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Introduction

The Kukulkan Temple (pictured, picture from [5]) has the property that clapping, while
standing at the bottom of the staircase as depicted, will produce an echo mimicing the
call of the Mexican Quetzal, a local bird. This is just one motivating example of the
broader problem of modelling waves interacting with a non-uniform boundary, which
finds a wide variety of applications.

Despite the motivation arising from a 3D problem, the surface of the stairease as shown
does not change as you move across the face, with the 2D cross-section being the same.
In this project we will stick to the (relatively) simple case of modelling the scattering of
a point source wave by an infinite staircase in 2D. The next step would of course be to
model a semi-infinite staircase, which can be thought of as a temple of infinite height,
before then modelling the finite staircase. But we will stick to the simplest case here,
which actually proves to be quite challenging.

Setting up the problem

For this kind of modelling problem, a PDE called the Helinholtz equation is often used

nd will be here too. A difficulty however lies in our boundary conditions due to the
infinite stairease, which are unpleasant. Prior work on this project in [1] & [4] first
got around this problem of boundary conditions via using such a conformal map be
tween the infinite staircase and the real line (ealled a Schwarz-Christoffel mapping)
followed by co-ordinate transformations, to turn the problem from a nice PDE with dif-
ficult boundary conditions to & less-nice PDE with straightforward boundary conditions,

The importance of the conformality is that the conformal mapping preserves angles,
s0 the wave components perpendicular and parallel to the straight line boundary will
remain so after the conformal mapping: However, the mapping is not however isomet
rie, which gives rise to an inhomogenous elmholtz equation which is where the main

arises.

Post coordinate transforming our problem is now Lo solve, for @, the following inhomoge
uoiis Teliholizequation in B (e upper Ball plane),

(V? + ¥)pla) = k(1 - |tan(a)|)¢(a) + 6(a— ag) + 6(a — ag)

subject to the Von-Neumann boundary coudi .—’,; 0, y — 0. We must also impose

the Sommerfield radiation condition, which can be written (parametrising )

which means thal the waves die out as they get further away from their source, which
5 1 point source,

An approximation scheme

If a solution to the above PDI even exists, like most ‘real-world” modelling problems, an
analytic solution is almost certainly impossible, So what we really want to study instead
are efficient schemes of approximating a solution to the given PDE. The following, based
on the exposition from (2, is such an iterative approximation scheme. Suppose o(a)
solves the much simpler equation,

(V34 1) pg(a) — &(a —ag) +.8(a —T5)

subject to the same boundary conditions. Physically, this corresponds to a wave origi
nating from a single point souree, located in . The mirror image forcing term realises
the Von-Neumann boundary conditions through the method of images. We take this to
be our preconditioner, the starting term in what will become our scheme’s iteration se-

This preconditioner is used because the Sommerfield radiation condition is satis
and beeanse there is a well known analytie solution for the Green’s function, in terms of
A5, the Hankel function of the first kind,

5 i oo 1) =y
polay = Glasp) E(u',‘, (Kla—p) +415" (kla — B))-
e staarting term L0 our approximation, is a good approximation of our inhomogenous
5 'very far away from the real line. Take @y 1= =g to be our "error’, the correction
that is required the closer we get the boundary. Writing @ - ) + o, substituting into

the inhomogenons equation and taking the difference, we obtain
(V2 + Ky (a) = K21 — | tan(a)])(a).

We now approximate @p. by substiuting ¢ & @y into the right hand side, which can
now be solved numerically, given that ¢ is n known function, to approximate @y, Of
as this is an approximation, we now have a second correction term, @2, so we

@ = 90+ @1 + wa. Submtituking this and rearranging, we obtain

+ 1)pala) = K (1 — [tan(a)])(p(a) — wola)).

m a similar way Lo the previous step. As you would expect from the previous step, we
i ubstituting ¢ — o 2 @) and solving numerically. If we iterate
I Sequence on, @) @n, with the goal being that their sum
provides a good approximation to @, in other words that the resulting series converges

this n times, we

1o ¢, at least pointwise. The name of this type of series is a Born series,

approximation? s this even the best kind of approximation to use? Can we approve
this approximation i any way? Is there a betler approximation that we can use?

