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0 Introduction

This document is a report on my summer research project, done between
the 3rd and 4th year of my undergraduate studies at Warwick, on non-
autonomous saddle-node bifurcations.
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It was supervised by Prof. Robert MacKay and funded by the URSS
(Undergraduate Research Support Scheme), organised by the University of
Warwick. Thank you to Robert for the support and answers to my many
many questions. Thank you to the University of Warwick’s URSS for giving
me an opportunity to do some research.

This project changed directions a few times, when the problems we en-
countered didn’t seem to budge. As such, I will attempt to recreate the
evolution of the project as we went through it, noting the important snags
along the way.

Note that this is by no means a research paper, simply a report of my
summer of research. I therefore try to explain the most I can, to make this
readable without any other references. However, I have given the reader
a good number of references if more context is needed. If there are any
questions or anything to add, feel free to contact me on gabriel.remond-
tiedrez@warwick.ac.uk and I’d be very happy to have a chat.

1 A general functional analytic approach

This approach on hyperbolicity is taken from [Bis97] and [BM03]. For an-
other explanation and some proofs, the reader is directed to the discussions
on uniform hyperbolicity in both. Other useful references are the papers
by Sacker and Sell [SS74, SS76a, SS76b, Sac78], but they consider a skew-
product which we’re avoiding for now.

1.1 Hyperbolic solutions

For autonomous systems ẋ = f(x) with f ∈ C1(Rn,Rn), the simplest solu-
tions are equilibria x0 with f(x0) = 0. Looking at Dfx0 and its eigenvalues
tells us whether it is hyperbolic, which is the case if and only if none of
the eigenvalues are on the imaginary axis. We can then split the tangent
space into 2 subspaces, E− that contracts exponentially forwards in time
and E+ that contracts exponentially backwards in time. The former corre-
sponds to eigenvalues with negative real part, the latter to eigenvalues with
positive real part. Traditionally, E− and E+ are called the stable and un-
stable subspaces, respectively. But usually E− is not stable and E+ might
be attracting, so we’ll drop those names.

This equivalence of splitting and the condition on the eigenvalues only
works for autonomous systems, however. A simple example of this is in
[Cop78, p. 3]. This encourages finding another formulation of hyperbolicity,
hopefully one that can be extended to non-autonomous systems.

Define C0 to be the space of bounded continuous functions from R to
Rn, equipped with the norm ‖x‖C0 = supt∈R|x(t)|. Similarly, define C1 to
be the space of continuously differentiable functions from R to Rn, with
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bounded norm and bounded derivative. For x ∈ C1, we have ‖x‖C1 =
max(‖x‖C0 , ‖ẋ‖C0) and we want ‖x‖C1 <∞.

Theorem 1 (Theorem 1 in [BM03]). An equilibrium x0 is hyperbolic if and
only if the linear operator L : C1 → C0, ξ 7→ ξ̇ −Dfx0ξ is invertible.

For any ϕ ∈ C0, we want to find a unique ξ ∈ C1 such that ξ̇−Dfx0ξ = ϕ,
or equivalently that ξ solves the inhomogeneous linear equation ξ̇ = Dfx0ξ+
ϕ.

Note that we are only interested in bounded functions in both domains,
so we are not solving an initial value/boundary problem, but rather finding
the unique bounded solution.

Example 1 (Actually a non-example). Take the system{
ẋ = −y
ẏ = x

(1)

which has an equilibrium at (0, 0) and with Df(0,0) =
(
0 −1
1 0

)
, which has

strictly imaginary eigenvalues ±i. The origin is a centre, with no contraction
in either direction of time. We consider the operator L as above and attempt
to find the pre-image of ϕ : R → R2, t 7→ (0, 0), solving ξ̇ = Df(0,0)ξ, the
original equation. This has infinitely many bounded solutions so ϕ has no
unique pre-image.

Now consider a non-autonomous dynamical system ẋ = f(x, t) with
f : Rn × R → Rn, differentiable in x, with Df – the x-derivative – and f
both continuous in (x, t).

Definition 1 (Definition 1 in [BM03]). A solution x0(t) of the above dy-
namical system is called hyperbolic if the linear operator L : C1 → C0, ξ 7→
ξ̇ −Dfx0(t),tξ is invertible.

It can be shown that this definition is equivalent to having a splitting of
the tangent space into forwards and backwards contracting subspaces.

1.2 Saddle-node

Our interest is saddle-nodes, which are by definition not hyperbolic. They
are non-hyperbolic in the simplest sense. In autonomous systems, we say
that x0 is a saddle-node for the 1D 1-parameter family of dynamical systems
ẋ = f(x, λ) at λ0 if:

� x0 is an equilibrium for the system with λ0, f(x0, λ0) = 0,

� x0 is not hyperbolic for the system with λ0, the x-derivative fx(x0, λ0) =
0,

3



� the 2nd order x-derivative fxx(x0, λ0) 6= 0,

� the λ-derivative fλ(x0, λ0) 6= 0.

In higher dimensions, we would have a simple eigenvalue 0 of the Ja-
cobian and no other eigenvalues on the imaginary axis. Then we would
look at the dynamics on the 1D centre manifold, which would be as above.
The extension is therefore not very complicated but it adds uninteresting
baggage.

The reason we consider this to be the simplest non-hyperbolic behaviour
is because, in the general higher-dimensional case, having a 1D centre man-
ifold is the easiest non-hyperbolic option. Then in that 1 dimension, the
easiest behaviour is when only need the first few orders of the Taylor expan-
sion of the vector field, i.e. that the coefficients of the first order in λ and
second order in the centre variable are non-zero. This is exactly what we
check with the conditions on the derivatives.

