
Fast calibration of lithium-ion batteries

Toby Sheldon
Supervisor: Dr Florian Theil

October 12, 2022

Contents

1 Introduction 1

2 Simplified DFN model 1

3 Implementing a finite difference scheme 2

4 Parameter estimation 4
4.1 Calculating the Jacobian . 5
4.2 Using the Jacobian to estimate the model parameters 6

5 Experimental Results 6

6 Learning model structure 8

7 Conclusion 10

1 Introduction

The state of charge of lithium-ion (Li-ion) batteries can be modelled using the Doyle-Fuller-
Newman (DFN) model [1]. However, this approach is computationally expensive, making it im-
practical for real-time applications. Furthermore, in order to use the DFN model for a particular
battery, one needs to know the model parameters which depend on each battery.

In this project, we implemented a simplified version of the DFN model, which used fewer
parameters than the full version. This simplified model resulted in faster computation speeds,
whilst still achieving high accuracy. A finite difference scheme was used to approximate solutions
to the partial differential equations (PDEs) that describe the simplified model.

We then used a Levenberg-Marquardt algorithm [2] to estimate the model parameters, which
allowed us to minimise the discrepancy between the simulated and observed data of battery voltage.

Thus, with sufficient training data, we can calibrate the model parameters to fit this data
and then use the model to predict future behaviour of the battery’s voltage when subjected to
an applied current. The fast computation time of the finite difference scheme means that the
parameter estimation process and the data simulation are also fast.

Also, in a similar way to estimating model parameters, we were also able to ‘learn’ part of
of the model structure. This consisted of replacing a function which is know to be part of the
model, such as sinh(x), with a polynomial q(x). Then, the polynomial coefficients are estimated in
the same way as other model parameters in the hope that the resulting polynomial approximates
sinh(x).

2 Simplified DFN model

A Li-ion battery cell is made up of a negative and a positive electrode, with a separator in between.
The lithium-ions can be found in an electrolyte solution throughout the cell; and they can also be
found in the solid state in balls, located in the positive and negative electrode.

The DFN model describes how the concentration of lithium and the electric potential in the
battery changes over time, given some applied current. We use a simplified version of the dimen-
sionless DFN model [3].

1

We denote the concentration of lithium in the electrolyte and solid state at time t by ce(z, t) and
cs(z, r, t), respectively. We also denote the electric potential by Φs(z, t). Here, z ∈ [−1, 0) ∪ (0, 1]
is the mesoscale variable, representing the position in the cell; and r ∈ [0, 1] is the microscale
variable, representing the distance from the centre of a ball containing Li in the solid state.

The model equations are given by
∂tcs = Dsr

−2∂r
(
r2∂rcs

)
in [0, 1]

−Ds∂rcs = βsg for r = 1

∂rcs = 0 for r = 0

(1)


βeg = ∂tce −De∆zce in Ωe

0 = ∂zce for z ∈ ∂Ωe

1 = ce at t = 0

(2)

where z is the mesoscale variable in Ωe = [−1, 1].
g = αs∂

2
zΦs in Ωe \ Ωs = [−1, 1] \ {0}

i = αs∂zΦs in ∂Ωe

0 = ∂zΦs ∂Ωs

(3)

where i : R+ → R is the applied current and Ωs = {0}.
We use the following definition for g:

g = j0 sinh
(

λ
2

η
1+γT

)
with η = Φs − UOCP(cs)

and j0 = µ [(1− cs)csce]
1
2

(4)

where UOCP, given in [4], is the open circuit potential.
We are interested in finding the voltage, V , of a battery. This is given by the electric potential

difference between the ends of both electrodes

V = Φs(1)− Φs(−1) (5)

3 Implementing a finite difference scheme

It is impossible to solve the system of equations (1), (2) and (3) analytically, so we use a finite
difference scheme to approximate a solution to these equations.

