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Introduction

Geometric measure theory is the study of geometric objects using a measure theoretic frame‐
work. It lends itself nicely to the study of minimal surfaces, which are surfaces of least area
among all surfaces with a given boundary. In three dimensions, this mimics the soap film that
forms when a closed piece of wire is dipped in soapy water and pulled out.

This project explored the basics of geometric measure theory, leading to the study of area min‐
imising graphs and the Bernstein problem. This asks whether minimal hypersurfaces embedded
in Rn+1 that are the graph of a function must be affine linear. This turns out to be true for n ≤ 7,
but not higher dimensions. Here, the key ideas of the proof are illustrated for the case n = 3.

Geometric Measure Theory

A measure is a generalisation of the notion of length, area or volume to arbitrary sets. For any
subset A of a larger set, a measure µ assigns to it a value µ(A). For something to be a measure
it must map the empty set to zero and satisfy the property of countable additivity. This simply
means that taking the measure of a union of disjoint subsets is the same as taking the sum of
the measures of the subsets.

Figure 1. An illustration of countable additivity

Two important measures in geometric measure theory are the Lebesgue and Hausdorff mea‐
sures. These measures are fundamental to the study of geometric objects as they are invariant
under isometries (rotations, reflections and translations), matching the way volume behaves.
Whilst the Lebesgue measure Ln measures n‐dimensional subsets of Rn, the Hausdorff mea‐
sure Hm measures m‐dimensional subsets of Rn for m ≤ n. The two measures coincide when
m = n.

Figure 2. Measuring a subset using Lebesgue measure Figure 3. Measuring a curve using Hausdorff measure

Submanifolds of Codimension 1

A n‐dimensional submanifold M of Rn+l is a subset of Rn+l that locally looks like Rn. The codi‐
mension of a submanifold is the difference in dimension between the ambient space and the
dimension of the submanifold. From now on we assume M is a n‐dimensional submanifold em‐
bedded in Rn+1. The tangent space TyM at a point y is the linear subspace containing all tangent
vectors to curves on M passing through y. This gives us a local orthonormal basis for y ∈ M .

For a Lipschitz map f : M → R, the tangential gradient ∇Mf (y) is defined by

∇Mf (y) =
n∑

j=1
(Dτj

f (y))τj

where τ1, . . . , τn is any orthonormal basis for TyM .

The second fundamental form is the bilinear form By : TyM × TyM → (TyM)⊥ such that

By(τ, η) = −(η · Dτν)ν
∣∣∣∣
y

for τ, η ∈ TyM . This is closely related to mean curvature H which is defined as

H(y) =
n∑

i=1
By(τi, τi) ∈ (TyM)⊥.

Stable minimal surfaces have mean curvature equal to zero everywhere.

The Area Formula

The area formula is an important theorem in geometric measure theory that allows us to
calculate the Hausdorff measure of the image of a Lipschitz map from Rn to Rm, with n ≤ m.

Let u : Rn → R be Lipschitz and define M = graph(u). Then M is the image of the map
f : Rn → Rn+1 with f (x) = (x, u(x)). By the area formula,

Hn(M) =
∫
Rn

√
1 + |Du|2 dHn.

We can actually extend the area formula to a locally Lipschitz map f : M → RP where M is a
n‐dimensional manifold and P ≥ n.

Area Minimising Graphs

Here, we state some results about graphs that are minimal surfaces in Rn+1. In this section, the
function u : Rn → R is assumed to be Lipschitz and M = graph(u) = {(x, u(x)) : x ∈ Rn}.
Moreover, M is assumed to be area minimising, in particular, H = 0.

It can be shown that
divRn

(
Du√

1 + |Du|2

)
= 0.

This is done by analysing the first variation (derivative of the change in area) of local
perturbations of M .
Define ν̂ on Rn+1 as ν̂(x, xn+1 = ν(x, u(x)), where ν is the normal vector

ν = 1√
1 + |Du|2

(Du, −1).

Figure 4. The normal field ν̂

Then divRn+1(ν̂) = 0.

Let M ′ be any graph such that M ′ = M outside of a compact set K ⊂ Rn+1. Then

Hn(M ′ ∩ K) ≥ Hn(M ∩ K).

In other words, M locally minimises area.

Figure 5. The region between M and M ′

This can be proved by applying the Divergence Theorem to the shaded regions in the above
figure.
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Bounds on Area Minimising Graphs

Here we explore some inequalities that use the fact that the graph M is locally area minimising.

The Hausdorff measure of the intersection between M and a (n + 1)‐dimensional ball can be
bounded by half the ‘surface area’ of the ball. More precisely, for x ∈ M

Hn(M ∩ Bn+1(x, r)) ≤ 1
2
Hn(∂Bn+1(x, r)). (1)

Figure 6. Examples of possible intersections between B2(x, r) and 1‐dimensional M

The cases shown in Figure 6 are not candidates for M as they do not satisfy inequality (1).
However, they illustrate a method for proving (1) in which M is allowed to intersect
Bn+1(x, r) in arbitrarily many places. The boundary ∂Bn+1(x, r) is then divided into regions A
and B based on these intersections. The Divergence Theorem is applied to the regions
enclosed by A and Min or B and Min (depending on which of A and B has smaller measure)
to show that M must have smaller measure than its corresponding section of the boundary.
We then use the fact that min{Hn(A), Hn(B)} ≤ 1

2Hn(∂Bn+1(x, r)) to complete the proof.
Since M is locally area minimising, the second variation (second derivative of the change in
area) is positive, which leads to the following bound on mean curvature:∫

M

|∇Mζ|2 dHn ≥
∫

M

ζ2|B|2 dHn, (2)

for ζ Lipschitz with compact support, where

|B|2 =
n∑

i,j=1
|B(τi, τj)|2.

Bernstein’s Problem in R3

Let u : R2 → R be a C2 function such that M = graph(u) locally area minimising, then u is
affine linear.

Proof of Bernstein’s Problem

The key idea of the proof is what is known as the log cut‐off trick. We consider the function

ζj =


1 |x| ≤ j

2 − log |x|
log j j < |x| < j2

0 |x| ≥ j2

for all j ∈ N. This is a Lipschitz function with compact support.

Using inequality (2), the integral of |B|2 on M ∩B(j) (where ζj is non‐zero) can now be bounded
above by

∫
M |Dζj|2 dHn. Algebraic manipulation using shows that∫

M

|Dζj|2 dH2 <
A

log j

for some constant A. So as j approaches ∞, it follows that
∫

M∩B(j) |B|2 = 0 and hence |B|2 = 0.
From here it is straightforward to show that M must be a plane.

Conclusion

In general, Bernstein’s problem for a minimal n‐dimensional graph embedded in (n + 1)‐
dimensional space is true for n ≤ 7, and false for all higher dimensions. The problem was
posed in 1915, but only solved in its entirety in 1969, this marks over 50 years of work on the
topic in which many new ideas were developed. There are many generalisations of this problem
that are still being worked on today.

natasha-diederen.github.io Undergraduate Research Support Scheme natasha.diederen@warwick.ac.uk

https://natasha-diederen.github.io
mailto:natasha.diederen@warwick.ac.uk

	References

