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Introduction
Liquid crystals are optically anisotropic materials with uses in displays, pho-
tonics and optoelectric devices. They are able to contain defects (figure 1)
which manifest as singularities in the director field. We can find cases where
lines of singular points form in a material and analyse them using a local 2D
cross-section for each point perpendicular to the line. On this 2D slice, we
can calculate a winding number for the field, and find that this number is
conserved throughout the volume via a topological effect. These singular-
ities have high contribution to the energy of the system, so we look at the
mechanics under which this energy cost can be reduced. Figure 1: Optical texture of a nematic liquid crystal with defect points (from

Wikipedia).

1) Frank Free Energy
The energetics of a cholesteric liquid crystal are described by the Frank
Free Energy:

𝐹 =

∫
𝐾1
2 (∇ · n)2 + 𝐾2

2 (n · (∇ × n) + 𝑐)2 + 𝐾3
2 |(n · ∇)n|2𝑑𝑉. (1)

The case of a winding number 1 director with a singular line at the centre
of the capillary is described by:

n = cos (𝛼(𝑟)) e𝑧 + sin (𝛼(𝑟)) e𝑟 (2)

and minimised by the function 𝛼(𝑟) = ±2 arctan (𝑟/𝑅). This is the ‘escape’
of a defect, with the + or - determining the escape direction (up or down).

2) Escape in Cholesterics
In cholesteric liquid crystals, the 𝑐 in (1) is non-zero. This causes a high
energy penalty for changes in the handedness of the director, encouraging
defects to be resolved with a uniform handedness as seen in figure 2. In
the winding number 1 case, such structures can lead to self-interference
[1], but in the cases of higher winding number, the interference can be
avoided. Figure 2 shows this for winding number 2, and our project aims
to extend this to higher winding numbers.

Figure 2: Numerical simulation of the 𝑘 = 2 case with the escape up defect
plotted in red and down in blue, and on the cross-section grey arrows rep-
resenting the director field with areas of 𝑛𝑧 > 0 tinted red and 𝑛𝑧 < 0 blue.

We can express the local environment of a winding number 𝑘 defect in a
complex system using the function

𝑚 = 𝑒 𝑖𝛼𝑒 𝑖𝑞𝑧𝜁𝑘 (3)

This can naturally be unfolded into 𝑘 different defects at different positions
in the capillary tube, which will each escape in a predictable direction such
that a uniform handednessmay bemaintained over the entire tube. We can
use local analysis and variousmethods from contact topology to predict the
directions and even the final outcomes of different unfoldings, and then
investigate these predictions using numerical simulations which minimise
the energy according to the Frank Free Energy in equation (1).

3) Symmetrical Unfoldings
An interesting unfolding to consider is one where we place the 𝑘 defects
uniformly around a circle centred on the original defect.

Figure 3: Theoretical prediction the unfolding of 𝑘 = 6 symmetrically, with
the defect positions plotted in black and the blue line dividing the defects
into those that escape up and those that escape down (although not nec-
essarily dividing the disc into the corresponding regions).

4) Simulation Results
We can use the symmetrical unfolding equation below in our numerical
simulation,

𝑚 = 𝑒 𝑖𝛼𝑒 𝑖𝑞𝑧
𝑘−1∏
𝑛=0

(
𝜁 − 𝑅𝑒 𝑖(𝑞′𝑧+ 2𝜋𝑛

𝑘 )
)
, (4)

which results in figure 4. This doesn’t match the prediction exactly, al-
though all of the predicted features can still be found in these final forms.

Figure 4: Cross sections of the stable results of symmetrical unfoldingswith
𝑘 from 3 to 11.

We do however, have some successful predictions for unfoldings, for ex-
ample, if we consider 1 defect placed at the centre, and the other 𝑘 − 1
placed uniformly about the centre, we have a very stable configuration of
an escape up defect surrounded by escape down defects.
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