We discretise Ωe and Ωs in space in the following way. Let N > 0 and define h := 1
N . We

define the spatial meshes as

Ω−
e,h := {jh ∈ R | j ∈ {−N,−N + 1, · · · , 0}}

Ω+
e,h := {jh ∈ R | j ∈ {0, 1, · · · , N}}

Ω−
s,h := {(jh, kh) ∈ R2 | j ∈ {−N,−N + 1, · · · , 0}, k ∈ {0, 1, · · · , N}}

Ω+
s,h := {(jh, kh) ∈ R2 | j ∈ {0, 1, · · · , N}, k ∈ {0, 1, · · · , N}}

To simplify notation, we also write

cme,j := ce(jh,mδ), j ∈ Ω±
e,h ,m ∈ N (6)

cms,j,k := cs(jh, kh,mδ), (j, k) ∈ Ω±
s,h ,m ∈ N (7)

Φm
s,j := Φs(jh,mδ), j ∈ Ω±

e,h ,m ∈ N (8)

gmj := g(jh,mδ), j ∈ Ω±
e,h ,m ∈ N (9)

Where δ > 0 is the time step of the discretisation. We also define

cm,−
s,h :=

(
cms,−N,0, c

m
s,−N+1,0, · · · , cms,0,0, cms,−N,1, · · · , cms,0,N

)⊤
and cm,+

s,h , cm,−
e,h , cm,+

e,h ,Φm,−
s,h ,Φm,+

s,h similarly.

Given cm,−
s,h we use equations (1) - (4) and the Crank-Nicholson method [5] to find cm+1,−

s,h .

First, use cm,−
e,h , cm,−

s,h , Φm,−
s,h to calculate gm,−

h .

2

Then, we discretise (1) and use the Crank-Nicholson scheme to get

cm+1−
s,j,k −cm,−

s,j,k,

δ = 1
2Ds

(
2
kh

cm+1,−
s,j,k+1−cm+1,−

s,j,k

h +
cm+1,−
s,j,k+1−2cm+1,−

s,j,k +cm+1,−
s,j,k−1

h2

)
+ 1

2Ds

(
2
kh

cm,−
s,j,k+1−cm,−

s,j,k

h +
cm,−
s,j,k+1−2cm,−

s,j,k+cm,−
s,j,k−1

h2

)
, j ∈ Ω−

s,h, k ∈ {1, · · · , N − 1}

Ds
cm+1,−
s,j,N −cm+1,−

s,j,N−1

h = −βsg
m
h , j ∈ Ω−

s,h
cm+1,−
s,j,1 −cm+1,−

s,j,0

h = 0 , j ∈ Ω−
s,h

(10)
This can be compactly written using matrices:

Acm+1,−
s,h = Bcm,−

s,h +D(m),− (11)

where

A =



− 1
hI

1
hI 0

0 I 0
0 0 I

. . .

I 0
− 1

hI
1
hI



− 1

2
Ds

δ

h2



0 0 0
I −2(11 + 1)I

(
2
1 + 1

)
I

0 I −2(12 + 1)I
. . .

−2(1
N−1 + 1)I

(
2

N−1 + 1
)
I

0 0


∈ R(N+1)2×(N+1)2

Where I,0 ∈ R(N+1)×(N+1).
Similarly,

B =



0 0 0
0 I 0
0 0 I

. . .

I 0
0 0



+
1

2
Ds

δ

h2



0 0 0
I −2(11 + 1)I

(
2
1 + 1

)
I

0 I −2(12 + 1)I
. . .

−2(1
N−1 + 1)I

(
2

N−1 + 1
)
I

0 0


∈ R(N+1)2×(N+1)2

and

D(m),− = −βs



0
...
0

gm−N
...
gm0


∈ R(N+1)2

Then, since A is invertible, we can use (11) to find

cm+1,−
s,h = A−1

(
Bcm,−

s,h +D(m),−
)

In a similar way, we can calculate cm+1,+
s,h and cm+1,±

e,h from their values at time t = mδ.

3

To find Φm+1,−
s,h , we find auxiliary variables Φ̃m+1,−

s : [−1, 0) → R and λ̃− ∈ R such that

Φm+1,−
s = Φ̃m+1,−

s + λ̃−

where Φ̃m+1,−
s solves (3) with the Neumann boundary condition at z = 0 replaced with a Dirichlet

boundary condition:
g = αs∂

2
z Φ̃

m+1,±
s in Ωe \ Ωs = [−1, 1] \ {0}

i((m+ 1)δ) = αs∂zΦ̃
m+1,±
s in ∂Ωe

λ̃± = Φ̃m+1,±
s , z = 0±

(12)

It is possible to find Φ̃m+1,−
s,h using matrices as described earlier.

