Beilinson Spectral Sequence in $\mathbb{D}^b(\mathbb{P}^n)$

Ruzhen Yang, supervised by Dr.Chunyi Li

Warwick Mathematics Institute

Derived categories are the natural environments to do computations using homological algebra. In this project we restrict our attention to $\mathbb{D}^b(\mathbb{P}^n)$, the bounded derived category of coherent sheaves on \mathbb{P}^n . We construct and apply the computational tool Beilinson spectral sequence in $\mathbb{D}^b(\mathbb{P}^n)$. We further study some generalisations and some reverse problems regarding our computed examples.

Exceptional collections on \mathbb{P}^n

To understand $D^b(\mathbb{P}^n)$, we begin by asking two elementary questions: can we decompose the category and can we compare it with other categories? The answer to both questions is yes and exceptional collections play a crucial role in both answers.

Definition

An object E in a k-linear derived category is exceptional if $\operatorname{Hom}^{\bullet}(E, E) = k$. A collection of exceptional objects $(E_1, ..., E_n)$ is strongly exceptional if $\operatorname{Hom}^{\bullet}(E_i, E_j) = k$ and $\operatorname{Hom}^{s}(E_i, E_j) = 0$ for all i < j and $s \neq 0$. An Exceptional collection is full if it generates the derived category.

Exceptional collections are good for studying Fano varieties since their derived categories tend to have a lot of exceptional objects. On the other hand derived categories of Calabi-Yau varieties cannot have any exceptional objects.

Given a full exceptional collection $(E_1, ..., E_n)$, one can obtain a semi-orthogonal decomposition by taking the i-th subcategory in the decomposition to be $\langle E_i \rangle$, which is the smallest subcategory closed under homological shifting and taking cones. Moreover, we get the following comparison result: $D^b(X)$ is equivalent to $D^b(mod - A)$ where A is the endomorphism ring of $\bigoplus_{i=1,...,n} E_i$.

Theorem

The collection of $\mathcal{O}(-n),...,\mathcal{O}$ is a full strong exceptional collection in $\mathbb{D}^b(\mathbb{P}^n)$. In other words, $<\mathcal{O}(-n),...,\mathcal{O}>=\mathcal{D}^b(\mathbb{P}^n)$.

Practically, this tells us that any complex of coherent sheaves on \mathbb{P}^n is quasi-isomorphic to a direct summand of a complex that is the cones and shifting of $\mathcal{O}(-n),...,\mathcal{O}$. However, the theorem does not tell us how to explicitly find such a resolution. For that, the Beilinson spectral sequence serves as a useful tool.

Beilinson Spectral Sequence

Consider the Fourier–Mukai transform $\Phi_{\mathcal{O}_{\Delta}}$ where \mathcal{O}_{Δ} is the sheaf of the diagonal in $\mathbb{P}^n \times \mathbb{P}^n$ sending \mathscr{F}^{\bullet} to $\mathbf{R} \, q_*(\mathbf{L} \, p^* \mathscr{F}^{\bullet} \otimes^{\mathbf{L}} \mathcal{O}_{\Delta})$ where q and p are the standard projections $\mathbb{P}^n \times \mathbb{P}^n \to \mathbb{P}^n$. This is simply the pushforward induced by the identity map. However we have a miracle on \mathbb{P}^n that there exist a free resolution of the sheaf of the diagonal

$$\bigwedge^n(\mathcal{O}(-1)\boxtimes\Omega(1))\longrightarrow \bigwedge^{n-1}(\mathcal{O}(-1)\boxtimes\Omega(1))\longrightarrow ...$$

$$\longrightarrow$$
 $\mathcal{O}(-1) \boxtimes \Omega(1)$ \longrightarrow $\mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^n}$ \longrightarrow \mathcal{O}_{Δ} .

Recall the standard result $\mathbf{R}^s F(A^r) \Rightarrow \mathbf{R}^{s+r} F(A^{\bullet})$. We plug in $F = q_*$ and $A^{\bullet} = \mathbf{L} p^* (\mathscr{F} \otimes^{\mathbf{L}} \mathscr{L}^{\bullet})$ where \mathscr{L}^{\bullet} is the resolution of the diagonal, then we have

$$E_1^{r,s} = \mathsf{H}^s(\mathbb{P}^n,\mathscr{F}(r)) \otimes \Omega^{-r}(r) \Rightarrow \begin{cases} \mathscr{F} & \text{if } s+r=0 \\ 0 & \text{otherwise} \end{cases}$$

$$E_1^{r,s} = \mathsf{H}^s(\mathbb{P}^n,\mathscr{F} \otimes^{\mathbf{L}} \Omega^{-r}(-r)) \otimes \mathcal{O}(r) \Rightarrow \begin{cases} \mathscr{F} & \text{if } s+r=0 \\ 0 & \text{otherwise} \end{cases}$$

which is the Beilinson spectral sequence.

Though resolution of the diagonal is a special feature on \mathbb{P}^n , we in fact always have a spectral sequence of Beilinson type as long as there exist a full exceptional collection in $D^b(X)$ for any smooth projective variety X. To state this theorem, we first Notice that the Beilinson spectral sequence express a certain duality between the exceptional collections $\mathcal{O}(-n)$, $\mathcal{O}(-n+1)$..., \mathcal{O} and $\Omega^n(n)$, $\Omega^{n-1}(n-1)$, ..., \mathcal{O} . Mutation formalises this idea.