The question now arises of how to express this in the functional analytic
language we introduced. What happens with the operator L? It is certainly
not invertible because x0 is not hyperbolic, but we want it to be close.

We therefore focus on solutions x0(t) for which the operator L : C1 →
C0, ξ 7→ ξ̇ −Dfx0,λ0ξ has a simple eigenvalue 0, or equivalently a 1D kernel.

Example 2. The canonical example of a saddle-node is the system ẋ = x2+λ,
which has a saddle-node solution x0 ≡ 0 at λ0 = 0. The operator L here is
just differentiation, whose kernel is the 1D subspace of constants. We could
also consider ẋ = x3 + λ, which would have the same operator L. However
this is not a saddle-node as there is no second order term in x in the Taylor
expansion.

We singled out it the property that the Jacobian at the equilibrium has
a simple eigenvalue 0, and no others on the imaginary axis1. We can extend
easily this to non-autonomous systems. It does not contain the information
related to the form of the vector field on the centre manifold, so we will have
to take care of that separately.

1.3 Implicit Function Theorem on a perturbation

Our approach is to consider a non-autonomous perturbation of an autonomous
saddle-node. Consider the 1D system ẋ = f(x, λ, t, ε), where for ε = 0 there
is no time-dependency, and there is a saddle-node solution x0 at λ0. For-
mally speaking, the domain of f is R× I×R×J , where I is a small interval
around λ0 and J is a small interval around 0.

Once we turn on ε and have it non-zero, the non-autonomous behaviour
kicks in, which we view as a perturbation of the autonomous system, using
some smoothness and continuity conditions on f . We then want to find

1If there was another, kerL would have a higher dimension.
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conditions to ensure that we keep the saddle-node solution as we change ε.
We will use the Implicit Function Theorem (IFT) on an appropriate map.

We assume that f is continuous and all the derivatives we consider are
well-defined and continuous. Since we are working in one dimension, we will
write fx instead of Df for the x-derivative.

Consider the map Φ : C1 × I × C1 × J → C0 × C0 × R,

(x(·), λ, v, ε) 7→

 ẋ(·)− f(x(·), λ, ·, ε)
v̇(·)− fx(x(·), λ, ·, ε) · v(·)

αv(·)− 1

 , (2)

where α : C1 → R is some covector, we will take αv = v(0) for simplicity.
This is to normalise v. The dependence on time is replaced by a dot to
emphasise we’re working with the whole function, not just its value at some
time t. For solutions to the system, the first component will be 0. The
second component being 0 is if v ∈ kerL.

The starting point is an autonomous saddle-node at ε = 0. There,

Φ(x0, λ0, 1, 0) =
[
0
0
0

]
. Note that v0 = 1 because kerL is the space of bounded

functions, then the normalising α puts it at 1.
The problem we now want to solve is finding zeroes of Φ, which we can

do by looking at an initial zero – the autonomous saddle-node – and use the
IFT to get a continuation as we change ε. We are looking for (xε, λε, vε)
such that Φ(xε, λε, vε, ε) = 0, so we need to check the derivative with respect
to x, λ and v is invertible.

We calculate that at (x0, λ0, v0, 0),

DΦ : (δx, δλ, δv) 7→

 δẋ− fx · δx− fλ · δλ
δv̇ − fxx · δx · v0 − fxλ · δλ · v0 − fx · δv

αδv


for tangent vectors δx, δλ and δv, and all derivatives of f appearing are
evaluated at (x0, λ0, v0, 0)2. For simplicity, we will write ξ, µ, w instead and,
giving

DΦ : (ξ, µ, w) 7→

 ξ̇ − fx · ξ − fλ · µ
ẇ − fxx · ξ − fxλ · µ− fx · w

αw

 . (3)

Choose g, h ∈ C0, c ∈ R, we want to find unique (ξ, µ, w) such that
DΦ(ξ, µ, w) = (g, h, c). The equation above can be simplified further, using
that (x0, λ0, v0, 0) corresponds to an autonomous saddle-node. In particular,
fx = 0 for all t, fλ, fxx and fxλ are constants with respect to t.

The first component gives the simple ODE ξ̇ = g + fλ · µ, which yields

ξ(t) = ξ(0) +

∫ t

0
g(s)ds+ fλµ · t.

2v0 = 1 so we will not bother writing it.
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The second component gives ẇ = fxx · ξ + fxλ · µ+ h, which yields

w(t) = w(0) + fxλµ · t+

∫ t

0

[
fxx · ξ(s) + h(s)

]
ds.

The third component gives w(0) = c.
We still need to choose ξ(0) and µ to have ξ and w be bounded. Focus

on ξ first: we want |
∫ t
0 g(s)ds+ fλµ · t| < M for some M > 0, for all t. One

way to do this would be to use the average ḡ = limt→∞
1
t

∫ t
0 g(s)ds and have

µ = −ḡ/fλ. The issues with this are that the average might be different
as we go so −∞ or +∞, or either average might not even exist in the first
place.

Another solution to have this bounded is to change the norm on C0 to,
say, ‖g‖C0n = supt∈R |t|−n|g(t)|, to allow for functions to grow at most like
|t|n, n ∈ N. But when integrating g, one gets at most |t|n+1, which would
grow too quickly to be bounded with the ‖·‖C0n norm.

Similarly, one could change the norm to ‖g‖C0β = supt∈R e
−β|t||g(t)|, to

allow growth of at most eβ|t|, β > 0. Then for |g(t)| ≤ Ceβ|t|, we have
|
∫ t
0 g| ≤

∫ t
0 |g| ≤ C

∫ t
0 e

β|s|ds ≤ C
β (eβ|t| − 1). We proved that if ‖g‖C0β < ∞,

then ‖
∫ t
0 g‖C0β <∞.