And λ̃− is the constant satisfying

i((m+ 1)δ) =−
∫ 0

−1

g(z, (m+ 1)δ)dz

=−
∫ 0

−1

j0 sinh

(
λ

2

Φ̃m+1,−
s + λ̃−

1 + γT

)
dz (13)

which can be derived from (3).
An initial guess of λ̃− needs to be made. Then one can update Φ̃m+1,−

s,h using a discretisation

of (12) and update λ̃− using (12).
A similar approach can be taken to find Φm+1,+

s,h .
We now have a method to evolve the state vector

xm
h :=

(
cm,−
e,h , cm,+

e,h , cm,−
s,h , cm,+

s,h ,Φm,−
s,h ,Φm,+

s,h

)
from the m-th time step to the (m+ 1)-th time step. Hence, we can find an approximate solution
to the system of equations (1) - (3)

4 Parameter estimation

Now we are able to model the voltage of a battery as a function of applied current, with model
parameters De, Ds, αs, βe, βs, γ, λ, µ. We want to know which values to take for the model param-
eters. To find these values, we need observed data consisting of the input (applied current) and
output (voltage of the battery). Model parameters are then optimised to minimise the least error
between the observed voltage and the modelled voltage of the battery.

Let us denote the observed data at time mδ by (um, ym) for m ∈ N, where um represents the
applied current and ym is the voltage. For a given set of model parameters p ∈ Rnp , which we
would to estimate, we denote the modelled voltage at time mδ by f(um;p). Here, np is the number
of parameters which we want to estimate.

We use the quadratic loss function

S(p) :=

M∑
m=0

(ym − f(um;p))
2

to measure the discrepancy between the observed and modelled output for a given set of parameters.
To find a set of parameters which minimises this loss function, we use a Levenberg-Marquardt

algorithm [2]. This requires us to know the Jacobian Jp of the modelled ouput with respect to
some given parameters p.

Jp :=


∇pf(u0,p)
∇pf(u1,p)

...
∇pf(uM ,p)

 ∈ R(M+1)×np

An approximation of the Jacobian can be computed in a similar way to how the voltage is
approximated in section 3 (see appendix in [6]). Instead of finding an approximate solution to the
system of equations (1), (2) and (3), we now differentiate this system of equations with respect
to each model parameter and then find an approximate solution to these new equations, using a
finite difference scheme similar to that of section 3.

4

4.1 Calculating the Jacobian

In this subsection, we explain how to find the Jacobian Jp of f(p) with respect p, where f(p) =

(f(u0,p), · · · , f(uM ,p))
⊤
. For simplicity, we will consider the case where p = (Ds), so np = 1.

Thus, we need to find ∂f(um,p)
∂Ds

for 0 ≤ m ≤ M .
From equation (5), we see that the voltage at time mδ is

f(um,p) = Φm,+
s,N − Φm,−

s,−N

=⇒ ∂f(um,p)

∂Ds
=

∂Φm,+
s,N

∂Ds
−

∂Φm,−
s,−N

∂Ds
(14)

Thus we need to know the derivative of the state vector w.r.t. Ds,
∂xm

h

∂Ds
. We calculate this

derivative in a similar way to how we calculated xm
h by using another finite difference scheme to

solve the following equations:
∂t∂Ds

cs = r−2∂r
(
r2∂rcs

)
+Dsr

−2∂r
(
r2∂r∂Ds

cs
)

in [0, 1]

−∂rcs −Ds∂r∂Ds
cs = βs∂Ds

g for r = 1

∂r∂Ds
cs = 0 for r = 0

(15)


βe∂Ds

g = ∂t∂Ds
ce −De∆z∂Ds

ce in Ωe

0 = ∂z∂Dsce for z ∈ ∂Ωe

0 = ∂Dsce at t = 0

(16)


∂Ds

g = αs∂
2
z∂Ds

Φs in Ωe \ Ωs = [−1, 1] \ {0}
0 = αs∂z∂Ds

Φs in ∂Ωe

0 = ∂z∂Ds
Φs ∂Ωs

(17)

Where

∂Ds
g =

∂g

∂cs
∂Ds

cs +
∂g

∂ce
∂Ds

ce +
∂g

∂Φs
∂Ds

Φs (18)

This system of equations is merely the derivative of equations (1) - (4) with respect to Ds. Note
that, as well as depending on ∂Ds

cs, ∂Ds
ce, ∂Ds

Φs, equations (15) - (18) also depend on cs, ce,Φs.
Now, we can implement a finite difference scheme to approximate the solution of (15) - (18).

This will tell us how to evolve

∂Dsx
m
h :=

(
∂Dsc

m,−
e,h , ∂Dsc

m,+
e,h , ∂Dsc

m,−
s,h , ∂Dsc

m,+
s,h , ∂DsΦ

m,−
s,h , ∂DsΦ

m,+
s,h

)
into ∂Ds

xm+1
h , which allows us to evaluate (14) and, hence, the Jacobian Jp.

