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THE MODEL

In fluid dynamics, sound waves are described 
as periodic perturbations in pressure which 
don’t transfer heat. Here, we are modelling 
sound propagation in air, so we shall also 
ignore viscosity. Under these assumptions, 
we can derive two differential equations 
(corresponding to conservation of mass and 
momentum) that relate the pressure and 
velocity to each other. 

We also assume that our waveguide is rigid - 
it does not move in response to changes in 
pressure. This corresponds to imposing a 
boundary condition that needs to be taken 
into account when solving the aforementioned 
equations. By performing some manipulations, 
we can use this boundary condition to 
eliminate a component of the velocity, 
leaving a system of differential equations 
for the pressure and transverse velocity 
(i.e. the velocity in the direction parallel 
to the duct walls). 

At this point, the natural thing to do would 
be to prescribe the velocity and pressure of 
the air at the inlet and solve these 
equations along the duct. However, the 
equations we have are unstable; the key step 
in this model is to introduce a new quantity 
called the admittance, which relates the 
pressure to the transverse velocity in a 
specific way. 

This admittance has a linear and non-linear 
part - substituting these into the equations 
we have yields three new equations, which we 
solve in the following way:

Note that our model requires us to specify 
the linear and non-linear admittances at the 
outlet. In fact, this is the essence of what 
makes solutions to these equations stable - 
certain choices of admittances ensure that 
exponentially growing components of the 
pressure are suppressed, making our solution 
both physical and stable. In a sense, the 
admittances at the outlet tell us something 
about the geometry of the outlet. 

Simplifying the geometry of the waveguide 
leads to a characteristic choice of the 
admittances. However, the corresponding 
sound in the model behaves as if it  
propagates down an infinitely long straight 
duct (with a width equal to the width of the 
outlet) after propagating through the 
waveguide we are studying. Clearly, this is 
not realistic. Instead, it would be better 
to choose admittances corresponding to the 
waveguide opening out into free space. We 
shall call these choices the open-end 
admittances. When the non-linear method (see 
left) was introduced, some values for the 
open-end admittances were derived but led to 
poorly behaved solutions. The purpose of 
this project was to find and justify the 
choice of open-end admittances which give 
rise to more physical solutions. 

Taking inspiration from the original 
derivation of the open-end admittances, we 
considered the duct exit as a source (with a 
width equal to the width of the outlet) 
placed at the centre of a much larger, 
infinitely long, straight duct of constant 
width. Note that this is therefore only an 
approximation of the duct opening out into 
free space, but this choice means that the 
admittances along the bigger duct are 
characteristic, giving us extra information 
to solve for the open-end admittances.

We can still ensure that the pressure to the 
left of the source is zero (as in the 
original derivation) by taking the impedance 
to be zero. However, computing the open-end 
admittances in this case numerically is 
challenging as one of the operators involved 
is not well-defined. 

Here, we get around this issue by choosing 
the impedance to be small but non-zero. This 
has the effect of perturbing operators so 
that they are invertible; in particular, we 
can compute the open-end admittances. Using 
this choice, we solved for the sound 
surrounding the outlet - so far, only the 
linear pressure has been plotted (see the QR 
code above).  

In many ways, the plots behave as we expect; 
there are reflections off the walls of the 
larger duct and beaming at high frequencies. 
However, there is sound to the left of the 
source, and these results naturally give 
rise to several questions: 

(1) Is the sound to the left of the source a 
result of setting the impedance to be non-
zero, or is it because of interference due 
to the geometry? 

(2) Are we overprescribing the problem? Can 
we compute the impedance from the other 
constraints? 

(3) Does plotting the non-linear sound at 
the outlet produce sensible results? 

(4) The values of the admittances depend on 
the width of the big duct - how does varying 
this change the resulting sound through the 
waveguide?

THE PROBLEM

A  waveguide (or duct)  is any structure which ‘guides’ sound waves by 
restricting the direction of propagation. Such structures are 
everywhere - organ pipes, elephant trunks, engine intakes, and air 
conditioning ducts are all examples of waveguides; understanding how 
sound behaves in such objects would therefore be very useful. 

There is already a method in the literature that deals 
with  linear  acoustics in waveguides but, in practice, this 
isn't a helpful model. In many applications, the amplitude 
of sound passing through waveguides is large enough that 
non-linear effects cannot be ignored. For example, the 
linear model detects no difference between sound in a 
trombone and sound in a euphonium.  

More recently, this model was extended to a weakly 
non-linear regime (i.e. where we only neglect 
terms which are cubic or higher in the pressure 
and velocity, instead of neglecting quadratic  
or higher terms as in the linear case). As a 
result, we get mode-mixing - the 
fundamental feature in non-linear 
acoustics that gives rise to effects 
such as wave-steepening and shocks.  

This is the model that we shall 
work with. 

(3) The third involves both 
admittances and the pressure 
- after setting the pressure 
at the inlet, we can use the 
admittances found above to 
solve this equation forwards 
and determine the pressure 
(and hence the sound) through 
the duct.

(2) The second involves both 
the linear and non-linear 
admittances - we prescribe a 
non-linear admittance at the 
outlet and use the linear 
admittance determined in (1) 
to solve this equation 
backwards along the duct.

(1) The first equation only 
involves the linear  part of 
the admittance, so we choose 
this at the outlet and solve 
backwards through the duct.
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In effect, we suppose that sound does not 
interact with the walls of the waveguide 
after it has left the outlet. In the 
original derivation, the pressure at all 
points in the duct was taken to be the 
average of two other solutions corresponding 
to different geometries, ensuring that the 
pressure to the left of the source was zero. 
However, the resulting velocity solution was 
not continuous (and thus not physical). We 
instead suppose that both the pressure and 
velocity solutions are continuous directly 
above and below the source; to close the 
system, we also prescribe an impedance (the 
inverse of admittance) to the left of the 
source. 

We can then use these constraints to 
determine the open-end admittances in terms 
of the chosen impedance and the width of the 
bigger waveguide. 


