
Model
To model this problem, we consider two cases, the first where the droplet falls 
under gravity and experiences drag, and the second where the droplet is in contact 
with the surface and experiences an upward contact force. We base the model on 
that of Blanchette’s paper [4], modifying this to account for a solid surface instead 
of a pool. To simplify, we nondimensionalise with length scale, 𝑅, being the initial 

droplet radius and time scale being T = Τ𝜌𝑑𝑅3 𝜎, where 𝑝𝑑 is the droplet density 
and 𝜎 is the surface tension between the droplet and air. The nondimensional 
equations for the centre of mass position, 𝑧, and vertical radius, 𝑟𝑣 

, in time, 𝑡, are
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where 𝜇𝑎 is the air viscosity, 𝑅𝑒𝑎 is the Reynolds number for air, 𝐵𝑜𝑑  and 𝑂ℎ𝑑 are 
the Bond and Ohnesorge numbers of the drop, and 𝑓 is the contact force. We 
impose the condition 𝑧 − 𝑟𝑣 = 0 during contact to determine the contact force, as 
in [4]. Since this is a two-dimensional system of ODEs, we can use standard ODE 
solvers in Python to solve these numerically and plot results.
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Introduction
The problem of droplet impacts has been studied for over 100 years, with Lord Rayleigh (1876) [1] being one 
of the first, examining capillary jet phenomena. As technology developed, better experiments could be 
performed, such as those by Jayaratne and Mason (1964) [2], which was one of the first papers to show the 
phenomenon of droplets bouncing on baths of the same fluid. Their experiments involved firing a stream of 
near uniform droplets at a still bath with varying incident angles, but never normal as otherwise incoming 
drops would collide with outgoing drops. They found that for different drop sizes, charges, and impact 
velocities and angles, coalescence could be observed instead of bouncing.

Since then, the field has continued to grow, partly due to further technological advances, such as those 
allowing for single droplets to be produced. An important discovery by Couder et al. (2005) [3] showed that if 
the bath was oscillated at certain frequencies and amplitudes, then bouncing of the droplet could be 
sustained for longer periods of time, on the order of multiple days. This discovery gave way to models for 
solid spheres as well as fluid droplets impacting fluid baths, such as Blanchette (2016) [4], being produced.

Here, we examine the case of a fluid droplet impacting a solid surface. Prior works, like Okumura et al. (2003) 
[5], give simple models for the droplet motion and deformation as well as scaling laws for the contact time.

Conclusions
Overall, we see that the model captures the drop motion and deformation well, 
whilst being relatively simple, where differences to the DNS can be attributed to 
the approximations made. This is beneficial as the entire Python code used runs in 
less than a minute, whereas the simulations can take days, or even weeks for more 
complex problems. This allows for insights to be made quickly and then they can 
be used to inform parameter choices for the simulations, which would save 
valuable computational time and resources.
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Interface Plots
Using the model as well as direct numerical simulations (DNS, which solves the full 
Navier-Stokes equations), with data provided by Dr. Cimpeanu, we can plot the 
interface shape of the droplet for 10 units of time. Below, we have plotted the 
interface for each model at three different times (1.0, 2.5, 4.0), using air as the 
surrounding fluid and an oil droplet having density 917.2 𝑘𝑔/𝑚3 , viscosity 
0.084 𝑃𝑎 𝑠, initial radius 0.5 𝑚𝑚 and initial velocity 0.25 𝑚/𝑠, and its centre 
starting 1𝑚𝑚 above the surface. The three plots show initial contact, the middle of 
contact, and just after contact with nondimensionalised lengths.

In the first plot, we see good agreement between the two models for both the 
interface and the centre of mass, with the simulation being slightly lower. This is 
most likely due to slight discrepancies in the drag terms of the two models.

In the second plot, we see that they again take similar shapes, with the centre of 
mass again being slightly lower for the simulation. This is in part due to the 
assumption of spheroidal (a spheroid is a volume of revolution of an ellipse) 
deformation of the droplet in the model, which is not the case for the DNS. Thus, 
the droplet becomes bottom heavy for the simulation, and in turn has a lower 
centre of mass. We see both drops extend horizontally to similar widths as well.

In the third plot, we see that the model is again above the simulation, which 
suggests this model conserves more energy, as the drag term is very small and in 
fact negligible in size at most times. However, the shapes of the two interfaces are 
very similar, which shows the model behaves correctly. In fact, during the rebound, 
we observe the drop extending vertically in both, which shows that the model 
behaves as we would hope.

Results
Using this model, and solving in Python, we can determine certain quantities from 
the data. We look at the contact time for the bounce (determined by the time for 
which 𝑧 − 𝑟𝑣 ≤ 0) and the coefficient of restitution (calculated using the local 
maximum and minimum velocity near the bounce time). We can then vary the 
droplet radius and velocity and see how it affects these quantities. This has been 
plotted below.

In the first plot, we see how the initial radius, in metres, and velocity, in metres per 
second, affect the contact time. Since the time scale depends on the initial radius, 
we plot dimensional time on the vertical axis. We see that the initial velocity has 
very little effect on the contact time, which is expected as the contact time is 

expected to scale as the time scale, 𝑇 = Τ𝜌𝑑𝑅3 𝜎, as seen in [4] and [5]. We also 
plot 𝟐𝑻 as this varies for the radius. We have good agreement with this. We also 
observe that the contact time increases with the initial radius, as expected from 

the scaling and it captures the
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 power. Interestingly, we see that for 𝑅 = 0.3𝑚𝑚 

and 𝑈 = 0.01𝑚/𝑠, we get a much larger contact time, which suggests the model 
had a problem for this case either due to this being a boundary case or that a 
numerical error occurred due to the ODE solver used.

In the second plot, we observe how the initial radius and velocity affect the 
coefficient of restitution (ratio of outgoing and incoming velocities). We observe 
that larger drops conserve more energy in the bounce and that the droplet initial 
velocity has only a small impact compared to the radius. This is not unexpected as 
larger drops would deform more so we would have a larger restoring force, 
resulting in larger outgoing velocities as the energy is transferred from spring to 
kinetic energy.

Figure 1 of Alventosa, L., Cimpeanu, R., & Harris, D. 2023. Inertio-capillary rebound 
of a droplet impacting a fluid bath. Journal of Fluid Mechanics, 958, A24. 

Code and Video

https://github.com/WilliamGillow/oil_droplet_bounce

https://github.com/WilliamGillow/oil_droplet_bounce
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