We discretise ∂Dscs, (15), in a similar way to to the discretisation of cs, (10). Again, we use
the Crank-Nicholson scheme:

∂Dsc
m+1−
s,j,k −∂Dsc

m,−
s,j,k,

δ = 1
2

(
2
kh

cm+1,−
s,j,k+1−cm+1,−

s,j,k

h +
cm+1,−
s,j,k+1−2cm+1,−

s,j,k +cm+1,−
s,j,k−1

h2

)
+ 1

2

(
2
kh

cm,−
s,j,k+1−cm,−

s,j,k

h +
cm,−
s,j,k+1−2cm,−

s,j,k+cm,−
s,j,k−1

h2

)
+ 1

2Ds

(
2
kh

∂Dsc
m+1,−
s,j,k+1−∂Dsc

m+1,−
s,j,k

h +
∂Dsc

m+1,−
s,j,k+1−2∂Dsc

m+1,−
s,j,k +∂Dsc

m+1,−
s,j,k−1

h2

)
, j ∈ Ω−

s,h

+ 1
2Ds

(
2
kh

∂Dsc
m,−
s,j,k+1−∂Dsc

m,−
s,j,k

h +
∂Dsc

m,−
s,j,k+1−2∂Dsc

m,−
s,j,k+∂Dsc

m,−
s,j,k−1

h2

)
, k ∈ {1, · · · , N − 1}

−βs∂Ds
gmh =

cm+1,−
s,j,N −cm+1,−

s,j,N−1

h +Ds
∂Dsc

m+1,−
s,j,N −∂Dsc

m+1,−
s,j,N−1

h , j ∈ Ω−
s,h

0 =
∂Dsc

m+1,−
s,j,1 −∂Dsc

m+1,−
s,j,0

h , j ∈ Ω−
s,h

(19)
Using matrices A1, A2, B1, B2, this can be written as

A1∂Ds
cm+1,−
s,h = −A2c

m+1,−
s,h +B1∂Ds

cm,−
s,h +B2c

m+1,−
s,h +D(m),−

where D(m),− = −βs

(
0, · · · , 0, ∂Dsg

m
−N , · · · , ∂Dsg

m
0

)⊤ ∈ R(N+1)2 .

Note that in order to calculate ∂Ds
cm+1,−
s,h , we must first know cm+1,−

s,h and cm,−
s,h , which we can

calculate using the finite difference scheme in section 3.

5

In a similar way, we can find ∂Dsc
m+1,+
s,h and ∂Dsc

m+1,±
e,h in terms of ∂Dsx

m
h , xm

h and xm+1
h .

Finally, we find ∂Ds
Φm+1,−

s,h similarly to how we found Φm+1,−
s,h in section 3. We use auxiliary

variables ∂Ds
Φ̃m+1,−

s : [−1, 0) → R and λ̃− ∈ R such that

∂DsΦ
m+1,−
s = ∂DsΦ̃

m+1,−
s + λ̃−

where ∂Ds
Φ̃m+1,−

s solves (17) with the Neumann boundary condition at z = 0 replaced with a
Dirichlet boundary condition:

∂Ds
g = αs∂

2
z

(
∂Ds

Φ̃m+1,±
s

)
in Ωe \ Ωs = [−1, 1] \ {0}

0 = ∂z

(
∂Ds

Φ̃m+1,±
s

)
in ∂Ωe

λ̃± = ∂Ds
Φ̃m+1,±

s , z = 0±

(20)

It is possible to find ∂Ds
Φ̃m+1,−

s,h using matrices as described earlier.

And λ̃− is the constant satisfying

0 =

∫ 0

−1

∂Ds
g(z, (m+ 1)δ)dz

=

∫ 0

−1

(
∂g

∂cs
∂Ds

cs +
∂g

∂ce
∂Ds

ce

)
dz

+

∫ 0

−1

∂g

∂Φs

(
∂Ds

Φ̃s + λ̃−
)
dz

=⇒ λ̃− =−

∫ 0

−1

(
∂g
∂cs

∂Dscs +
∂g
∂ce

∂Dsce +
∂g
∂Φs

∂DsΦ̃s

)
dz∫ 0

−1
∂g
∂Φs

dz
, assuming

∫ 0

−1

∂g

∂Φs
dz ̸= 0

which can be derived from (17).
A similar approach can be taken to find Φm+1,+

s,h .

