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Motivation
Imagine for a moment that you captured an image. You could

have used a camera to take a photo, a CT scanner to reconstruct a
cross-section of someone’s abdomen, or a telescope array to im-
age a distant galaxy. All three cases have one particular thing in
common — noise.

Be it the subtle motion of a sensor, the discrete nature of pho-
ton counting, or the imperfections inherent in manufacturing —
noise is a common issue in data capture and analysis. Image pro-
cessing concerns itself with extracting useful information from
images corrupted by noise, and in this poster we will have a look
at one such approach in the context of medical imaging.

A monochrome 2D image can be considered as a function u:
u : Ω ⊂ R2 → R,

mapping points in some subset Ω of the plane R2 (a rectangle for
example) into the reals R. For x ∈ Ω, u(x) then represents the
brightness or intensity at the point x. Suppose now, that you have
a noisy image of something for which u is the true underlying im-
age — we denote this noisy image uδ and define it analogously to
u. By itself it is impossible to re-construct u from uδ — the prob-
lem is said to be ill-posed, and so we make an educated guess
about some property the image should have. We pick a function
which measures in some way “how little of this property does the
input image have?” (if there is little then R is large) — this func-
tion is the regulariser R : U → [0,∞)∪{∞}, where U is a space
in which we expect our image to lie. We also pick some function
ρ : U × U → [0,∞) which measures “how different are the two
input images?”. Taking some α > 0, we formulate the problem
of denoising uδ as that of finding a function uδα satisfying:

uδα ∈ arg min
u∈U

(ρ(u, uδ) + αR(u)), (1)

that is — uδα is an element of the space U , which minimises the
function ρ(u, uδ) + αR(u). The role of the so-called regularisa-
tion parameter α is to regulate how much R affects uδα. A higher
value of α forces uδα to have “more” of the property encoded in
R, whilst a lower one favours uδα that are “closer” to uδ.

Left to right: True image u, uδ with additive Gaussian noise with
µ = 0 and σ = 0.114, uδα denoised via total variation regularisa-
tion using Chambolle’s algorithm for α = 0.2, 1.0, 2.0.

This setup happens to mimic the one of so-called inverse prob-
lems. Combined with the fact that ultrasound (US) scanning is in
itself an inverse problem [2], this motivates the following section.

Inverse Problems
Given data v ∈ V , consider a function F : D(F ) ⊆ U → V

with domain of definition (i.e. defined on) D(F ), which given an
image u ∈ D(F ) has as its output v:

F (u) = v. (2)

Given v we expect to recover u exactly by inverting F (assuming
it’s injective, that is — mapping distinct u to distinct v), but in
practice, any recording of data is subject to noise, and we almost
never actually have that exact v. Noisy data vδ ∈ V could for in-
stance represent recordings from microphones listening for sonar
“pings”, or it could be a sensor in an an MRI scanner recording
radio emission, and we wish to obtain an approximation to u from
it, be it a topographical map of the sea-floor or the shape of some-
one’s heart. As before, the problem is ill-posed, and so again —
we regularise it and search for some uδα satisfying [4, Chap. 3]:

uδα ∈ arg minu∈U Tα,vδ(u),

where Tα,vδ(u) := ρ(F (u), vδ) + αR(u) for all u ∈ D(F ), and
ρ : V × V → [0,∞) is now measuring the distance between el-
ements of V instead of U as before. To make sure this actually
makes sense, we define Tα,vδ to be ∞ for any u /∈ D(F ).

We want to establish that unlike the previous problems, this
one is well-posed, which for us will mean that:

• There really exists some minimiser uδα ∈ arg minu∈U Tα,vδ(u).

• If we have two “similar” samples vδ1 and vδ2, then the corre-
sponding reconstructed images uδ1α and uδ2α are also somehow
“similar”. This property is called stability.

• Finally, if the vδ is taken to approach v, i.e. vδ → v and we let
the effects of the regulariser diminish by taking α → 0, then
we expect that uδα → u, i.e. — that the solution tends towards
the true underlying image. This property is convergence.

Two extra properties that would also be nice to know are — “how
fast” does uδα → u as vδ → v and α → 0 (convergence rates),
and if we vary vδ how much would uδα vary (stability estimates).

