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1. Introduction
A tessellation or tiling is a complete covering of the surface by non-overlapping congruent polygons. In this project, we consider tilings of surfaces
with hyperbolic triangles. The first part of this work involves a literature review of the field. We look ahead to third and fourth year modules, notably
Introduction to Topology and Hyperbolic Geometry. This is followed by an investigation into classifying the groups corresponding to triangle tiling groups
on surfaces of genus 3. But what is the motivation for looking into triangular tilings? It turns out tilings made up of triangles yield a large number
of symmetries of the quotient surface, so are of interest when looking into groups of automorphisms of maximal order, and thus, highly symmetrical
surfaces. These highly symmetrical surfaces are known as Hurwitz surfaces. We discuss Klein’s Quartic Curve as a well-known example.

2. Research questions
The theoretical aspect of this project is guided
by several motivating questions.

• A tessellation is formed from repeated
congruent polygons. Which polygons can
be used to tile the hyperbolic plane?

• How can we determine which portions of
the hyperbolic plane can be wrapped up to
form surfaces? And how do we determine
the side-pairing transformations, or
“gluing instructions”?

For the investigation, I aim to answer the
question

• For a given genus g, say g = 3, what
are the possible triangular surface tiling
groups and what are their orders?

3. Tiling the hyperbolic plane
One of the models of the hyperbolic plane is the Poincaré disk, which is particularly convenient
for viewing hyperbolic tilings. A famous example of a hyperbolic tiling is displayed in Escher’s
“Angels and Devils”. Now we consider tilings of triangles. Given any natural numbers p, q and r, we
consider a triangle with the angles (π

p , π
q , π

r ) . We call a triangle with these angles a (p, q, r)-triangle.
Depending on the sum of the angles, this triangle is either Euclidean, spherical, or hyperbolic. For
the hyperbolic case, we consider triangles which satisfy

1
p

+
1
q

+
1
r

< 1.

The (p, q, r)-triangle group is the infinite group generated by reflections in the triangle sides, and
leads to a tiling of the hyperbolic plane by triangles. A triangle group of importance is the (2, 3, 7)
triangle group, with presentation

R2,3,7 = 〈a, b, c | a2 = b2 = c2 = (ab)2 = (ca)3 = (bc)7 = 1〉.

This gives the triangle of smallest area and the quotient curve with the most symmetry.
More generally, we may ask which polygons tile the hyperbolic plane without gaps or overlaps. A
set of necessary (but not sufficient) conditions for a polygon P to tile the hyperbolic plane is given
by Poincaré’s Polygon Theorem. Given a convex, finitely sided hyperbolic polygon P , if each
elliptic cycle of vertices satisfies the elliptic cycle condition, then the side-pairing transformations
generate a Fuchsian group. This Fuchsian group then has fundamental domain P , which thus
tessellates the plane.
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1. Escher’s famous woodcut, “Angels and Devils”, also known as Circle Limit IV.
2. The Poincaré disk tiled with (2, 3, 7)-triangles.

4. Wrapping to form surfaces
The hyperbolic octagon forms an
important example of how side-pairing
transformations give rise to hyperbolic
surfaces. Gluing the sides of the octagon by the
side-pairing transformations described gives rise
to a quotient surface of the form H

2/Γ. It is
difficult to visualise, but this creates a torus of
genus 2, or bitorus. In a similar way, we can
identify edges in a 14-gon to create the Klein
Quartic, topologically equivalent to a 3-torus.

[Figure 3.]

3. Side-pairing transformations marked on
a hyperbolic octagon with internal angles π

4 ,
giving the relation D−1C−1DCB−1A−1BA =
id.

5. Finding and classifying triangular tiling groups
We can construct finite groups from the infinite groups of reflections just described. This is the
quotient of R+

2,3,7, the orientation-preserving subgroup of R2,3,7 of index 2, by a fixed-point free
normal subgroup π1 of R+

2,3,7. The Riemann-Hurwitz formula describes a relationship between
the genus g of the surface, the order of the tiling group |G|, and the orders of the generating rotations
of R+

2,3,7:

2g − 2
|G| = 1 − (
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+
1
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+
1
r

).

I wrote code in Python to verify that |G| = 168 is in fact the order of the largest automorphism
group, and given a genus g of the quotient surface, list possibilities for automorphism groups.

6. Further research
Throughout this project I was learning to use the computer algebra software MAGMA. I attempted to
use the ALTAS database to further eliminate and classify triangular surface tiling groups. It proved
to be a difficult task, but hopefully as I gain more experience using the software I will be able to
complete this for genus 3. We could also extend this research by investigating for which orders |G| is
it possible to construct a triangular tiling group. For example, it is known that there are infinitely
many odd order non-abelian tiling groups, however we can ask the converse; whether it is true that
for all odd orders, there exists a non-abelian tiling group.
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