ON THE AVERAGE NUMBER OF REAL ROOTS OF A ABSTRACT. Mark Kac gave an explicit formula for the expectation of the number, v, (£2), of zeros

RANDOM ALGEBRAIC EQUATION The Complex Zeros of Random Polynomials Theorem 1.1. For each region () € C, of a random polynomial,
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Larry A. Shepp (1.3) Ev,(Q) = | holz,y)dady + gn(z)dz, Py(2) =j2::0njza,

University of Pennsylvania Q QNR in any measurable subset ) of the reals. Here, 1, . ..,n,_1 are independent standard normal ran-

1. Introduction. Consider the algebraic equation dom variables. In fact, for each n > 1, he obtained an explicit intensity function g,, for which

_ where ~ ~
(1) Xo+ X1z + Xox? 4+ - - 4+ Xpqa 1 =0, Robert J. Vanderbei B Bng — Bo(B? + |A1[?) + B (ApAy + AgAy) Ev,(Q) = /an(a:)d:c.

where the X's are independent random variables assuming real values h'n

only, and denote by N,=N(X,, - + -, X._1) the number of real roots

of (1). We want to determine the mean value (mathematical expecta-

tion =m.e.) of N, when all X's have the same normal distribution

with density (B()Bz . Bi?)l/z Ev,(Q) = /th(a:, y)dzdy + /Qn

(2) e /xil, gn = B . where h,, is an explicit intensity function. We also study the asymptotics of h,, showing that for
m | z | 0 large n its mass lies close to, and is uniformly distributed around, the unit circle.

T | z| 2 Dg ’ Here, we extend this formula to obtain an explicit formula for the expected number of zeros in any
measurable subset () of the complex plane C. Namely, we show that

gn(z)dz,
R

dx

m.e. {N,} =

g [ — mas(n — 29)/(1 — x)Je]u
.
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FIGURE 1. Random quadratics (n = 3). In this figure and the next several, the
left-hand plot is a grey-scale image of the intensity functions h,, and g, (which is

Definition 2.1. If P € S" is any point, the associated equator P, 1s the set of el .3 s oty o . 5

- ite to black.
points of S” on the plane perpendicular to the line from the origin to P. n a n d 0 m P o I n 0 m I a I s e
Definition 2.2. Let y, , the equators of a curve, be the set {P,|P € y}. | |

Definition 2.3. The multiplicity of a point Q € Uy, is the number of equators

in y, that contain Q, i.e., the cardinality of {z € R|Q € y(2).}. Ni (i‘[a Blﬂy (OV Supel‘vised by Rogel‘ Tl‘ibe

Definition 2.4. We define |y,| to be the area of Uy, counting multiplicity.

More precisely, we define |y, | to be the integral of the multiplicity over Uy, . UniverSity O f \; \/ arWi01<

Lemma 2.1. If y is a rectifiable curve, then

FIGURE 2. Random cubics (n = 4). Note that, for the left-hand plots, the grey- FIGURE 5. n = 36.
scales for h,, and g, are produced separately and in such a way that both use the full

FIGURE 3. Random quartics (n = 5). Note that, for the right-hand plots, most
if not all of the “pixels” on the x-axis have been hit by at least one root. A more
accurate image for the x-axis would have been obtained had we used a grey-scale
to indicate how many times each pixel on the x-axis was hit. FIGURE 4. n = 10.

FIGURE 6. Limiting intensity (using a logarithmic grey-scale).
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area of S" ' Zeros of Gaussian Analytic Functions and
\ . . = Distribution of zeros - The first intensit
s Determinantal Point Processes Gaussian analytic functions

The curve in R™*! traced out by v(f) as ¢ runs over the real line is called the

moment curve. . . . . . % S g
The condition that x = ¢ is a zero of the polynomial ag+ a;x + - - -+ a,x" is J ohn Ben Hough 2.4.2. Fll‘St 1ntens1ty by llnearlzatlon. ThlS 18 a more probablhstlc approaCh- i Has niserodin Dl d)]

prgcisely the condi}ioE that af is {)erpel'{dilcule;l( tﬁ l’:)(l). Another way of saying . . DEF INITION 221 Let f be a r.andom Varla.ble on a probablhty.space tak%ng Let z€A. We want to estimate the probab111ty that f(w) =0 for some w € D(Z, €), up im V0G9)
this is that v(¢), is the set of polynomials which have ¢ as a zero. Man_]unath Krlshnapur values in the space of analytlc functions on a region AcC. We say f is a Gaussian to order 6’2. Expand fasa power series around z: o P(f has a zero in D(z,¢€))

analytic function (GAF) on A if (£f(z1),...,f(z,)) has a mean zero complex Gaussian :h:: P hmz’;jz in D(z, )
distribution for every n =1 and every z1,...,2, € A.

