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Relevance from PDEs

Following the recommendations from [1], which uses techniques from number theory

to provide an upper bound for the size of E
n,n′

β,γ,N,T ([1, p. 11]), I see how these

methods apply to similar sets in higher dimensions, starting with the 3 dimensional
one and seeing what still works and what goes wrong. The upper bound for the size

of E
n,n′

β,γ,N,T is used to bound the quantity sup
x∈T

|KN (t, x)| (defined in [1, p. 4], see

Proposition 3.2). In turn, bounds onKN (t, x) are used to analyse Strichartz estimates
for tori [1, Section 4]. The number theoretic techniques we use here are bounding the
number of solutions to linear diophantine equations in two and three variables.
The quantity we investigate is µ2, defined as follows:

µ2(t) = measure{(αij) ∈ E :αi1n
(j)
1 + . . . + αidn

(j)
d = t−1m

(j)
i +O

(
1

tN

)
for all i, j = 1, . . . d and some n

(j)
i ≲ N,m

(j)
i ≲ tN}

where Ed is the set of symmetric d×d matrices (αij) with |αij| ≤ 2 and the smallest
absolute eigenvalue |λ1| > 1.

Counting points and solving linear diophantine
equations

In order to bound the number of solutions to the compatibility conditions we need to
have tools to count integer points within certain intervals, as well as how to parame-
terise solutions to some linear diophantine equations.

Lemma 1: Let x ∈ [a, b]. Then the number of integer solutions for x is at most
1 + b− a

I have also used the following two lemmas from [2] to parameterise the solutions (if
they exist) to two and three variable linear diophantine equations, so we can vary the
parameter(s) in order to bound integer solutions within a given range.

Lemma 2: Let a, b, n ∈ Z, ab ̸= 0 and let g = gcd(a, b). Then ax + by = n has
a solution in Z2 iff d|n, giving solutions

(x, y) =

(
x0 +

kb

d
, y0 −

ka

d

)
parameterised by k ∈ Z with (x0, y0) a particular solution of ax + by = n

The idea to solve a three variable linear diophantine equation is to group two variables
together as a new variable, solve solutions for the resulting two variable equation
and then consider solutions to the equation for the two grouped variables. This
parameterises all solutions to the original equation in two parameters which we may
vary in Z:
Lemma 3: Let a, b, c, d ∈ Z such that abc ̸= 0, and set g =gcd(a, b, c). The
equation ax + by + cz = d has a solution in Z3 iff g | d, in which case the
solutions are given by

(x, y, z) =

(
x0 +

kb

δ
− u0l, y0 −

ka

δ
− v0l, z0 + δl

)
where (k, l) ∈ Z3, δ = gcd(a, b), (u0, v0) is a particular solution of au + bv = δc,
(z0, t0) is a particular solution of cz+ δt = d and (x0, y0) is a particular solution
of ax + by = δt0.

Studying the 3x3 case
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Setting up the equations following the definition of µ2 in the 3 dimensional case gives us the
system of 9 inequalities above, which we may reduce to 3 matrix inequalities by the following
method. We have an overdetermined system in αij (as it is a symmetric matrix) so by comparing
solutions for α12, α13, α23 solved in two different ways each, we get 3 compatibility conditions.
In order to analyse these, we group the equations as follows.
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|tnα1 −m1| ≲ 1/N

|tnα2 −m2| ≲ 1/N

|tnα3 −m3| ≲ 1/N

Since we’re able to assume the error term is sufficiently small, we may compare the integer parts
of the solutions to these inequalities and thus treat the system as equalities. We may also assume
det(n)̸= 0, allowing us to use the following method to solve for these.

tnαi = mi

αi =
1

t
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αi =
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tdet(n)
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To derive the conditions, we compare respective rows of adj(n) for i = 1, 2, 3, giving the following:
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In the case where no entries of adj(n) are zero, each equation (1), (2) and (3) is a three variable
linear diophantine equation. We also assume that any conditions on gcd’s within this system
hold such that it is possible for solutions to exist. The method then to bound the number of

integer solutions for m
(j)
i is then as follows, using the condition m

(j)
i ≲ tN :

• Use that m
(j)
i ≲ tN and lemma 1 to find that there are at most ≲ 1 + tN choices for each

m
(j)
i . In particular, we apply this to the values m

(j)
2 on the RHS of (1) to find there are

≲ (1 + tN)3 possible triples (m
(1)
2 ,m

(2)
2 ,m

(3)
2 )

• Now assuming values of (m
(1)
2 ,m

(2)
2 ,m

(3)
2 ) are fixed, we use results from linear

diophantine equations to bound the number of solutions (m
(1)
1 ,m

(2)
1 ,m

(3)
1 ) to

the LHS of (1), noting any gcds here are well defined as we have all entries of
adj(n) ̸= 0.

• Now fixing those values of (m
(1)
1 ,m
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1 ) along with (m
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2 ), we

can find solutions for (m
(1)
3 ,m

(2)
3 ,m

(3)
3 ) either from (2) or (3). Using the same

linear diophantine equations methods for each, we find two bounds on the num-
ber of solutions here and take a minimum.

• Finally we multiple to find an upper bound on the number of integer m
(j)
i for

i, j = 1, 2, 3.

This gives an upper bound for the number of possible integer solutions for m
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i in

the desired range:
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When some entries of adj(n) are zero, we have to take a more careful, case-by-case
approach, using techniques to solve two variable linear diophantine equations where
needed and adjusting bounds where necessary.

Where next?

In order to make these results usuable for the ensuing analysis to Strichartz estimates,
we may need a cleaner formula or a more accurate upper bound. A more accurate
bound would be obtained by focusing only on solutions that respect the simultaneous
nature of the compatibility conditions. By reducing the following matrix to Hermite
normal form, it may be easier to analyse and count the solutions, as well as determine
when they exist, using results from [3]. r2 −r1 (0, 0, 0)

(0, 0, 0) r3 −r2
r3 (0, 0, 0) −r1

m1
m2
m3

 =

0
0
0


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