Functional inequalities and their applications

Introduction

Functional inequalities form a keystone of analysis with
the more celebrated ones such as Cauchy Schwarz for in-
ner products or Holder's inequality for LP spaces being
instrumental to developing new mathematical results in
all areas, not just limited to purely analysis. Since proba-
bility and geometry are closely related to analysis, it seems
reasonable that we can use analytic and geometric ideas to
build functional inequalities which can show us something
about probability. These are some of the ideas behind
Bakry-Emery theory, which uses geometric ideas to show
various analytic and probabilistic properties of classes of
functions which satisfy certain properties.

Our tools used to develop these ideas are centred around
Markov semigroups, which are a set of operators which
evolve time for a given function f. This set of operators
obeys similar rules to groups eg P; o Py = Py, is similar
to the composition property and Py = Id. We build more

ideas like invariant measures d(x) which satisfy

J fdu :J Pifdu (1)
E E

for suitable f : E — R, (E,F) is a topological space
equipped with a o-algebra, and infinitesimal generators L
which are closely related to the Markov semigroup (Pt)t>0
since L commutes with P;. After this, we can define the

associated carré du champ operator I" for L,

[(f) = ;[L(fz) — 2fLf] (2)

Using the fact that for any t > 0, Pi(f%) > (Pf)? and
taking t — O shows that T'(f) = L(f?) — 2fLf > 0 from
the commutation property of Py and L. Combining the
state space E, the invariant measure i and the carré du
champ operator I' allows us to state we have obtained a
Markov Triple being (E, w, '), which is very important for
inequalities we will cover.

Another important observation is for L, specifically if L is
a diffusion operator. If L is a diffusion operator, then for
any smooth ¢ : R — IR we have

Lb(f) = &' (H)LfF+ " (FT(f) @3

The two examples

The examples that will be focused upon today are the heat
equation in Euclidean space R™, given by the diffusion op-

erator

Lyf = A f (4)

and the Ornstein Uhlenbeck operator, given by

Loyf = A —x -V, ¢

Both of these operators have a large number of uses across
science, in particular in mathematical physics. The heat
equation is one of the oldest and simplest PDEs that
mathematicians have studied, and is one of the few PDEs
which has a explicit kernel densities given by

1 X" — 1y
4rtt)5‘eXp( 4t

pt(x,y):( ) t>0,x € R" (6)
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Being able to have explicit kernel densities allows us to
validate the theorems and lemmas we prove in a general
context by direct calculation and checking these are true.
The heat equation also is a good first model for looking at
diffusion processes as well as it having many nice smooth-
ing /regularising properties. The heat equation has the
Markov triple of (R™, dx, ") where dx is lebesgue mea-
sure on R™ and T'(f) = |V, f]*.

Why does Loy matter? The Ornstein Uhlenbeck operator
is closely related to the Laplacian operator, it is actually
the generalisation of Ly for infinite dimensions. Indeed, it
is developed for separable Banach spaces, which the Lapla-
cian doesn't work since the Laplacian idea of measure, be-
ing standard Lebesgue measure, doesn't make sense in an
infinite dimensional space. However, the measure associ-
ated with Ly is the standard Gaussian, which does make
sense over separable Banach spaces. It has the Markov
triple (R™, i, ') where p is the standard Gaussian mea-
sure on R™ and T'(f) = |V, f]*.

In addition, the Ornstein Uhlenbeck operator is closely
connected to the quantum harmonic oscillator potential
which appears in quantum theory, which we can see here.
The harmonic oscillator potential in R™ is given by

Hf = A f — |x|*f (7)

This is a symmetric operator with respect to lebesgue mea-

sure. Let (K{)t>o be the associated Markov semigroup for
[

H. We also observe that Uy =exp(—'5-) satisfies the
equation HUy = —nU,y. Then define

enth(UOf)
Rif =
t Us
with associated generator
H(Uof)
Lf =nf A
n U

Using the diffusion property
H(Uyf) = —nUyf + UgAf + 2V Uy - V, f
This yields that by the chain rule

Lt = Axf — va 10g(uO) - fo
(8)

which is precisely Loy. [1]

Functional inequalities

The Poincaré inequality is one of the simplest functional
inequalities that is studied, and can be used to prove
many useful properties of functions satisfying dof = Lf.
The Poincaré inequality is mainly concerned with placing
a bound on the variance of function f with respect to
probability measure 1 and it can be used to show that
functions that obey the Poincaré inequality converge to
a steady state as they evolve in time. The Markov triple
(E, w, I') is sufficient to state the Poincaré inequality, we
don't actually need to state L.

The Markov triple (E, i, I') satisfies the Poincaré inequal-
ity P(C) if for each f sufficiently nice

r 5 P

frdu — (| fdp)” < C
JE JE JE

'(f)du
(9)

var, (f) =
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This can be used to prove that var,(Pif) — 0 as t gets
large, which shows that it will converge to steady state u
over time.

For our examples, Loy satisfies the Poincaré inequality
P(1), which makes sense given that its associated invariant
measure W is the standard Gaussian measure on R™ which

is a probability measure, so the tails will converge. How-

ever, Ly does not satisfy the Poincaré inequality, which
again makes sense when we look at the measure associ-
ated with Ly since lebesgue measure does not make sense
on an infinite space, which is a clear requirement when we
look at the Poincaré inequality. [1], [3]
The logarithmic Sobolev inequality is more complicated
than the Poincaré inequality, but it is stronger than the
Poincaré inequality. The Markov triple (E, u, ') satisfies
the log Sobolev inequality LS(C, D) for positive C, D with
lL a probability measure on E if
Entu(fz): ZJ 2 log(f)du — J

fzdulog(J f2dp)
E E

E

<2c|

F(f)du+DJ f2du
E

(10)

If D = 0 then we abbreviate LS(C, 0) to LS(C) and this

is a tight log Sobolev inequality. Else, for D > 0 this is
called a defective inequality. Supposing that f =1 + €g
obeys LS(C), then by considering the Taylor expansion of
Pif, we find that g satisfies P(C). Then using the invari-
ance of W and that p is a finite measure, we see that f
also satisfies a Poincaré inequality.

Looking back to our examples, Loy satisfies LS(1) (Loy
also satisfies P(1)) and L}, does not satisfy a logarithmic
Sobolev inequality. Again, this makes sense as Lebesgue
measure on IR™ is not a finite measure, but the standard

Gaussian measure on R™ is. [2]

Summary and conclusions

In the case of the Poincaré inequality and the logarithmic
Sobolev inequality, observations on looking to bound L
and the finiteness of W are enough to obtain these impli-
cations for the Ornstein Uhlenbeck semigroup. This also

works nicely for operators in the form

Lf=Af+V, V-V, f @

where V is a sufficiently nice function. This observation

is a combination of knowing what 1 is and the bounds
on L, one of which is the curvature dimension condition.
This can be used for operators over infinite dimensions,
which we have seen in the case of the Ornstein Uhlenbeck
operator. Many of the operator bounds in quantum field
theory can be shown as equivalent to functional inequali-

ties, some of which are shown in this poster.
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