Now that we have a method of calculating ∂Ds
xm+1
h from ∂Ds

xm
h , we are able to find ∂f(um+1,p)

∂Ds

using equation (14). Hence, we are able to calculate the Jacobian of f with respect to Ds.

4.2 Using the Jacobian to estimate the model parameters

Now that we have the Jacobian Jp of the simulated voltage f(p) with respect to model parameters
p, our goal is to find a set of parameters p′ such that the cost S(p′) is minimised. We use the
following Levenberg-Marquardt (LM) method to iteratively find better and better parameters.

First, we make an initial estimate of the parameter values (e.g. by using trial and error)

p0 := (De,0, Ds,0, αs,0, βe,0, βs,0, γ0, λ0, µ0)
⊤

and start with an initial damping factor Λ > 0 for the LM algorithm.
On the k-th iteration of the LM algorithm, k ∈ N, we compute the update step, defined as

dk =
(
J⊤
pk
Jpk

+ ΛI
)−1

J⊤
pk

(y − f(pk)) (21)

where I is the identity matrix. Then we update the parameters according to

p′
k+1 = pk + dk (22)

If S(p′
k+1) < S(pk), then we set pk+1 = p′

k+1 and reduce Λ by a factor of 3.
However, if S(p′

k+1) ≥ S(pk), then we increase Λ by a factor of 2 and repeat (21) and (22).
This process is repeated to find successive collections of parameters pi, such that S(pi) >

S(pi+1), and it terminates when S(pk)− S(pk+1) < ε for some tolerance ε > 0.

5 Experimental Results

This section illustrates the finite difference model working on input data (applied current, sampled
at a frequency of roughly 1 Hz) for a given battery, provided by W. Dhammika Widanage (WMG,

6

Figure 1: Plot of observed voltage (black) and applied current (red) over time.

International Manufacturing Centre, University of Warwick). We compare the modelled output
(voltage of the battery) with the observed output and use a Levenberg-Marquardt method to vary
the model parameters such that the quadratic loss function is minimised.

Figure 1 plots the observed voltage with the applied current as input.
We use a spatial distance in the finite difference scheme of h = 1

10 and a time step of δ = 1 (as
the sampling frequency of the input data is 1 Hz). We also use the initial conditions

c0,−s,j,k ≡ 0.716

c0,+s,j,k ≡ 0.284

c0,±e,j ≡ 1

We make an initial guess of the model parameters

p0 =



De,0

Ds,0

T
αs,0

βe,0

βs,0

γ0
λ0

µ0


=



104

10−3

300
104

1
10−5

102

103

104


(23)

From these initial parameters, we get a quadratic loss of S(p0) = 1263.
Figure 2 compares the simulated voltage, where the initial model parameters have been used,

with the observed voltage. The simulation is, in some places, a good approximation to the observed
data. However, there is a relatively large discrepancy around the six and fourteen hour mark.

Using a Levenberg-Marquardt algorithm, we find successive collections of model parameters

such that S(pn+1) < S(pn). We stop the process when
S(pn)−S(pn+1)

S(pn)
< 0.01, when the relative

reduction in cost is less than 1%. Table 1 shows the cost and relative cost reduction for each set
of parameters.

Using a coarser spatial discretisation with h = 1
5 , we can achieve a similar level of accuracy,

but with improved computation time. The finite difference scheme can simulate 54500s-worth of
data from figure 1 in around 38 seconds. This means the scheme can simulate data over 1400 times
faster than in real-time.

Figure 3 compares the simulated voltage, where the final model parameters have been used,
with the observed voltage. After adjusting the parameters, the model has a much closer fit to the
data and is clearly a better approximation to the observed data than when the initial parameters
were used (see figure 4).

7

Figure 2: Plot of simulated voltage (blue), using the initial model parameters; observed voltage
(black); and applied current (red) over time.

Table 1: Results of each iteration of the Levenberg-Marquardt algorithm.
Iteration Cost Relative cost reduction

0 1.26× 103 –
1 414 0.672
2 241 0.418
3 199 0.172
4 115 0.424
5 85.8 0.252
6 72.3 0.158
7 70.9 0.019
8 64.4 0.092
9 64.3 0.001

Figure 3: Plot of simulated voltage (blue), using the final model parameters; observed voltage
(black); and applied current (red) over time.