Yuval Peres

2 €0 me2
A . (w—2)
2.2, The expected npmber of regl zeros qf a random polynomlgl. Whgt does the Balint Virég fw) =£(z) + fl( 2)w-2)+ f (2) ' +... P (};(;)1 € DO, 6))
geometric argument in the previous section and formula (1) in particular have 2! = lim ——————~
to do with the number of real zeros of a random polynomial? Let )

702) at 0.

. . oo . . i = Probability density of
o {f®)} are jointly Gaussian, i.e., the joint distribution of f and finitely many The idea is that up to an event of probability o(¢?), f and its linear approximant, i A

X)=ap+a1x + -+ apx"
p(x) =ao+a n derivatives of f at finitely many points,

be a non-zero polynomial. Define the two vectors _
.. . {f(k)(zj):OskSn,l stm}, gw):= f(z)+(w—z)f'(z),
ap Preliminaries

% has a (mean zero) complex Gaussian distribution. (Hint: Weak limits of

2
@ . Gaussians are Gaussians and derivatives are limits of difference coeffi-

Joint intensities are akin to densities: Assume that & is simple. Then, the joint cients). Definition 1 (First Intensity). The first intensity is given by have the same number of zeros in D(z,¢€). Assuming this, it follows from (1.2.8) that

an intensity functions may be interpreted as follows. For any n =1 and any zj,...,2, € A, the random vector (£f(z1),...,£(z,)) has sl AL B0 B0 SEDIF] @ = 1 P[f has a zero in D(z,¢)]
a complex Gaussian distribution with mean zero and covariance matrix 0 V(D(ze) plhEt = o me2

(K(zi,2));. j<n- By Exercise 2.1.1 it follows that the covariance kernel K limP[g has a zero in D(z,¢)]

o If A is finite and p is the counting measure on A, i.e., the measure that as-

signs unit mass to each element of A, then for distinct x1,...,x%, the quan- dot J P ; . als of f. S fis al . X
G ..., %p) is just th bability that x1,...,x, € Z. etermines all the finite dimensional marginals of f. Since fis almost surely _ _ =50 P
Theorem 2.1 (Kac formula). The expected number of real zeros of a degree n LT LR S R xk continuous, it follows that the distribution of f is determined by K. Flpmbar ofsecos of f i Dl :; 'gg }}:as,: cerom L;,((z’ 6)))) P [ =) ¢ (o e)l
polynomial with independent standard normal coefficients is — . v Analyticextensions of GAFx are/GAFs, e o i LT : )
- . P(X has a point in Be(x;) for each j < k) P e
E, =l/ 1 - (n+1)22" dt Pk(xl,---,xk)=llm
"Tr )\ (12 =1)2 e—0

(t2n+2 s | )2 m(Bc)k And because the later terms are of order e

d
EXERCISE 2.1.4. If a, has N, 2,) distribution and a, — a, then
s i /l \/ 1 (n + 1)2t2n A standard complex Gaussian is a complex-valued random variable with " C(”n’ n) ki ? E[number of zeros of f in D(z,€)] = 1-P(f has a zero in D(z,€))
nJo \ (1—1¢2)2

- (1 — t2"+2)2 dt. probability density %e"z'z w.r.t the Lebesgue measure on the complex plane. Equiva- {”n} and {Zn} muSt Converge, say tO l‘t and Z’ and a muSt have NC(I-‘, Z) +1-P(f has 2 zeros in D(z,¢))

lently, one may define it as X +iY, where X and Y are i.i.d. N(0, ) random variables. 2 3 1 +1-P(f has 3 zeros in D(z,€)) + ... + O(e?)
Let ax, 1 <k <n be ii.d. standard complex Gaussians. TI12en we say that a := dlStrlbutlon' do exist).
a,)! is a standard complex Gaussian vector. Then if B is a (complex) m x n
matrix, Ba+ u is said to be an m-dimensional complex Gaussian vector with mean u
(an m x 1 vector) and covariance X = BB* (an m x m matrix). We denote its distribu- DEFINITION 2.1.5. For an n x n matrix M, its permanent, denoted When f is Gaussian, (f(z),f(z)) is jointly complex Gaussian with mean zero and

tion by NZ* (u,Z). per(M) is defined by covariance

= Probability density of . at 0.
f'(2)

If a,b are complex-valued random variables then, by an elementary change of vari-
ables, we see that the density of a/b at 0 is equal to y,(0)E [IbI2 |a = 0], where y, is
the density of @ at 0 (assuming the density a and the second moment of b givena =0

(2)

0o n K
E - l 82 log 1 -— (xy)n+ 1 o If a has N (u,Z) distribution, then for every j,k < n (not necessarily dis- per(M) — Z l—[ Mkn:k X iI({z(,Z) )
")\ axay T : tinet), we have #eBp kel 2:K(z,2

