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Derived categories are the natural environments to do compu-
tations using homological algebra. In this project we restrict our
attention to Db(Pn), the bounded derived category of coherent
sheaves on Pn. We construct and apply the computational tool
Beilinson spectral sequence in Db(Pn). We further study some gen-
eralisations and some reverse problems regarding our computed
examples.

Exceptional collections on Pn

To understand Db(Pn), we begin by asking two elementary ques-
tions: can we decompose the category and can we compare it
with other categories? The answer to both questions is yes and
exceptional collections play a crucial role in both answers.

Definition
An object E in a k-linear derived category is exceptional if Hom•(E, E) = k. A col-
lection of exceptional objects (E1, ..., En) is strongly exceptional if Hom•(Ei, Ej) = k
and Homs(Ei, Ej) = 0 for all i < j and s ̸= 0.An Exceptional collection is full if it
generates the derived category.

Exceptional collections are good for studying Fano varieties since
their derived categories tend to have a lot of exceptional objects.
On the other hand derived categories of Calabi-Yau varieties
cannot have any exceptional objects.
Given a full exceptional collection (E1, ..., En), one can obtain a
semi-orthogonal decomposition by taking the i-th subcategory in
the decomposition to be< Ei >, which is the smallest subcategory
closed under homological shifting and taking cones. Moreover,
we get the following comparison result: Db(X ) is equivalent to
Db(mod − A) where A is the endomorphism ring of

⊕
i=1,...,n Ei.

Theorem
The collection of O(−n), ...,O is a full strong exceptional collection in Db(Pn). In
other words, < O(−n), ...,O >= Db(Pn).

Practically, this tells us that any complex of coherent sheaves on
Pn is quasi-isomorphic to a direct summand of a complex that
is the cones and shifting of O(−n), ...,O. However, the theorem
does not tell us how to explicitly find such a resolution. For that,
the Beilinson spectral sequence serves as a useful tool.

Beilinson Spectral Sequence
Consider the Fourier–Mukai transform ΦO∆ where O∆ is the sheaf of
the diagonal in Pn × Pn sending F • to Rq∗(Lp∗F • ⊗L O∆) where q
and p are the standard projections Pn × Pn → Pn. This is simply the
pushforward induced by the identity map. However we have a
miracle on Pn that there exist a free resolution of the sheaf of the
diagonal∧n(O(−1)⊠ Ω(1))

∧n−1(O(−1)⊠ Ω(1)) ...

O(−1)⊠ Ω(1) OPn×Pn O∆.

Recall the standard result Rs F(Ar) ⇒ Rs+r F(A•). We plug in F = q∗
and A• = Lp∗(F ⊗L L •) where L • is the resolution of the diagonal,
then we have

E r ,s
1 = Hs(Pn,F (r))⊗ Ω−r(r) ⇒

{
F if s + r = 0
0 otherwise

E r ,s
1 = Hs(Pn,F ⊗L Ω−r(−r))⊗O(r) ⇒

{
F if s + r = 0
0 otherwise

which is the Beilinson spectral sequence.

Though resolution of the diagonal is a special feature on Pn, we
in fact always have a spectral sequence of Beilinson type as
long as there exist a full exceptional collection in Db(X ) for any
smooth projective variety X . To state this theorem, we first Notice
that the Beilinson spectral sequence express a certain duality
between the exceptional collections O(−n),O(−n + 1)...,O and
Ωn(n),Ωn−1(n− 1), ...,O. Mutation formalises this idea.

Mutation
Given an exceptional pair (E1, E2), the left mutation of E2 by E1 is
defined using the following distinguished triangle

E2 LE1E2 ⊕n∈Z Ext
n(E1, E2)⊗ E1 E2[1].

Note that (E2, LE1E2) is again an exceptional pair. More gener-
ally, (E1, ..., Ei−1, LEiEi+1, Ei, ..., En) is an exceptional collection, and
we define the left dual of (E1, ..., En) to be (E∨

1 , ..., E∨
n ) where E∨

i =
LE1...LEn−iEn−i+1. One can check that (Ωn(n),Ωn−1(n − 1), ...,O) is
indeed the left dual to (O(−n),O(−n + 1)...,O). Using this nota-
tion, Gorodentsev’s theorem on generalized Beilinson spectral
sequences says that there exist a spectral sequence

Ep,q
1 =

⊕
p+q=n

Extn+i−1(E∨
n−p,G )⊗ F j(Ep+1) ⇒ Fp+q(G )

for any G ∈ Db(X )and F : Db(X ) → Aany covariant cohomological
functor.

Example
We now demonstrate the computational value of Beilinson spec-
tral sequence by finding a resolution of ideal sheaf of three points
on P2. We use the dual collections (O(−3),O(−2),O(−1)) and
(O,Ω(2),O(1)) and take F to be the functor that takes an object in
Db(Pn) to its zeroth cohomology sheaf. When 3 points are colinear,
computing

⊕
p+q=n Ext

n+i−1(E∨
n−p,I3points) gives the E1-page

0 0 0

O⊕2(−3) O⊕3(−2) O(−1)

0 0 O(−1)

f

Note that f has to be surjective, then ker(f ) must be Ω(−1). Then
together with the E2-page we get the resolution

0 → O⊕2(−3) → Ω(−1)⊕O(−1) → I3points

When 3 points are in general position (non-colinear), similar com-
putation gives us the more trivial resolution

0 → O⊕2(−3) → O⊕3(−2) → I3points.

The reverse problem
We ask the reverse question: given 0 → O⊕2(−3) f−→ O⊕3(−2),
what are the conditions on f needed to guarantee that this is a
resolution for ideal sheaf of three points?
Let ∧2f be the morphism defined by all the two by two minors of
f . A sufficient condition is to require that the degeneracy locus
M1(f ) = {∧2f = 0} have codimension 2. When this is satisfied,
we can show that ker(∧2f ) = im(f ) and apply Porteous formula.
Consider the complex

0 → O⊕2(−3) f−→ O⊕3(−2) ∧2f−−→ O → 0.
We can compute the fundamental class [M1(f )] which, by Porte-
ous formula is equal to the second Chern class

c2(O⊕3(−2)−O⊕2(−3)) = {c(O
⊕3(−2)

c(O⊕2(−3)}2

which works out to be 3ξ2. This means that the subscheme OMq(f )
which is isomorphic to the rightmost cohomology is of codimen-
sion two and of length three. Then it must be the skyscraper sheaf
of three points and the image of ∧2f must be the ideal sheaf of
three points.
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