We can find constants C1, C2 such that |g(t)| ≤ C1e
β|t| and |h(t)| ≤

C2e
β|t|. Then

|ξ(t)| ≤ |ξ(0)|+
∣∣∣ ∫ t

0
g(s)ds

∣∣∣+ |fλµ| · |t|,

so ‖ξ‖C0β <∞ from the comment above. We also have

|w(t)| ≤ |w(0)|+ |fxλµ| · |t|+ |fxx| ·
∣∣∣ ∫ t

0
ξ
∣∣∣+
∣∣∣ ∫ t

0
h
∣∣∣,

so ‖w‖C0β <∞. We therefore have both ξ, w bounded with the chosen norm.

The problem now comes from somewhere else: we are meant to find one
unique pre-image that maps to (g, h, c) under DΦ, but instead we obtain
a 2D subspace of them. Indeed, we get a bounded pre-image for any real
numbers µ and ξ(0). DΦ is not invertible with this norm either.

1.4 Conclusions on this approach

There are possibilities of improvement or change in this method:

� One might change the norm to something else. We would need one
with enough freedom to contain certain functions and their integrals,
all the while maintaining enough restriction to obtain unique pre-
images. Perhaps one could take a norm allowing functions to grow
larger than polynomials but slower than exponentials.
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� The way the problem was formulated here was to prepare it to the
IFT, but one might want to use a Submersion Theorem argument or
something else entirely.

� The type of solution we looked at might not have been nice enough to
deal with. In particular, considering our infinite dimensional operator
L with a simple eigenvalue at 0, a small perturbation might move a
continuum of its eigenvalues around. Some might hit 0 and increase
its multiplicity by an arbitrary amount. One would then be looking
for conditions on the autonomous saddle-node solution for which this
would not happen, i.e. 0 stays with multiplicity 1 when changing ε.
In fact, our choice for what a saddle-node is might be wrong, or not
restrictive enough.

Note that we start with an autonomous saddle-node at ε = 0. We do so
because most derivatives we need to keep track of are just constants, making
our analysis much easier.

If we do indeed get a continuation of the saddle-node solution, i.e. one
with L having a simple eigenvalue 0, then fxx and fλ should be non-zero for
all t by continuity and because they are non-zero constants in the ε = 0 case.
Then we should get the same type of behaviour happening when varying λ,
i.e. a saddle-node bifurcation.

The non-compactness of the direction of time seems to be a trouble-
maker here, quickly causing unboundedness of solutions. We might therefore
want to compactify time in some sense, making the following approach a
natural progression.

One might want to try a similar approach with a discrete saddle-node
instead of a continuous one, but it seems the problems encountered persist.

2 A discrete skew-product approach

This approach is taken from [AJ12], especially the use of their example on
the 2-torus in the final section. The introductory part of this section is very
similar to the aforementioned source, the reader is therefore encouraged to
read it if interested. While the approach is entirely different, there is a
discussion in [FJMV16] about the skew-product approach, which the reader
might find worth it.

2.1 Skew-products

For this approach, we consider a 1-dimensional, discrete, skew-product dy-
namical system. We introduce a base space Θ and a forcing transformation
ω : Θ→ Θ, and study maps of the form

f : Θ× [a, b]→ Θ× [a, b], (θ, x) 7→ (ω(θ), fθ(x)). (4)
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The maps fθ : [a, b] → [a, b] are called fibre maps, where [a, b] is our 1D
phase space.

The objects studied are invariant graphs, i.e. functions3 ϕ : Θ → [a, b]
such that fθ(ϕ(θ)) = ϕ(ω(θ)). The authors then consider a 1-parameter
family of maps (fλ)λ∈[0,1] of the form (4) and a region Γ ⊂ Θ × [a, b], and
prove the existence of a critical bifurcation parameter λc such that:

� for λ < λc, fλ has 2 invariant graphs in Γ;

� for λ > λc, fλ has no invariant graphs in Γ;

� for λ = λc, fλ either 1 or 2 invariant graphs in Γ. If there exist 2, then
they are ‘pinched’.

The precise statements and proofs are in Theorems 4.1 and 6.1 of [AJ12].
This is exactly analogous to the case of bifurcation of equilibria in the

canonical saddle-node ẋ = x2 + λ, where λc = 0:

� for λ < λc, there are 2 equilibria, one unstable, the other stable. This
is similar to the 2 invariant graphs, one of which has an appropri-
ate Lyapunov exponent positive, and the other invariant graph has a
negative Lyapunov exponent;

� for λ > λc, there are no equilibria, similar to the absence of invariant
graphs;

� for λ = λc, there is only one equilibrium, with strange behaviour. We
could consider it as a merging of the previous two equilibria. Similarly,
if we have 2 invariant graphs, they merge in some sense made rigorous
by the definition of pinching.

The results of Theorems 4.1 and 6.1 are quite nice, giving the existence of
a critical bifurcation value with straightforward assumptions. As mentioned
in the end of sections 4 and 6, one could also look at ω-invariant subsets
of Θ. For each such subset, we can get a different bifurcation value, and
the critical value for the whole base space is effectively the infimum over
invariant subsets.

2.2 Forcing with a cat map

We investigate the bifurcation values of orbits on the 2-torus under an
Arnold cat map. An important difference between [AJ12] and what fol-
lows is that we do not study invariant graphs over the whole of the base
space, but rather focus on specific invariant subsets, i.e. orbits.

3These functions should be measurable if Θ is a measure space, or continuous if Θ is a
topological space.
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Consider the base space Θ = T2 = (R/Z)2 and the Arnold cat map ω
represented by

[
3 1
2 1

]
, that is, ω :

[ x
y

]
7→
[
3 1
2 1

][ x
y

]
mod 1. We look at maps

fλ,θ(x) = arctan(αx)− λ− γg(θ),

where α > 1, γ > 0 are constants4 and g : T2 → R is a smooth observable
on the torus. We take g(x, y) = cos(2πx) cos(2πy) + 1.

