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Introduction

There are many ways that we can generate a given positive whole number
by adding smaller, distinct numbers together. For instance, 7 = 4 + 3 but
also 7 = 6 + 1 = 4 + 2 + 1 and 7 = 5 + 2. Notice that in the last example,
the two numbers added together are examples of Fibonacci numbers. In
other words, they appear in the sequence 0, 1, 1, 2, 3, 5, 8, ..., in which the
next term is produced by adding together the two previous terms. In doing
this ‘generating’ of 7, sometimes people will say that we have ’partitioned’
7, since we have separated 7 into different ‘parts’. If each of the parts (whole
numbers) is a Fibonacci number, then we call this a Fibonacci partition.

Counting partitions

Throughout the last 60 years, the question: “How many Fibonacci partitions
are there for each given positive whole number?” has been investigated by
mathematicians. Indeed, the idea of counting these Fibonacci partitions
was first mentioned all the way back in 1963, in the very first edition of the
Fibonacci Quarterly, a journal whose papers focus on Fibonacci numbers.
Another way of stating this question is to ask: “For any given number,
how many ways can I generate it by adding together different Fibonacci
numbers?”. This question is therefore easy to state, but is there actually an
easy formula to work this out?

Unfortunately, the answer is no. Mathematicians have proven formulas
which give us the number of Fibonacci partitions for each whole number,
although these are all very complicated to write down. The graph on the
next page shows just how randomly the number of these partitions changes
as our whole number gets larger. This indicates the difficulty that arises
when trying to find a simple ‘rule’ to help us count partitions.

Why so random?

It is important to recognise that the Fibonacci sequence grows exponentially.
As we saw above, the initial terms do not seem that big, but, for instance,
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Figure 1: Number of Fibonacci partitions for n against n

only the 20th Fibonacci number is as large as 6765. Now, we need larger
Fibonacci numbers to be part of our partition in order to generate greater
numbers on the number line. This means that, although we may expect
the number of Fibonacci partitions to be greater for a larger whole number
(since there are ’more smaller parts’ behind it), this is countered by the fact
that larger Fibonacci numbers (which we need to use) are far more thinly
spaced out along the number line.

Variance of the data

There has been some success in studying various quantities associated with
the number of Fibonacci partitions per whole number. We will call our
whole number n and its number of Fibonacci partitions R(n). Let’s also
define the average number (‘total divided by how many numbers there are’)
of partitions per whole number up to n to be M(n). For example,

M(4) =
R(1) +R(2) +R(3) +R(4)

4

It turns out that the behaviour of this average is far less random (although
an exact formula is still hard to write out).

Besides averages, statisticians often look into the ‘range’ and ‘spread’ of
data in a dataset. One quantity in particular that is frequently mentioned
is the variance, which measures how far data lies from its mean value. To
illustrate this, consider the numbers 2, 3, 3, 3, 4. These are all quite close
to the mean of 3, so we would say that the variance is low. Inspired by
the relatively successful investigation of the average number of partitions up
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to n, we might try to think about how the variance behaves. This will be
particularly interesting to look at because of the wide variety of values that
R(n) takes that are far from the mean value. The usual way to calculate
variance is to compute “The mean of the squares minus the square of the
mean”. As an illustration, if, again, we were going up to 4, we would need
to find

R(1)2 +R(2)2 +R(3)2 +R(4)2

4
−
(
R(1) +R(2) +R(3) +R(4)

4

)2

Since we already understand the average, this problem reduces to under-
standing the behaviour of the sum of squares V (n) = R(1)2 + ...+R(n)2.

Pairs of solutions

On the face of it, figuring out how to start this problem might seem tricky.
After all, we do not yet have a good understanding of what the quantity
R(n)2 really means in terms of counting partitions. To give us an interpre-
tation of R(n)2, it is useful to consider R(n) as the number of solutions to
a particular equation. The precise details of the complete equation for any
n are a bit technical , but we can think of it as a more general version of
something like x+ y + z = n where x, y and z are distinct Fibonacci num-
bers; in the general equation we have more than three possible variables (ie
more symbols on the left added together than just x, y and z), since we
could add more than just three Fibonacci numbers together. Now, imagine
you treat each solution as one ‘package’ and bundle all the packages into a
‘box’. Suppose we have two such boxes and you pair up each solution from
the first box with a solution from the second box. How many ways are there
to do this? Well, there are R(n) possibilities for the package from the first
box, and for each of these, there are precisely R(n) packages that it could be
paired with from the second box. This gives R(n)×R(n) = R(n)2 possible
(ordered) pairs. For example, if there are just three solutions S1, S2, S3 to
our general equation then I can represent the box as {S1, S2, S3}. The list
of pairs would then be

(S1, S1), (S1, S2), (S1, S3), (S2, S1), (S2, S2), (S2, S3), (S3, S1), (S3, S2), (S3, S3)

so there would be 3× 3 = 9 possibilities.