6 Learning model structure

We now consider ‘forgetting’ part of the structure of DFN model and trying to ‘relearn’ it. For
example, in the definition of g , (4), we can replace the square root function with some polynomial

8

Figure 4: Comparison of the simulated voltage when using the initial model parameters (blue) and
final parameters (red), with the observed voltage (black).

q : R → R given by

q(x) =

K∑
k=0

akx
k

where ak are the polynomial coefficients which we want to estimate. Thus g becomes

g = µq(ζ) sinh

(
λ

2

η

1 + γT

)
, where ζ = ce(1− cs)cs

By treating the ak as model parameters, we can use the same techniques mentioned in section
4 to optimise over the polynomial coefficients.

We tried to approximate
√
ζ with a polynomial of order 6, i.e K = 6. The following initial

values for the polynomial coefficients were chosen

ak,0 :=

{
1, k = 1

0, k ̸= 1

meaning that our initial approximation of
√
ζ was q0(ζ) := ζ.

Taking the same initial model parameters as in (23), we now have

p0 =(De,0, Ds,0, T, αs,0, βe,0, βs,0, γ0, λ0, µ0, a0,0, a1,0, a2,0, a3,0, a4,0, a5,0, a6,0)⊤

=
(
104, 10−3, 300, 104, 1, 10−5, 102, 103, 104, 0, 1, 0, 0, 0, 0, 0

)⊤
After estimating these parameters, using section 4, we obtained

gest(ζ, η) = 104qest(ζ) sinh

(
1000

2

η

1 + 100× 300

)
where qest(ζ) = −0.056 + 2.565ζ − 6.255ζ2 + 5.598ζ3 + 1.521ζ4 − 0.850ζ5 − 1.007ζ6. To compare,
we obtained

g̃(ζ, η) = 241
√

ζ sinh

(
1030

2

η

1 + 4.30× 300

)
when using the correct structure for g, using the square root as in (4).

Figure 5 shows how much closer gest is to g̃ than g0 is to g̃, where g0 is the initial approximation
of

√
ζ using q0(ζ) = ζ. Here, we are only considering the domain ζ ∈ [0, 0.3] because ζ =

ce(1− cs)cs, where ce ≈ 1 and cs ∈ [0, 1]. Moreover, during simulations at a 1C discharge voltage
response, we found η ∈ [−0.3, 0.3]. Hence, figure 5 gives us a reasonable idea of well our polynomial
approximation of the square root is.

9

Figure 5: Plot of the different structures of g(ζ, η) at η = 0.2. The correct model structure is
denoted g̃ (blue); the initial approximation of g̃ is denoted g0 (black); and the final approximation
is denoted gest (red).

7 Conclusion

We have implemented a simplified version of the DFN model for Li-ion batteries, which allows us to
forecast the state of charge of a given battery. We used a finite difference scheme to implement the
model which, depending on the number of discretisation points, can simulate data approximately
1400 times faster than in real time. This computational efficiency makes the scheme suitable for
real-time battery analysis.

We are also able to estimate the model parameters for any Li-ion battery, as long as there
is sufficient training data provided. This allows us to calibrate the scheme to the given battery
and improve the accuracy of predictions made about its state of charge. Thus, we are able to
calibrate the model to a Li-ion battery and efficiently predict the state of charge for any given
current applied to the battery.

Moreover, we can ’learn’ part of the model structure by approximating some functions by, for
example, polynomials. This enables us to accurately model certain phenomena without already
knowing the theoretical model equations.

References

[1] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and
discharge of the lithium/polymer/insertion cell. Journal of The Electrochemical Society, 140(6),
1993.

[2] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares
a method for the solution of certain non-linear problems in least squares. Quarterly of Applied
Mathematics, 2(2):164–168, 1944.

[3] Matthew Hunt, Florian Theil, Ferran Brosa Planella, and W. Widanage. Coupling temperature
distribution with the single particle model. arXiv:2208.05448. 2022.

[4] Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika
Widanage, and Emma Kendrick. Development of experimental techniques for parameterization
of multi-scale lithium-ion battery models. J. Electrochem. Soc., 167(8):080534, 2020.

[5] J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge
Philosophical Society, 43(1):50–67, 1947.

[6] Johan Paduart, Lieve Lauwers, Jan Swevers, Kris Smolders, Johan Schoukens, and Rik Pin-
telon. Identification of nonlinear systems using polynomial nonlinear state space models. Au-
tomatica, 46(4):647–656, 2010.

10

	Introduction
	Simplified DFN model
	Implementing a finite difference scheme
	Parameter estimation
	Calculating the Jacobian
	Using the Jacobian to estimate the model parameters

	Experimental Results
	Learning model structure
	Conclusion