There are really 2 saddle-node bifurcations with this map, one at the top,
concave branch and the other at the bottom, convex branch of arctan(αx).
We will focus on the top one. An advantage of this map is that the bot-
tom branch will be attracting throughout the parameter range of interest,
meaning that solutions do not blow up in finite time. Even better, we know
precisely where the trajectories go.

We can compute easily that ω has 2 fixed points on the torus: (0, 0)
and (12 , 0). The former is a global maximum of g and the latter a global
minimum. The calculation of the bifurcation value on these fixed points is
then straightforward, since this is then just an autonomous 1D saddle-node.

We obtain λc = arctan(
√
α− 1) − γg −

√
α−1
α , where g is to be evaluated

at the fixed point. The earliest bifurcation is therefore the one at (0, 0) and
the latest one at (12 , 0)5.

To calculate the bifurcation value of other orbits under ω, we use numer-
ical methods with MatLab. We work with periodic orbits, which coincide
with rational points on the torus.

The initial method is by dichotomy, explained as follow. We start with
an interval [λ0, λ1] for the bifurcation parameter, for which we know that
at λ0, we still have both equilibria from the top branch and that at λ1,
both have cancelled each other out completely. We check behaviour at the
midpoint λ0+λ1

2 of the interval: if there are no equilibria, we choose our

new interval to be [λ0,
λ0+λ1

2 ]; and if the equilibria are still here, we choose

[λ0+λ12 , λ1]. We repeat checking midpoints until we reach an acceptable
level of accuracy. Our output is a small interval in which we know that the
bifurcation happens, i.e. that we get the transition from 2 equilibria to none.

A few remarks on this:

� The choice of starting interval is important: if we choose one where no
bifurcation happens, the process is obviously not going to yield a useful
result. An easy option is to use the 2 fixed points and their seemingly
extreme bifurcation values, to use them as starting endpoints. We
could also take the range to be purposefully too large and add a few

4For discrete-time saddle-nodes, we need a point with derivative 1 and second derivative
non-zero. We therefore need α > 1: if α ∈ (0, 1), the derivative of arctan(αx) is strictly
bounded above by 1 and if α = 1, the only place where the derivative is 1 has second
derivative 0.

5It seems like these 2 bifurcation values are the extremes, but rigorously justify it seems
beyond me.
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iterations. This would not make the computations too much longer
since the length of the interval decreases exponentially.

� To check existence of the equilibria, we do not find them explicitly
but rather use the attracting properties of one equilibrium and of the
bottom branch. We start with x = 3 in our phase space and iterate
f a given number of times6. If the attracting equilibrium is still here,
the trajectory will tend towards it, and will stay above or at 0. If the
equilibria are gone, it will go towards the bottom branch, well below
0. Our check is simple, we look at whether we are above or below 0
after a number of iterations.

Figures (1a),(1b) and (1c) represent solutions in the phase space at dif-
ferent parameter values. The y-axis is the 1D phase space and the x-axis
counts the number of iterations done with f .

2.3 A Newton step method

The method used above generally only uses a relatively small number of
possible iterations of f . The interest of working with periodic orbits is also
to approximate aperiodic ones, for which we want the periods to grow quite
large. However, the efficiency of the method is low when looking at large
periods, especially if we want to iterate enough for at least one period.

This encourages another approach, one using a Newton step method.
We will make the saddle-node solution at the bifurcation value correspond
to a zero of a smooth function Φ. Start at a seed x0, i.e. a point close to a
zero of Φ and iterate the process defined by xn+1 = xn − (DΦ)−1(Φ(xn)).
If the derivative DΦ is invertible and not too close to the 0 matrix, the xn’s
converge to a nearby zero of Φ.

Consider an ω-orbit on the 2-torus of period p ∈ N, starting at θ ∈
Θ. Now consider a sequence of p points x0, x1, . . . , xp−1 ∈ R, our phase
space. We also need to pick a value for the parameter λ. We then define

6We choose x = 3 to ensure that we are not under both equilibria, or in between. Under
both would immediately makes us go to the bottom branch, which is an issue. Between
both would not be a problem, but the space between the equilibria will get very small,
so we could easily fall under them if we are not careful. The solutions also contract very
quickly so we do not lose much time from starting higher. We therefore go for the safer
option and waste a little processing power.
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(a) λ < λc: the top attracting equilibrium
is clearly visible. Solutions starting under
the repelling one go towards the bottom
branch.

(b) λ ≈ λc: the top saddle-node equilib-
rium is visible, note how trajectories are
slower to go towards the bottom branch
compared to the previous case.

(c) λ > λc: both top equilibria have fully
annihilated each other, causing all solu-
tions to go towards the bottom branch.

Figure 1: Phase portraits for forcing with period 2 orbit starting at (12 ,
1
2) ∈

Θ, for α = 100 and γ = 0.5. Note the periodic behaviour in all 3 figures.

Φ : Rp × R→ Rp × R,

Φ : (x0, x1, . . . , xp−1, λ) 7→



fλ,θ(x0)− x1
fλ,ω(θ)(x1)− x2
fλ,ω2(θ)(x2)− x3

...
fλ,ωp−1(θ)(xp−1)− x0∑p−1
i=0 log(f ′

λ,ωi(θ)
)(xi)


,

where f ′ is the derivative with respect to x.
A zero of this map means that x0, x1, . . . , xp−1 is a periodic orbit in the

phase space for the value of λ. We obtain this from the first p components.
The final component is to ensure this orbit is a saddle-node: a discrete-time
saddle-node, say for a 1D system yn+1 = h(yn), is characterised by having
first derivative h′ = 1. The analogue of that for periodic orbits in the phase
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space, is to have the derivative of all the compositions to be 1. The chain
rule then yields a product of derivatives, evaluated at different points on the
orbit. Taking log of both sides, we obtain that the sum of log’s of derivatives
is 0.