Case by case analysis

What, then, can be said of the quantity V defined already? Well, if we were
to calculate V (n), we would go through each whole number from 1 to n and
deal with finding the number of pairs from the ‘boxes’ one by one, before
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adding all of these pairs together. Therefore, it is possible to interpret V as
the number of solutions to an inequality which looks something like this:

0 < x+ y + z = a+ b+ c ≤ n

so the a, b, c form one solution and the x, y, z make up another, and it does
not matter which whole number this pair of solutions is associated with as
long as it is between 1 and n. To solve this, it is best to start with the
case of n being a Fibonacci number. Suppose n = Fm, the mth Fibonacci
number. If we can find a general formula for V (Fm) − V (Fm−1) then we
could use this to find V (Fm). This amounts to solving something like

Fm−1 < x+ y + z = a+ b+ c ≤ Fm

Still, it is not obvious where to begin. What size can our Fibonacci numbers
be so that they are within this range? Well, when summing Fibonacci
numbers, it is possible to prove (using a method called induction) that, for
any positive whole number m, the sum of all the distinct Fibonacci numbers
from 1 to Fm−2 is equal to Fm − 2 which is of course less than Fm. For
example,

F2 + F3 + F4 = F6 − 2 < F6

This might seem surprising but, as we noted before, the Fibonacci numbers
grow very fast, so even bumping m − 2 up by 2 to get to m causes an
enormous growth in the sequence - a growth so large that even if you added
together every single Fibonacci number up tom−2 you still would not reach
Fm. This inequality means that in order to be at least as large as Fm−1, the
biggest Fibonacci number in the sum must be at least Fm−2 (even if, say,
instead of x, y and z we had 10 different variables) since summing all the
Fibonacci numbers up to Fm−3 would create a number that is below Fm−1.
For example, in the casem = 7, we see that we can not have F4 as our largest
Fibonacci number. Note also that we cannot have any Fibonacci number
in the sum exceeding Fm itself, since otherwise the sum would be too big.
When m = 7, this means we can not have anything like F8 as our highest
Fibonacci number. As a result of this analysis, we can start breaking down
the problem into different cases depending on what the largest Fibonacci
number is in each sum, and counting the number of solutions in each case.

A formula for V (Fm)

Due to the fact that Fm = Fm−1+Fm−2, it turns out that each case reduces
us to another equation related to V or R. In our inequality above, imagine
I replace both c and z with Fm−1 (one of the ’cases’). We then see that the
inequality can be simplified to get

0 < x+ y = a+ b ≤ Fm−2
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which is like V (Fm−2). Consequently, we can derive what is known as a
recursive formula. That is, a formula for V (Fm) which depends on the
values taken by V when smaller numbers are used, so V (Fm) might depend
on V (Fm−4) for example.

Recursive formulas appear in many different contexts in maths, like
population growth. The simplest form of a recurrence is something like
xk = 2 × xk−1 where, perhaps, xk represents the number of animals in a
habitat in year k. Thus the amount of animals there doubles every year.
Therefore, if you start at year 0, the total number of animals by year k
would be 2 multiplied by itself k times. In other words, xk = 2k × x0.
Consequently, the population increases exponentially year on year. The re-
currence for V (Fm)−V (Fm−1) is far more complicated than this, but it can
be solved and also gives us a formula for V (Fm) involving exponential terms.
Therefore, as m increases, the quantity V (Fm) increases exponentially. It
turns out that V (Fm) ≈ u× vm – where u ≈ 0.074 and v ≈ 2.48 – for very
large m.

How big is V (n)?

This therefore gives a pretty satisfying result for V (n) when n is a Fibonacci
number, but we still need some information about what happens in other
cases. However, this does not create too much trouble, since we can always
find some Fibonacci number Fm such that Fm−1 ≤ n ≤ Fm and, since V (n)
gets larger whenever n gets larger (it is the sum of terms up to n after
all), we must have V (Fm−1) ≤ V (n) ≤ V (Fm). Then, using the fact that
Fm ≈

√
5× ϕm, we can show that V (n) grows at the same rate as np where

p ≈ 2. More precisely, 0.3× np < V (n) < 0.4× np.
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Figure 2: V (n)
np against n
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