
 
 

 

Ever since the eighteenth century, mathematicians have been interested 
in finding lines on surfaces. The lines we are referring to here are straight 

lines on curved surfaces like the example below. 
 
 

In algebraic geometry we often come across many surfaces containing 
infinitely many lines. A good example is a plane, where we can draw lines 

at any angle or through any point. However, sufficiently nice cubic surfaces 
are interesting since they always only contain a finite number, and this is 

made even more strange by the fact they have exactly 27. 
 

This does beg the question about what is a cubic surface? To understand 
this, we consider an example. Most people will have seen the equation 
𝑥! + 𝑦! = 1 for a circle. This is one dimensional since if we were standing 
on the surface of the circle there is only one axis we can move on. We can 
extend this to the equation 𝑥! + 𝑦! + 𝑧! = 1 which describes a sphere in 
three-dimensional space. Now if we were standing on top of the sphere 

we could move in 2 different axes, therefore making the surface two-
dimensional itself. 

 
Both a circle and a sphere are degree two surfaces since the highest power 

of the any element (where we add together the powers for example 
𝑥!𝑦" 	+ 𝑧 = 1 has degree 5) another example would be surface defined by 

the equation 𝑥𝑦 + 𝑦𝑧 + 𝑥𝑧 = 1. A cubic is a degree three surface, for 
example 𝑥!𝑦 + 2𝑧" + 33𝑥𝑧 + 𝑦 = 127 or 𝑧" = 1. 

 
When looking at lines on these surfaces we must look at solutions (𝑥, 𝑦, 𝑧) 

to these equations in the complex numbers. If we only look at the 
solutions in the real numbers, there can be either 3, 7, 15 or 27 lines. 

 
The way we come to this number requires some smart geometric thinking 

as well as a combinatorics-based approach. The general direction is to 
prove that there exists one line on the surface and then show that there 
are rules for how many lines intersect this, and then much like a sudoku 

puzzle fill in what the remaining lines must be. 
 

To work through this proof, we must first make some rather random and 
contrived assumptions, however the reasons why we can make these 
assumptions is heavily algebraic and beyond the scope of this poster. 

We assume the following: 
 

1. There is at least one line on the surface 
2. Each line intersects exactly 10 other lines in 5 planes (we call these 

tritangent planes and these are explored in greater depth below). 
3. There are 2 lines on the surface that don’t intersect 

4. Every line intersects every plane 
 

We first try to unpack the terminology used in the second assumption. A 
tangent to a surface is a plane which itself is tangent to all curves on the 
surface. If a tangent plane exists at every point, we call the surface non-
singular, and these are the group of surfaces we are trying to show have 
this property of containing 27 lines. If we look at the intersection of the 

tangent plane with the surface, we either get a cubic curve (defined much 
the same line as a cubic surface), a conic (degree 2 curve) and a line, or 

three lines as shown at the top of the next column. 

If there is a line on the surface, this line will be tangent to the surface and 
will therefore be in any tangent plane to the surface at any point along the 

line. From this we just now only draw our attention to the planes 
containing exactly three lines which we call tritangent planes. From the 

second assumption we know there are each line is contained in exactly 5 
tritangent planes. 

 
We now consider two disjoint lines (this means they don’t intersect) which 
we call 𝑙 and 𝑚. We know they exist from the third assumption. We display 

them on the diagram below 
 
 

We now consider two disjoint lines (this means they don’t intersect) which 
we call 𝑙 and 𝑚. We know they exist from the third assumption. We display 

them on the diagram below 
 There are 5 tritangent planes containing the line 𝑙, we call these planes 

Π#, Π!, Π", Π$, Π%. There are three lines in each of these planes one of which 
will always be 𝑙. We call the others 𝑙& and 𝑙&′ for each Π&. From the fourth 

assumption every line intersects every plane, so 𝑚 must intersect all the Π&, 
so we choose it to intersect 𝑙#, 𝑙!, 𝑙", 𝑙$, 𝑙%. This is demonstrated in the 

diagram below 
 

From the second assumption we know that these lines intersect in groups 
of three in a plane, so we know that there must be 5 more lines which we 

label 𝑙#'', 𝑙!'', 𝑙"'', 𝑙$'', 𝑙%''. 
 

So far, we have fifteen lines, meaning that there are twelve lines on the 
surface which we are still yet to find. To count all these lines is quite messy 
and repetitive, however we can use some combinatorics to come up with 
the following result (which we state as an assumption since we omit the 

proof): 
 

Every remaining line we have not counted intersects exactly three of 
𝑙#, 𝑙!, 𝑙", 𝑙$, 𝑙%, and we denote each of these lines 𝑙&() for the lines they 

intersect, for example 𝑙#"%	would intersect 𝑙#, 𝑙", 𝑙%. 
 

There are twelve possible combinations of three different numbers ‘𝑖𝑗𝑘‘ 
from 1 to 5, so this gives us our twelve remaining lines 𝑙&() and after using 

similar techniques we can show that all these lines intersect exactly ten 
other lines, and we are done. 
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