Computing the derivative DΦ is straightforward:

DΦ =



f ′(x0) −1 0 . . . 0 −1
0 f ′(x1) −1 . . . 0 −1
0 0 f ′(x2) . . . 0 −1
...

...
...

. . .
...

...
−1 0 0 . . . f ′(xp−1) −1

f ′′(x0)
f ′(x0)

f ′′(x1)
f ′(x1)

f ′′(x2)
f ′(x2)

. . .
f ′′(xp−1)
f ′(xp−1)

0


,

where the dependence of f on λ, θ is suppressed because it disappears when

differentiating w.r.t. x. We compute that f ′(xi) = αxi
1+α2x2i

and f ′′(xi)
f ′(xi)

=

1−α2x2i
xi(1+α2x2i )

.

We can now use the first method to get a basic approximation of a zero
of Φ, then use the Newton step to get more accurate results. An important
thing to note is that this method is unfortunately more unstable. For the
parameters used in the phase portrait figures (α = 100 and γ = 0.5), all
orbits with period greater than 10 that were studied did not provide any
usable results. The problem seemed to be that while most entries in the
matrix are 0, some of them could get very large, which meant dealing with

the matrix was complicated. For example, for α� 1 and xi close to 0, f
′′(xi)
f ′(xi)

is large and not too uncommon.
A way to avoid this problem is to take smaller values, for example α =

10 and γ =1× 10−3. All periodic orbits on Θ that were considered were
manageable with this choice.

2.4 Eigenspaces of the origin

Now that we have a way to calculate accurately what the corresponding
bifurcation value is, depending on the forcing orbit, we can navigate the ra-
tional points of the torus. Figures (2a) and (2b) show how different starting
points on the torus give different bifurcation values. There are a couple of
things to point out.

Focus on the point (0, 0) in (2a). Note that this is a flat representation
of the torus, so the 4 corners (0, 0), (1, 0), (0, 1) and (1, 1) are really one and
the same. One can calculate eigenvectors of ω to be

[ 1√
3−1
]

and
[
(1−
√
3)/2

1

]
,

where the former corresponds to the backwards contracting direction of ω
and the latter the forwards contracting direction. We can then notice that
these directions are exactly the directions of the red streaks emanating from
(0, 0) and all other corners. We get the same behaviour at the other fixed
point (12 , 0) and (12 , 1), but with blue streaks instead.
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(a) Rational points with denominator
120.

(b) Rational points with denominator
119.

Figure 2: Bifurcation values for different starting θ ∈ Θ, red means the
bifurcation happens early, blue means late.

This seems to indicate that being on the eigenspace of a fixed point
makes the bifurcation occur at the same time. We could imagine that once
(0, 0) bifurcates, for example, both its eigenspaces do so with it. It would
then leave only a Cantor set of points on the torus, which bifurcate later.

This image is quite an elegant one but the second figure tells another
story. There seems to be less obvious structure in (2b). The picture is
a lot messier, and most points are mixed between red and blue. So what
happened here? This is still unclear, but a possibility is that this is to do
with the period of the points we considered. Indeed, rational points with
denominator 120 have period at most 12, whereas they can reach periods of
72 for denominator 119. However, the reason for which this matters is still
unsure.

We investigate the eigenspaces of the origin in one other way, by tak-
ing rational points converging to a point on an eigenspace, and calculating
their corresponding bifurcation values. A rational point very close to the
eigenspace should have quite a large period and stay close to the point on
the eigenspace for an good number of iterations, therefore have a similar
bifurcation value. More precisely, we have rational points (xn, yn) that con-
verge to a point (x∞, y∞) on the eigenspace. We then look at the bifurcation
values for each (xn, yn) and consider the bifurcation value of (x∞, y∞) to be
the limit of that sequence.

Consider the function λc : T2 → R, taking a point (x, y) on the torus and
whose output is the corresponding bifurcation value. The above is equivalent
to asking that λc is continuous at (x∞, y∞), a risky assumption.

There are different ways to converge to a point on an eigenspace – be it
the backwards or forwards contracting one. We fix a rational value x∞
of x and choose the corresponding value y∞ of y, to have (x∞, y∞) on
the eigenspace of interest. We then choose our sequence to be (xn, yn) =

13



(a) Forward contracting eigenspace, with
x∞ = 0.3.

(b) Backwards contracting eigenspace,
with x∞ = 0.2.

Figure 3: Bifurcation values for points approaching eigenspaces of the origin.
The x-axis is the n of our sequence and the y-axis is the corresponding
bifurcation value. The 2 flat lines above and below are the bifurcation
values of (12 , 0) and the origin, respectively. These are plotted since they are
bounds for the possible bifurcation values. We therefore get a better idea of
‘when’ the bifurcation happens.

(x∞,
b2ny∞c+1

2n )7, all of which are rational points quickly converging to (x∞, y∞).
Figures (3a) and (3b) show something other than what was expected8.

Indeed, if the eigenspaces bifurcate at the same time as the origin and that
λc is continuous at (x∞, y∞), we would expect the curve to get close to
the bottom line, that is to tend towards the bifurcation value of (0, 0). It
seems that at least one of these assumptions is wrong. Ideally, we would
calculate the bifurcation value of points on the eigenspaces directly, but it
is numerically impossible because of their aperiodicity. We therefore do not
have a way of checking that condition. The curves obtained seem instead to
go towards some average value.

