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Introduction

The focus of this project lies at the intersection of two seemingly distinct fields: ordinary
differential equations and Riemannian geometry. While they may appear unrelated at
first glance, their connection is deeper than it initially seems.
In many modern physics and engineering systems, particularly when dealing with sep-
arable linear partial differential equations, a second order linear ordinary differential
equation in a certain form occurs frequently, these are called Sturm-Liouville problems.
Understanding the solutions in such a form is crucial in understanding a dynamic sys-
tem when Sturm-Liouville problems occur. We will embark on an in-depth exploration
of Riemannian geometry, uncovering the rich properties provided by the Riemannian
metric. By the end, we’ll bring everything together and demonstrate how tools from
Sturm-Liouville theory can be applied to specific geometric surfaces. For those who

are interested, a full documentation of the study can be found here: .

Sturm-Liouville Theory

First, we will state the second order linear problem posed in Sturm-Liouville form as
follow,

d

dx

(
p(x)

dy

dx

)
+ q(x)y = 0, (a < x < b)

where the coefficient functions p(x) and q(x) are continuous and real valued in the
closed and bounded interval [a, b] and p(x) ̸= 0 for a ≤ x ≤ b. If p(x) has a continuous
derivative the problem can be written in the standard form for a second order linear
equation, this is usually assumed to be true in most cases unless it’s pointed out other-
wise. Even if p(x) doesn’t have a continuous derivative, we can still study the existence
of solutions by converting it to a linear system in a phase plane.
Following from [3, sect 7], there are several notable properties of the Sturm-Liouville
operator worth mentioning, including its symmetry with respect to the inner product on
the vector space of integrable functions, the existence of eigenvalues and eigenfunc-
tions proved using the Green’s function, and the fact that solutions to the Sturm-Liouville
problem can be expanded as an infinite series of eigenfunctions.
If we consider the differential operator Ly := d

dx

(
p(x)dydx

)
+ q(x)y for a class of function

y(x) defined in the interval [a, b]. We say L is regular if the coefficient functions p(x)
and q(x) are real valued and continuous in the [a, b], and p(x) ̸= 0 for a ≤ x ≤ b.
The differential operator being regular is also a property that is usually assumed. Ly
makes sense if y(x) has second order derivatives which can be extended to continuous
functions in [a, b]. For complex valued functions u and v integrable in [a, b] we define

⟨u, v⟩ :=
∫ b

a
u(x)v(x)dx.

Now if u and v are in C2[a, b] and they both have compact support in (a, b), using inte-
grating by parts twice and the fact v′(x) = (v(x))′, we find ⟨u, Lv⟩ = ⟨Lu, v⟩. However,
without the condition that both u and v have compact support in (a, b), the result would
differ as follows.

⟨u, Lv⟩ − ⟨Lu, v⟩ = p(b)

∣∣∣∣∣u(b) u′(b)

v(b) v′(b)

∣∣∣∣∣− p(a)

∣∣∣∣∣u(a) u′(a)

v(a) v′(a)

∣∣∣∣∣ .
But the symmetry property can be then recovered through a suitably chosen, homoge-
neous boundary conditions that are satisfied by both u and v.
Using the standard definitions for eigenfunctions and eigenvalues, several important
properties arise, such as the fact that the eigenvalues of the operator L, along with the
boundary operators U1 and U2, can be shown to be real. But proving the existence of
the eigenvalues requires a more advanced theoretical framework, specifically complex
analysis, which involves the use of Green’s functions. As for the Green’s function itself, it
is derived by constructing a non-zero function that "almost satisfies" the homogeneous
problem, which otherwise has no non-zero solution.

Riemannian Geometry

A manifold, in simple terms, can be thought of as a surface that "locally resembles"
Rn with the standard metric. A good introduction to this concept can be found in the
first chapter of [6]. Using the definition stated in [1, sect 1.A.1], a subset M ∈ Rn+k

is an n-dimensional sub-manifold of class Cp of Rn+k if, for any x ∈ M , there
exists a neighbourhood U of x in Rn+k and a Cp submersion f : U → Rk such that
U ∩ M = f−1(0). U is an open subset of Rn+k, so for any y ∈ U , the differential
dfy is a linear map:

dfy : TyRn+k → Tf (y)R
k

where TyRn+k ∼= Rn+k and Tf (y)Rk ∼= Rk. f is a submersion, meaning its differ-
ential dfy is surjective at each point y ∈ U , that is the map dfy covers the entire
tangent space Tf (y)Rk, which is isomorphic to Rk. f being a submersion ensures
that the pre-image f−1(0) near x is a smooth n-dimensional sub-manifold of Rn+k.
The below diagram will give a better understanding of the definition.

Fig. 1: Big fancy graphic.

