the algebra that we now learn at
school. Specifically, ‘algebra’ is derived from ‘al-
Jabr’ (الجبر), which translates literally as forcing or
restoring [2]. Although it is known as a guide to solve
equations, the original Arabic script has no
equations, instead it is written entirely in prose [3]. 
 

regular numbers, represented in the left as c, are called
‘dirhems’
        is a ‘root’
        is a ‘square’ [4]

The Kitab al-Jabr is most well known for introducing
algebraic methods of solving equations. Like the Rhind
Papyrus and the Nine Chapters, the Kitab al-Jabr explores
problems that would be useful for everyday citizens, not just
academic scholars. The equations explored in the book often
relate to practical scenarios, for example distributing
inheritance [4].

 Al-Khwarizmi also dealt with quadratic equations, which he
classified into 6 categories, with the aim of avoiding negative
numbers [5]. Since the book is entirely in prose, each
element of a quadratic equation is referred to by a name: 

Geometry was a large part of Islamic culture, not only in
their art, but as a useful tool to understand the world. Al-
Kwarizmi uses meany geometric proofs in the Kitab al-
Jabr [4].  Image source: University of California (J. L. Cox)

كتاب الجبر و المقابلة



Solving an ‘                    ’ quadratic

Highlight topics
A geometic proof

Al-Khwarizmi’s proof that “...in every rectangular triangle the two
short sides, each multiplied by itself and the products added
together, equal the product of the long side multiplied by itself”
[4]. Image source: Columbia University Library

The rectangular (right-
angled) triangle. In
this case, the
geometric proof only
works if it is an
isosceles right-angled
triangle. 

The green area
represents the sum of
the squares of side 1
and side 2. 

We know from
Pythagoras’ theorem
that this fact is true for
all right-angled
triangles, however a
geometric proof for a
non-isosceles right
triangle would be a lot
more complicated!

The Blue area represents
the square of the
hypotenuse. By dividing
each smaller square
diagonally into 2, we
can clearly see that both
areas are equal in size. 

Consider this problem from the Kitab al-Jabr: 
 “I have multiplied one- third of thing and one dirhem by one-fourth of thing and one dirhem, and the
product was twenty.” [4]

The reader is first instructed on how to multiply out the brackets:
“You multiply one- third of thing by one- fourth of thing; it is one-
half of a sixth of a square. Further, you multiply one dirhem by one-
third of thing, it is one- third of thing ; and one dirhem by one-fourth
of thing, it is one-fourth of thing ; and one dirhem by one dirhem, it
is one dirhem. ” [4]

We then use the action of Al-Muqabala (المقابله), which translates as
balancing or corresponding [2]. This is the action of subtracting the
same positive number from both sides of the equation.

Finally, the book describes an algorithm to find the roots of the
equation. Once all the coefficents are positive whole numbers, we
“Halve the number of the roots, and multiply it by itself ... Add this
to the numbers, that is, to two hundred and twenty-eight ...
Extract the root of this ... Subtract from this the moiety of the
roots” [4]. The word ‘moeity’ means half and to ‘extract the root’
means to take a square root. This is essentially a  more specialised
version of the quadratic formula that doesn’t deal with negatives. 

-1 -1
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The Kai kendai no ho

Historical Context

Chinese mathemtics had been used in Japan from
the 7th century CE, including the Nine Chapters [1].  
During the Tokugawa period (1603–1867) in Japan,
citizens had restricted contact with foreigners,
limited to interactions with Chinese and Dutch trade
ships in Nagasaki. This meant books containing
Chinese, and possibly some Western, mathematical
ideas had the opportunity to secretly be passed into
Japan [2]. 

解⾒題之法

Seki Takakazu (1642-1708) was a mathematical
prodigy from a young age, and is considered the
founder of the Japanese tradition of mathematics
(Wasan) [2]. He created a more efficient tabular  
system of notation, which replaced the traditional
method of using Chinese coutning rods, such as was
used in the Nine Chapters [1]. 

The Kai kendai no ho is far more advanced than the
other 3 books explored within this project, requiring  
an understanding of differential geometry. It is part
of a trio of books referred to as the Sanbu Sho (三部
書), which is considered one of Seki’s major works
[4]. Kai kendai no ho translates as ‘Methods of
solving explicit problems’. The Kai indai no ho -
‘Methods of solving implicit problems’ - is also part
of the Sanbu Sho, along with the Kai fukudai no ho,
in which Seki demonstrates methods of calculating
determinants [5].

An ink portrait of Seki Takakazu. Image source:
Japan Academy Archives in Tokyo

Seki’s reknown can be summed up by the title
engraved on his tombstone - ‘The Arithmetical Sage’.
He is also known to have pre-discovered many ideas
from Western mathematics: he was the first person
to study determinants and discovered Bernoulli
numbers before Bernoulli [3].

https://www.britannica.com/event/Tokugawa-period
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Thank you to Dr Weiyi Zhang for his help unravelling the calculations from the Kai kendai no ho.

Content overview

Whilst the other books in this
project have a heavy focus on the
use of maths for solving practical,
everyday problems, the Kai kendai
no ho is solely a theoretical work.
This book specifically explores
geometrical problems, including a
particularly difficult one
surrounding a spiral-like curved line
called Wanse, or an Archimedian
spiral [4]. Seki also demonstrates
how to calculate the surface area of
a sphere and the perimeter of an
ellipse. 

These pages of the Kaiken dai no ho, show Seki’s calculations for
the volume of a spherical cap. Image source: National Diet Library

[5]  Zheng, T. (n.d) ‘Seki Kowa (関 孝和)’,  Available at: https://math-physics-
problems.fandom.com/wiki/Seki_Kowa_(%E9%96%A2_%E5%AD%9D%E5%92%8C)