An interesting aspect to note is that as we go further in the approxima-
tions, the period increases. In general, multiplying the denominator at least
increases the period. In contrast to that, the size of the denominator itself
is not directly correlated with the period, as seen in figure (2). Consider the
function λc : Rp → R, taking p values of periodic forcing and outputting the
corresponding bifurcation value. This function would depend crucially on
p, seemingly giving values close to the average as p increases. Evidence for
that is the increased proportion of purple in figure (2b) and the value that
the curves of figure (3) seem to go towards.

There are no proofs here, only observations and a few ideas. To make

7The +1 in the numerator is not necessary, but it was used to obtain the figures so it
is written here for coherence.

8Other points on the eigenspaces were considered as well, but they all yielded a similar
picture, so are not shown here.
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the problem simpler, we take another function f , which we could consider
as a modified limit when taking the parameter α to infinity.

2.5 Saddle-node on a step function

For α � 1, the function arctan(αx) is quite close to a step-function from
−π

2 to π
2 . The factor of π

2 adds nothing interesting, so we consider a step
function from −1 to +1:

σ(x) =

{
−1, if x < 0,
+1, if x ≥ 0,

and consider the difference equation

xn+1 = σ(xn)− λ− gn. (5)

Note that we dropped γ for simplicity, and because the analysis here won’t
need the forcing to be as weak as before. The forcing also changes form, we
now work with a sequence (gn)n∈N of values of forcing. This could still be
obtained with a skew-product but we do not use the structure provided by
that.

An important choice for our step function is where we map 0. We could
take -1, 0 or +1. Taking 0 would make σ a pointwise limit of 2

π arctan(αx)
as α → ∞. However, we will choose +1. Thinking back to the α < ∞
case with no non-autonomous forcing, a saddle-node point is the tangential
intersection of the diagonal y = x and y = 2

π arctan(αx) − λ. We can
calculate the x value for that quite easily using that it has derivative 1,

giving x± = ±2
√
α−1
πα . The sign depends on which side of 2

π arctan(αx) we
consider, so we consider x+. Note that

(
x+,

2
π arctan(αx+)

)
→ (0, 1) as α

goes to infinity, so choosing σ(0) = +1 is coherent. If we chose 0, we would
not have any saddle-node behaviour, and if we chose -1, we would be working
with the bottom branch instead.

We now redefine what a saddle-node is for this case, as the usual charac-
terisation using derivatives needs some adjusting. We still ignore the forcing

for now. The point that would have derivative 1 is at x = 0 = limα→∞
√
α−1
α ,

and the required intersection with y = x means that one of the branches of
σ(x)−λ must hit 0. Without any forcing, we would have λ = ±1, depending
on which branch hits 0.

Now for the case with forcing: we say that a sequence (xn)n∈N is a
saddle-node solution for aperiodic forcing (gn)n∈N if xn = 0 for exactly one
n; similarly for periodic forcing (gn)n∈N, we have a saddle-node if xn = 0
exactly once per period. One might have saddle-nodes with more than one
xn = 0 if multiple values of forcing are equal, but this case is not different
enough to warrant its own discussion.
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The analysis is now straightforward and we obtain simple conditions
on the forcing for which we have saddle-nodes, with a very simple way of
obtaining the critical value for λ.

2.6 Using a simple lemma

We first consider the case of periodic forcing (gn)n∈N of period p, with gn ∈
(0, 2) for all n. That is, gn+p = gn for all n and p is the smallest such
integer9. We assume that we already have a saddle-node solution, then
investigate what properties the xn’s and gn’s have to satisfy.

Consider a saddle-node solution (xn)n∈N of period p, for which we choose
to have xp = 0 and xn 6= 0 for all n 6= p. We first prove a small lemma,
which will simplify the approach.

Lemma. Let n ∈ N, then we must have either

σ(xn) · σ(xp−1) ≥ 0 or σ(xn) · xn+1 ≥ 0. (6)

Proof. We proceed by contradiction: suppose that there exists a n ∈ N10

with σ(xn) · σ(xp−1) < 0 and σ(xn) · xn+1 < 0. Consider the 2 possibilities
for σ(xj):

� σ(xn) = 1: then we deduce that σ(xp−1) = −1 and that xn+1 < 0.
We calculate that −λ = gp−1 − σ(xp−1) = gp−1 + 1, then see that
xn+1 = 2 + gp−1 − gn. Using the sign yields gn − gp−1 > 2, which is a
contradiction to our bounds on the forcing.

� σ(xn) = −1: then σ(xp−1) = 1 and xn+1 > 0. Here, −λ = gp−1 − 1,
so xn+1 = −2 + gp−1 − gn. Using the sign yields gp−1 − gn > 2, which
is a contradiction.

This result is very useful for what follows, but we will adjust it. Since σ
takes only 2 values, we can change the first condition into σ(xn) = σ(xp−1).
Then since this is obviously true for n = p−1, we can assume that n 6= p−1
to simplify the second condition into σ(xn) ·xn+1 > 0. We’re using here that
xp is the only point in the period that hits 011. So the final condition is: for
all n ∈ N, we have either

σ(xn) = σ(xp−1) or σ(xn) · xn+1 > 0. (7)

9In the skew-product image, the gn’s would be the values of an observable evaluated
at points of a periodic orbit on Θ.

10For this periodic forcing, we only really need to consider p values, but choosing any n
makes it clear that this lemma works for aperiodic forcing as well.

11In the case of aperiodic forcing, we would be using that xp is the only point that hits
0.