SUPPORT SCHEME

oring improvi 1is known a imation scheme
Exploring improving this known approximation schem

ific g as our preconditioner that we used to start the i
ves the terms for our series. Naturally, this gives rise to an interesting question
can we find a better preconditioner than the given go? And then start the same iteration
process, but with this different preconditioner? The chosen preconditioner could have
ificant implications for the approximation obtained and hence is worth investigating.

When considering this, we are essentially asking ‘can I find something that looks like the

problem at hand and satisfies all boundary conditions, for which an analytic solution is

known but which is not the @g that we already have?',

As we shall see, the main difficulty comes from our boundary conditions. When searching

for different preconditioners we use v instead of ¢ for notational clarity. Looking at
(V2 + k2)ep(a) = K*(1 — | tan(a))h(a) + d(a — ag) + (e — 5)
an alternative approach that comes to mind is if we can use another preconditioner that

will turn this into a different, but still familiar PDE for which we have & known analytic
solution.

One such candidate conld be the Poisson equation. Consider the preconditioner

(V2 + K )vu(a)

basically asking ‘what if we start for values where tan(a) is small?’. Re-arranging,

(a) + 8(a — ao) + 6(a — )

Vola) = d(a — ao) + 8(a — o)
which is a Poisson equation in H with point forcing terms. This has a known analytic
solution inn = 2,
log Ja — aa| A log |a — @]
|2By(ag)] " 0B, (@5)|

which clearly does not decay and does not satisfly the Sommerfield radiation condition,

tola)

so is not a good candidate for a precc ioner with which Lo start our scheme.

Finding & better candidate for an alternative preconditioner and then comparing their
performance could be one direction of further work on this. However, examples of inho
mogenous Helmholtz equations with known analylic solutions in the literature were rare.

It could well be that this is the best starting candidate we will have for the given ap
proximation and hence we will explore some other directions.

Exploring alternative improvements
Accelerating convergence of the series

Another thing to explore is to see if we ean 'get more of the series for less effort’. Some-
thing potentially useful here is a paper, (4], concerning a change of variables method to
ke a convergent Born series "converge [aster’. The change of variables ‘reshuffles’ the
ies, 50 any truncation for a given n better approximates the final convergent than the
eries truncated for the same n, making apy mating our solution less compu
tationally expensive. Solving the inhomogenous Helmboltz equation can be reformmlated
in terms of linear operators (explored in [3]). This linear operator reformulation allows
us to re-write the Born series on the left hand side as below (where T is the specific
linear ‘Operator pertaining 1 Gur problem); with ¥hc Torm_on the right being called'a
specific case of whal is in general called a Neamann Series

[4] defines and discusses a 'convergence factor” fo neralised Neumann series and then
introduces a novel change of variables method which (provided suitable conditions are

satisfied) decreases the convergence factor, increasing the speed of convergence. Further

studying and attempting to apply this method (or modify it to be applied) to our problem
could be another direction for future work on this project.

Alternative computation of each iteration

As previously discussed, for the nth step of our iteration we have to solve numerically

(V2 + ) — |tan(a)|)e, 4 (a)

in I, for known @, |, with the same boundary conditions as the original problem. Being
able to do this quickly will speed up our iteration. When solving this for ,,, we can
think of this as trying to invert the Helmholtz differential operntor which is applied to
ton{a) ontheJoft hand side.

A recent paper, [1], published while I was undertaking this project provides a novel,
faster method for inverting this differentinl operator, under couditions with

not exactly the same) boundary conditions to the problem we have - the major difference
being that the domain in this formulation is bounded, whereas ours is not in theory - but
must be in practice for any numeries that are run. The method works by computing two
sequential ‘inverse square root pseudodifferential operators’, instend of directly inverting.
These can be represented in a form they refer to as the "operator Fourier transform’ nud
then computed by more standard numerical methods. Again, further studying and then
trying to modify and implement this method for the problem at hand. then comparing
against previous numeries, could be another direction for future work on this project.
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