It turns out [4, Chap. 3.1] that for spaces U and V with norms
∥·∥U and ∥·∥V and some suitable topologies τU and τV , whilst
picking ρ(ṽ, v) to be ∥ṽ − v∥pV for some 1 ≤ p < ∞, under
sufficient assumptions on U, V,R, and F (primarily about con-
vexity and continuity properties) the three main results can be
established. So, taking these assumptions as given [4, p. 63–66]:
Theorem 1 arg minu∈U Tα,vδ(u) is nonempty.

That is, minimisers from which we can pick uδα do actually exist!

Theorem 2 If {vn}∞n=1 ⊆ V is a sequence that converges to vδ

in norm, then for any sequence {un}∞n=1 with:

un ∈ arg min
u∈U

Tα,vn(u)

there is a subsequence, {unk}∞k=1, that is convergent in τU . The
limit of any such τU -convergent subsequence is a minimiser
ũ ∈ arg minu∈U Tα,vδ(u), and R(unk) → R(ũ) as k → ∞.

Said differently — if vn → vδ in norm, and if for each n we
pick an arbitrary minimiser un of Tα,vn, then as n → ∞ the un
are guaranteed to get closer and closer to arg minu∈U Tα,vδ(u).

For the following, note that an R-minimising solution u† of (2)
is one that satisfies R(u†) = min{R(u) : u ∈ D(F ), F (u) = v}.
Theorem 3 If (2) has a solution u with Tα,v(u) < ∞, if as a
function of δ, α : (0,∞) → (0,∞) satisfies:

α(δ) → 0 and
δp

α(δ)
→ 0, as δ → 0, (3)

if a sequence {δn}∞n=1 converges to 0 with ||v − vδn||V ≤ δn
for all n ∈ N, then every sequence {un}∞n=1 of elements min-
imizing Tα(δn),vδn, has a subsequence {unk}∞k=1 that is conver-
gent with respect to τU . The limit, denoted u†, of each τU -
convergent sequence {unk}∞k=1 is an R-minimising solution of
(2), and R(un) → R(u†) as n → ∞. If in addition, the R-
minimising solution u† is unique, then un → u† with respect to
τU as n → ∞.

In other words, if the “strength” of the noise δn tends to 0, and
if we decrease α to 0 slowly enough for the fraction in (3) to also
tend to 0, then if we pick an arbitrary minimiser un of Tα(δn),vδn
for each n, then as n → ∞ the un are guaranteed to get closer
and closer to the R-minimising solutions u† of (2). If there is
only one such u† in existence, then the un approach that exact u†.

Given some extra assumptions, the two additional “nice to
know” results can also be established.

Total Variation Regularisation
We now look at a practical example. First, we define the regu-

lariser R1 for functions u ∈ L1(Ω) as done in [3, p. 4]:

R1(u) := sup

{∫
Ω
u∇ · φdx : φ ∈ C1

c (Ω;R2), ||φ(x)||L∞(Ω) ≤ 1

}
.

We call it the “total variation” of u in Ω. Dropping some de-
tails, R1 can be thought of as a measure of how oscillatory a given
function is within Ω. u ∈ L1(Ω) just means that

∫
Ω|u|dx < ∞

(up to some equivalence).
Assuming Ω satisfies some additional conditions (which an

open rectangle does), the following result can be established:
Theorem 4 Suppose L : U → V is bounded and linear, with
U := L2(Ω) and V a Hilbert space. If D(F ) ̸= ∅ is closed and
convex, and F (u) = L(u) for any u ∈ D(F ), and if:

T TV
α,v (u) := ||F (u)− v||2L2(Ω) + αR1(u) < ∞

for some u ∈ D(F ), then the problem of minimising T TV
α,vδ

satisfies
theorems 1, 2, and 3.

Here, the space L2(Ω) is the normed space of all functions (up
to some equivalence) for which:

∥u∥L2(Ω) :=

(∫
Ω
|u|2dx

)1
2

< ∞.