16



Calculating the bifurcation value is very easy. If xp = 0, (5) yields
λc = σ(xp−1) − gp−1. We could therefore expect gp−1 to be some special
value of forcing. Another useful fact is that σ(xp) = σ(0) = 1, which we
can use alongside condition (7) to check different possible signs the xn’s
can take. Some choices will be compatible with each other, others will give
contradictions.

We split the analysis in 2 cases:

� σ(xn) = σ(xp−1) for all n: in particular σ(xp) = σ(xp−1) = 1, so we
have xn > 0 for n = 1, 2, . . . , p− 1.

� there exist n such that σ(xn) 6= σ(xp−1): then (7) implies that σ(xn) ·
xn+1 > 0, which in turn means that σ(xn+1) 6= σ(xp−1). So similarly
σ(xn+2) 6= σ(xp−1) and so on. We get a chain of xn’s all with a sign
different from xp−1. Since we have periodic forcing, this means that
this chain will loop around all the way up to xp−2, independently of
where the first different sign appears. But this yields a contradiction
to (7), because σ(xp−2) 6= σ(xp−1) and σ(xp−2) ·xp−2+1 < 0. This case
will split into three when looking at the aperiodic case, and we will
need to look at the first occurrence of the different sign.

With periodic forcing, only one possibility is valid, that of xn > 0 for all
n 6= p. We calculate λc = σ(xp−1) − gp−1 = 1 − gp−1. Then for any n 6= p,
we have 0 < xn = σ(xn−1)−λc− gn−1 = 1− 1 + gp−1− gn−1, i.e. we require
gp−1 > gn−1 for all n 6= p.

So for given periodic forcing gn, the corresponding saddle-node solution
must have xn ≥ 0 for all n, and has xp = 0 if and only if the value gp−1 of
forcing is strictly maximal. We haven’t quite proven the equivalence, but it
is straightforward. Note that the condition of gp−1 being strictly larger than
any other value can be relaxed: if we allow equality, we could get multiple
xn’s to hit 0. In fact we have a 0 after each maximal value.

A final remark on this periodic case: the condition that xn ≥ 0 for all n
means that we stay on the top branch of our step function. The fact that
we need to start on it should be comforting news, since it is the branch we
were focussing on with the arctan(αx) example. But starting on it means we
must periodically return to the top branch, which then requires the solution
to stay on it for all n. In a completely symmetric argument, if we chose to
map 0 to −1 under the step function, we would need to stay on the bottom
branch.

2.7 Extending to aperiodic forcing

Most of the work was done in the lemma giving (7). We introduce a slight
shift in notation, calling the index where xn hits 0 N instead of p. That is,
xN = 0 and xn 6= 0 for n 6= N . Just like in the periodic case, we split into
2 cases, depending on if all the signs of σ(xn) match or not:
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� σ(xn) = σ(xN−1) for all n: in particular σ(xN ) = σ(xN−1) = 1, so we
have xn > 0 for n = 1, 2, . . . , N − 1. This is exactly as in the periodic
case.

� there exist n such that σ(xn) 6= σ(xN−1): let m be the smallest such
integer. Then (7) implies that σ(xm) · xm+1 > 0, which in turn means
that σ(xm+1) 6= σ(xN−1). So similarly σ(xm+2) 6= σ(xN−1) and so on.
Like in the periodic case, we get a chain of xn’s all of a sign different
from xN−1. The absence of periodicity means we cannot discard this
possibility. We therefore require introducing m, a pointless addition
in the periodic case. We divide this case further:

– m < N−1: the chain of xn’s starting at xm means that xN−2 has
the opposite sign to that of xN−1, i.e. σ(xN−2) 6= σ(xN−1). Then
(7) implies that we have σ(xN−2) ·xN−2+1 = σ(xN−2) ·xN−1 > 0,
yielding σ(xN−2) = σ(xN−1), a contradiction.

– m = N : σ(xN ) = 1 so we must have σ(xN−1) = −1. Thus the
chain starting at xm = xN must contain only positive xn’s, and
xn < 0 for n < N .

– m ≥ N + 1: σ(xN ) = 1 and σ(xN−1) = σ(xN ), so for j < m and
j 6= N , xj > 0. The rest is the chain emanating from xm, all of
which are negative.

So we have 3 possible cases:

� xj > 0 for all j 6= N ,

� xj < 0 for all j ≤ N − 1 and xj > 0 for all j ≥ N + 1,

� xj > 0 for all j < m, j 6= N and xj < 0 for j ≥ m.

I find it clearer written down in the following symbolic way:

� + · · ·+ 0 + · · · ,

� − · · · − 0 + · · · ,

� + · · ·+ 0 + · · ·+− · · · ,

where each sign is the sign of the corresponding xn.
Let us analyse what conditions on gn are needed for each case.

2.7.1 + · · ·+ 0 + · · ·

We calculate −λc = gN−1 − 1.
Picking any j 6= N − 1, we have σ(xj) = 1 and xj+1 > 0. Then xj+1 =

gN−1 − gj implies that gN−1 > gj for all j 6= N − 1. This is exactly as in
the periodic case, we need that gN−1 is the strict maximum.
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2.7.2 − · · · − 0 + · · ·

We calculate −λc = gN−1 + 1.
For 0 ≤ j ≤ N − 2, σ(xj) = −1 and xj+1 < 0. Then xj+1 = gN−1 − gj ,

so we need gN−1 < gj .
For j ≥ N , σ(xj) = 1 and xj+1 > 0. Then xj+1 = 2 + gN−1 − gj , so we

need gj − gN−1 < 2, which is fine since we chose our forcing in (0, 2).