Notice that f−1(0)∩U = M∩U , informally, M is locally the zero set of a submersion
into Rk. For a differentiable manifold M , the tangent space TpM at a point p ∈ M
is the vector space of tangent vectors to the manifold at the point p. Intuitively, we
can think of it as describing all possible directions in which one can move from the
point p within the manifold. If we limit ourselves to the Euclidean space, we can
define the tangent vector to be the derivative of a smooth curve c at origin drawn
on the manifold (i.e. c′(0)).
The primary goal of this phase of the project is to ultimately establish a well-defined
Riemannian metric. We will give the definition from [2, p. 23] here and then discuss
the meaning of it.

Definition. A Riemannian metric on a smooth manifold M is a 2-tensor field
g ∈ T 2(M) that is symmetric (i.e. g(X, Y ) = g(Y,X)) and positive definite (i.e.
g(X,X) > 0 if X ̸= 0). A Riemannian metric thus determines an inner prod-
uct on each tangent space TpM , which is typically written ⟨X, Y ⟩ := g(X, Y ) for
X, Y ∈ TpM . A manifold together with a given Riemannian metric is called a Rie-
mannian manifold.

Riemannian metric could be considered as a smooth choice of inner product on
each tangent space of a point of M and a

(k
l

)
-tensor field T k

l on M is a smooth
choice of a

(k
l

)
-tensor on each tangent space of a point of M . A tensor of type

(k
l

)
,

also called a k-covariant, l-contra-variant tensor, is a multi-linear map

F : V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

×V × · · · × V︸ ︷︷ ︸
k copies

→ R.

The space of all mixed
(k
l

)
-tensors on V is denoted by T k

l (V ). In standard Eu-
clidean space Rn, the usual dot product gives a Riemannian metric. In fact, every
smooth manifold M is associated with a Riemannian metric.

Connection to Sturm-Liouville Operators

Let Mp+q−1 ⊂ Rp × Rq be a hyper-surface of Rp × Rq = Rp+q, we say M is

O(p)×O(q)-invariant if

M = A ·M := {A−→z : −→z ∈ M}, ∀A ∈ O(p)×O(q).

It follows that M is determined by its intersection with the plane

P = {(x1, 0, . . . , 0, y1, 0, . . . , 0) : x1, y1 ∈ R} ⊂ {(−→x ,−→y ) ∈ Rp × Rq} = Rp × Rq.

Assume additionally that M ∩ P is the graph of some function f : R → R

i.e. M ∩ P = {
(
x1, 0, . . . , y1 = (f (x1), 0, . . . )

)
: x1 ∈ R} = Graph(f ).

We can express the induced metric g (first fundamental form) and the second fun-
damental form A in terms of the function f and its derivatives. We can deduce that
M is an minimal surface (i.e. the mean curvature H = 0) if and only if

f ′′

1 + f
′2
+
p− 1

x
f ′ − q − 1

f
= 0.

Let M be a hyper-surface as above, assume also that M is minimal (i.e. H = 0).
Let u : M → R be a smooth function on M which is also O(p)×O(q)-invariant

i.e. u(A−→z ) = u(−→z ) ∀A ∈ O(p)×O(q).

Then there exists a smooth function ũ : R → R such that

ũ(x) = u((x, 0, . . . , f (x), 0, . . . )) ∀x ∈ R.

Where the following appears in the second variation formula for minimal surfaces,

∆Mu + |AM |2u,

it can then become

ũ′′

1 + f
′2
+
p− 1

x
ũ′ +

1

1 + f
′2

[( f ′′

1 + f
′2

)2
+
f
′2

x2
(p− 1) +

q − 1

f2

]
ũ.

The above can be expressed in Sturm-Liouville form.

p̃(x)
[ d

dx

(
p(x)

du

dx

)
+ q(x)u(x)

]
.

Motivation for Further Study

Sturm-Liouville problems also occur within the field of geometric flow, more specifi-
cally, mean curvature flow. Mean curvature flow is the most natural evolution equa-
tion in extrinsic geometry, it arises naturally in the problems where the surface en-
ergy is relevant. Similarly, Sturm-Liouville operators appear in the second variation
form of the area functional. The main object where the system could be estab-
lished on are n-dimensional, complete hyper-surfaces immersed in Rn+1, that is,
pairs (M,φ) where M is an n-dimensional smooth manifold with empty boundary
and φ : M → Rn+1 is a smooth immersion (the rank of the differential dφ is equal
to n everywhere on M ). The manifold M gets, in a natural way, a metric tensor
g turning it into a Riemannian manifold (M, g), by pulling back the standard scalar
product of Rn+1 with the immersion map φ. Some good references for this contin-
uation of study would be [4] and [5].
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