The regulariser R1 integrates in some sense — the absolute
value or “strength” of the “derivative” of u, and in doing so pe-
nalises any solutions to our problem that vary quickly in Ω. Ad-
ditionally, R1 allows for discontinuities in the image data, in-
particular edges. This means that R1 can be a good guess for a
property we might want if we expect the feature we want to ex-
tract to be some relatively “flat” region of the image with a sharp
edge. This leads us nicely into denoising.

Denoising
It turns out that choosing V := L2(Ω) = U , and F := Id :

U → U = V where Id(u) := u for all u ∈ U , satisfies theorem
4. L2(Ω) is a known Hilbert space and Id is bounded and lin-
ear (i.e. ∥ Id(u)∥V≤ C∥u∥U and Id(βũ + u) = β Id(ũ) + Id(u)
for any β ∈ R, any u ∈ U , and some C > 0). By substitut-
ing in our choice of F and noting that we now have v = u, we
come full-circle to (1). Our problem is now to find some uδα such
that:

uδα ∈ arg min
u∈U

(∥u− uδ∥2V + αR1(u)). (4)

We will have a look at the results of denoising US scan data
representing slices of a blood vessel in the forearm. US waves
are scattered most strongly at the interfaces of materials with dif-
ferent densities, and the interface between blood and the tissues
surrounding it does just that. This means that on a typical US scan
slice, the blood vessel appears as a dark, and relatively flat region
of the image. This is why we choose R1 as our regulariser.

Discretisation
Problem (4) is continuous, but computers only operate on dis-

crete data. To match this restriction we have to transform our
problem. Following [1, Chap. 6], we assume that our u is defined
on a rectangular domain Ω with integer side-lengths, and break it
up into unit squares (pixels). We assign each pixel a correspond-
ing intensity value that represents how bright that individual pixel

is. If each square is indexed by j running left to right (think “x-
axis”) and i running from top to bottom (think “y-axis”), from 1
to Ni and Nj respectively, then we can say that the i, j’th square
has intensity ui,j ∈ [0,∞) and think of it as somehow being at
the centre of the square. This motivates the concept of a discrete
gradient (∇u)i,j := ((∇xu)i,j, (∇yu)i,j) where:

(∇xu)i,j :=

{
ui+1,j − ui,j if i < Ni,

0 if i = Ni,
and,

(∇yu)i,j :=

{
ui,j+1 − ui,j if j < Nj,

0 if j = Nj.

The integral can be discretely approximated as a sum over
the pixels, providing an analogue of the function in (4)’s
RHS: ∑

i,j

|ui,j − uδi,j|
2 + α

∑
i,j

|(∇u)i,j|, (5)

where uδi,j is the discrete analogue of the noisy image uδ, and

|(∇u)i,j| :=
√

(∇xu)2i,j + (∇yu)2i,j. Minimisation of (5) can
then be performed using “Chambolle’s Algorithm” [1, Chap 3].

Computational Experiments
In our problem, an US probe moves along a patient’s forearm,

recording the intensity of scattered waves as they return to the
probe. The resulting data is inverted to produce a sequence of
images representing the densities of material in the cross-sections
along the arm. These images are “stacked” to produce a 3D plot
of densities, which may then be segmented on a computer to pro-
duce a 3D model of a blood vessel.

Noise impedes the segmentation process as it makes it hard to
tell where boundaries between different materials lie. We apply
Chambolle’s algorithm to such a data sample, to see if it aids seg-
mentation, which in this case is using the so-called “grow from
seed” algorithm with identical starting parameters for each im-
age set. Going from the top, pairs of images represent a sample
US slice and an associated segmentation. The top image is noisy,
whilst the rest were denoised with α = 0.2, 0.4, 1.0 respectively:

The first segmentation is quite poor, and it’s hard to recognize
it as a blood vessel at all. The second is closer to something we
might expect, albeit still has stray elements. The third has fewer
stray elements, but a section of what we might expect to be the
blood vessel is missing. The last has few stray elements, but a
section of the blood vessel at the bottom that was likely a fork
where another vessel split off, is heavily truncated.

Although TV regularisation shows some promise, it nonethe-
less seems clear that TV alone is insufficient for this task. Ap-
proaches combining these classical methods from inverse prob-
lems with machine learning, and those taking into account the
elliptical geometry of blood vessels may play a helpful role in
producing a more faithful reconstruction of a blood vessel.
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