2.7.3 + · · ·+ 0 + · · ·+− · · ·

We calculate −λc = gN−1 − 1.
For 0 ≤ j ≤ N − 2, σ(xj) = 1 and xj+1 > 0. Then xj+1 = gN−1 − gj , so

we need gN−1 > gj .
If m ≥ N + 2, we get the following case for N ≤ j ≤ m − 2, σ(xj) = 1

and xj+1 > 0. Here we also need gN−1 > gj .
For j = m− 1, σ(xj) = 1 and xj+1 = xm < 0. Then xj+1 = gN−1 − gj ,

so we need gN−1 < gj = gm−1.
For j ≥ m, σ(xj) = −1 and xj+1 < 0. Then xj+1 = −2 + gN−1 − gj , so

we need gN−1 − gj < 2, which is fine because of our bounds on the forcing.

2.8 Another viewpoint

For this section, we will look at the forcing values first, then determine if
we get a bifurcation and where the sequence xn hits 0. We use exactly the
same results but take another point of view.

Suppose that we have a gN−1 that is a strict maximum of all values of
the forcing. Then we have the case in 2.7.1: xN = 0, all the other xn’s are
strictly positive and the critical value of the parameter is βc = 1− gN−1.

Now suppose that we have a gN−1 that is a strict maximum of all values
of forcing from g0 to gm−2 for some m− 2 > N − 1, and that gm−1 > gN−1.
Then we are in the case of 2.7.3: xN = 0, all n’s for which gN−1 > gn−1
have xn positive, all the others are negative. Note here that all the values of
forcing from m onwards do not matter, so long as gn ∈ (0, 2). The critical
value of the parameter is βc = 1− gN−1 as above.

One can think of this case as the more common version of the first, we still
need a certain value of forcing to be maximal, but it can get “overthrown”
and cause the xn’s to fall down on the bottom branch. The first case seems
infinitely more unstable, as only one value of forcing larger than gN−1 can
topple the result into the second case.

Lastly, suppose that we have a gN−1 that is the strict minimum of values
of the forcing from g0 to itself, with gN . Then we are in the case of 2.7.2:
xN = 0, all n’s before that are negative, all the others are positive.

At first sight, this case just seems slightly different to the previous ones,
but it is more troublesome than one might think. The reason for that is
uniqueness of solutions. In the first 2 cases, we get a unique combination
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of signs that gives a saddle-node solution12. For this case, let us consider a
sequence of forcing (gn) that strictly decreases. Then one could start with
negative x0, and choose any n to have xn = 0. Each one would give another
entirely valid solution, all of whose bifurcation value is different.

We could also imagine a sequence strictly decreasing apart from some
gN−1 being the strict maximum, with N−1 > 0. Then we could have xn = 0
before xN , because gn−1 would be the strict minimum of the values up to
that point. In this case we’d start off with negative values for xn. But we
could also have xN = 0 and we would start with positive values for xn. The
bifurcation value would also change considerably.

How does one justify discarding this problematic case? Note that we
wanted to focus on solutions starting on the top branch, which is why we
map 0 to +1 under the step function. But this case occurs precisely when
we start on the bottom branch. If we fix that x0 ≥ 0, we are done and
saddle-node solutions are uniquely determined by the sequence of forcing.

2.9 Conclusions on this approach

One question the reader could ask is why we require gn ∈ (0, 2) for all n. The
condition we really need is that the maximal difference between any 2 values
of forcing is strictly less than 2, in order to get the contradictions used. Then
the choice of range is arbitrary, so we take a simple one. The reason that
2 is our bound is because of the step function considered. Looking back at
the contradiction arguments in the lemma, one can notice that 2 is obtained
as the difference between the 2 steps of σ. The intuition behind this is that
if |gn − gn+1| ≥ 2 for some n, the solution can jump from one branch to the
other.

One might notice that this is exactly what happens in the latter case of
aperiodic forcing, where the solution starts on the top branch, and jumps
down once an appropriate value of forcing is reached. However, this is not
caused by a large change in forcing, so is allowed. Indeed, we only need to
have gm−1 > gN−1, not a condition on their difference being large. When
forcing with gN−1, we hit 0 exactly, which by the choice of step function,
brings us back to the top branch. When taking a larger value gm−1, we go
past 0 into negative reals, get mapped to the bottom branch and stay there.

Note that this argument again uses σ(0) = +1, an important choice.
Let us go back to the starting point of this section on skew-product

systems, more specifically the Arnold cat map forcing used. What is done
above was, as previously said, only observations and a few ideas. The main
idea was to use the dynamics given by the Arnold cat map, mostly focussing
on the eigenspaces, to determine information about bifurcation values in
the phase space. More specifically, we computed the bifurcation values of

12This hasn’t been formally done, but seems straightforward.
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points near the eigenspaces of the origin, hoping they would be close to the
bifurcation value of 0. The reality seems quite different, with the period of
the starting point on the torus having an unsurprisingly important role.

An interesting follow up to this would be to more thoroughly investigate
bifurcations over every orbit, or more generally invariant subsets. One could
keep going with the example of a cat map, or with more general forcing
transformations on a general base space, to fit into the framework of [AJ12].

3 Conclusion

We started with a general functional analytic approach to consider saddle-
node solutions to autonomous systems, checking whether they remained un-
der small time-dependent forcing. The unbounded direction of time caused
problems, however. This is by contrast to the skew-product approach stud-
ied in [AJ12], where one has a lot more control over the time-dependence,
writing it as a dynamical system on a base space. In particular, the ex-
amples worked through are both on compact spaces, where the direction of
time cannot blow up.

The last part of this report looks at a special case of non-autonomous
forcing, where one works with a step function. This is symbolic dynam-
ics, with which the whole behaviour of the system can be understood. An
interesting aspect to note is that while the forcing did not need to have
any specific structure, we required specific bounds. However, the gap from
differentiable systems to step functions might need some filling in.
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