Mutation

Given an exceptional pair (E_1, E_2) , the left mutation of E_2 by E_1 is defined using the following distinguished triangle

$$E_2 \longrightarrow L_{E_1}E_2 \longrightarrow \bigoplus_{n \in \mathbb{Z}} \operatorname{Ext}^n(E_1, E_2) \otimes E_1 \longrightarrow E_2[1].$$

Note that $(E_2, L_{E_1}E_2)$ is again an exceptional pair. More generally, $(E_1, ..., E_{i-1}, L_{E_i}E_{i+1}, E_i, ..., E_n)$ is an exceptional collection, and we define the left dual of $(E_1, ..., E_n)$ to be $(E_1^{\vee}, ..., E_n^{\vee})$ where $E_i^{\vee} = L_{E_1}...L_{E_{n-i}}E_{n-i+1}$. One can check that $(\Omega^n(n), \Omega^{n-1}(n-1), ..., \mathcal{O})$ is indeed the left dual to $(\mathcal{O}(-n), \mathcal{O}(-n+1)..., \mathcal{O})$. Using this notation, Gorodentsev's theorem on generalized Beilinson spectral sequences says that there exist a spectral sequence

$$E_1^{p,q} = \bigoplus_{p+q=n} \operatorname{Ext}^{n+i-1}(E_{n-p}^{\vee}, \mathscr{G}) \otimes F^{j}(E_{p+1}) \Rightarrow F^{p+q}(\mathscr{G})$$

for any $\mathscr{G} \in D^b(X)$ and $F: D^b(X) \to \mathcal{A}$ any covariant cohomological functor.

Example

We now demonstrate the computational value of Beilinson spectral sequence by finding a resolution of ideal sheaf of three points on \mathbb{P}^2 . We use the dual collections $(\mathcal{O}(-3), \mathcal{O}(-2), \mathcal{O}(-1))$ and $(\mathcal{O}, \Omega(2), \mathcal{O}(1))$ and take F to be the functor that takes an object in $D^b(\mathbb{P}^n)$ to its zeroth cohomology sheaf. When 3 points are colinear, computing $\bigoplus_{p+q=n} \operatorname{Ext}^{n+i-1}(E_{n-p}^{\vee}, \mathscr{I}_{3points})$ gives the E_1 -page

$$0 \longrightarrow 0 \longrightarrow 0$$

$$\mathcal{O}^{\oplus 2}(-3) \longrightarrow \mathcal{O}^{\oplus 3}(-2) \stackrel{f}{\longrightarrow} \mathcal{O}(-1)$$

$$0 \longrightarrow 0 \longrightarrow \mathcal{O}(-1)$$

Note that f has to be surjective, then ker(f) must be $\Omega(-1)$. Then together with the E_2 -page we get the resolution

$$0 o \mathcal{O}^{\oplus 2}(-3) o \Omega(-1) \oplus \mathcal{O}(-1) o \mathscr{I}_{3points}$$

When 3 points are in general position (non-colinear), similar computation gives us the more trivial resolution

$$0 \to \mathcal{O}^{\oplus 2}(-3) \to \mathcal{O}^{\oplus 3}(-2) \to \mathscr{I}_{3points}.$$

The reverse problem

We ask the reverse question: given $0 \to \mathcal{O}^{\oplus 2}(-3) \xrightarrow{f} \mathcal{O}^{\oplus 3}(-2)$, what are the conditions on f needed to guarantee that this is a resolution for ideal sheaf of three points?

Let $\wedge^2 f$ be the morphism defined by all the two by two minors of f. A sufficient condition is to require that the degeneracy locus $M_1(f) = \{ \wedge^2 f = 0 \}$ have codimension 2. When this is satisfied, we can show that $\ker(\wedge^2 f) = \operatorname{im}(f)$ and apply Porteous formula. Consider the complex

$$0 \to \mathcal{O}^{\oplus 2}(-3) \xrightarrow{f} \mathcal{O}^{\oplus 3}(-2) \xrightarrow{\wedge^2 f} \mathcal{O} \to 0.$$

We can compute the fundamental class $[M_1(f)]$ which, by Porteous formula is equal to the second Chern class

$$c_2(\mathcal{O}^{\oplus 3}(-2) - \mathcal{O}^{\oplus 2}(-3)) = \{\frac{c(\mathcal{O}^{\oplus 3}(-2))}{c(\mathcal{O}^{\oplus 2}(-3))}\}_2$$

which works out to be $3\xi^2$. This means that the subscheme $\mathcal{O}_{M_q(f)}$ which is isomorphic to the rightmost cohomology is of codimension two and of length three. Then it must be the skyscraper sheaf of three points and the image of $\wedge^2 f$ must be the ideal sheaf of three points.

Acknowledgement

This project is supported by a grant from the Undergraduate Research Summer Scheme at the University of Warwick. I would like to thank my supervisor for his help and support throughout and my friend Xuanchun Lu for his help working out the reverse problem.