32 EK (z 32 )

E[(ar —pp)aj—p)] =0 and E [(a j— 1) ag —.“k)] =Zjp The sum is over all permutations of {1,2,...,n}. Here we use the standard notation

o If ais a standard complex Gaussian, then |a|? and - are independent, and 0 1 ( 0 0 ) d 0 1 ( 0 .0 )
ana —=—|— .

have exponential distribution with mean 1 and uni‘f‘z)lrm distribution on the REMARK 2.1.6. The analogy with the determinant is clear - the signs 6_ = 5 —— %33 + la—
z Z x y

Sﬁ;‘;,,‘j;f ;dl i’,z?f,ft;ﬁf;_dimemioml  — T of the permutations have been omitted in the definition. But note that 0 Gy
a ] B N,M( u [ S S ]) this makes a huge difference in that per(A 1M A) is not in general equal to The density of f(z) at 0 is m Moreover, f'(2) |ﬂz)=0 has
Theorem 3.1. Let 'U(t ) = ( ﬁ)([ ) 5 W f;, (t ))T be any collection Of diﬁer = b e I Zz per(M). This means that the permanent is a basis-dependent notion and

; : S 00 1 0 0
. . , i where the mean vector and covariance matrices are partitioned in the ob- : 3 : g 3 . N YA —
entiable functions and ay, ... , a, be the elements of a multivariate normal vious way. Then 213 and 23 are Hormitian, while X, = 331, Assume that Wi SR 10, SO SUr 6 S L <6 16 BRARRInAR. SS(RucH, Thean be = (0’ 3 ) Ko (OEK(Z’Z)] (az K(Z’Z)))

ey : p . ) 11 is non-singular. Then the distribution of a is N7?(1,£11) and the condi- expected to occur only in those contexts where the entries of the matrices
distribution with mean zero and covariance matrix C. The expected number tional distribution of b gi\:elnais | themselves are important, as often happens in combinatorics and also in distribution. Thus we can write the first intensity as
of real zeros on an interval (or measurable set) 1 of the equation S By e sy =) probability. (o EEECD) i EKE K )
p1(2)=
nK(z,z)
aofo(t) + a1 fi(t) + -+ anfu(t) =0 LEMMA 2.1.7 (Wick formula). Let (a,b) = (a1,...,a5,b1,... bn)' have The following lemma gives a general recipe to construct Gaussian analytic functions. This is equivalent to the Edelman-Kostlan formula (2.4.8) as can be seen by differ-
N¢(0,%) distribution, where ) ) 5 entiating logK(z,z) (since A = 4 ).
11 Z12 ] LEMMA 2.2.3. Let v, be holomorphic functions on A. Assume that } , |vn,(2)|
/ —||w'(2)||d¢, Zo1 Zg2 |’ converges uniformly on compact sets in A. Let a, be i.i.d. random variables with
L Then, zero mean and unit variance. Then, almost surely, Y, an¥n(2) converges uniformly LEMMA 2.4.2. Let f(z) =ag +a1z +... be a GAF. Assume that ay is not constant.

where w is defined by Equations (7). In logarithmic derivative notation this - — . . Let A denote the event that the number of zeros of fin the disk D(0,¢) differs from the
. ﬁ V L4 (7) g E [al---anb1--- bn] = per(Z1.9). on compact subsets of A and hence defines a random analytic function. T TR R = Tt B B S, Tl e o> M

A} , In particular, if a, has standard complex Gaussian distribution, then f(z) := e0 sothat forall e 0wa have
In particular A : : —
Y nanWn(2) is a GAF with covariance kernel K(z,w) =), wn(2)y,(w). PlA.] < ce®20

2
%/ (aiay (log’v(x)TCv(y))‘ =x= : E[la1---anl’] = per(Z1,1).
1

v |’

|

3.1. Random polynomials.
3.1.1. The Kac formula. If the coefficients of random polynomials are inde-

pendent standard normal random variables, we saw in the previous section that
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n n -
v(x)TCu(y) = § _lxy. viee) anly) = g (k)xkyk = kR . PROOF. [Proof of Corollary 3.4.2] Exercise 3.4.1 yields (3.4.1). Exercise 2.1.3
The logarithmic derivative reveals a density of zeros of the form We see that the density of zeros is given by 3.4.2 — per (C -BA™'B ) tells us that given {f(z;) =0,1 <i <k}, the conditional distribution of f(z $)vss ,f’(zk))
( LR ) pk(zl,"-)zk) ’ . . . . . =1 * .
1 Ji det(rA) is again complex Gaussian with zero mean and covariance C —BA™"B*. Apply Wick

o) = s r - PR =2 ity formula (Lemma 2.1.7) to obtain (3.4.2). O




