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Abstract

This document is a report/log of my 2024 Undergraduate Research
Support Scheme (URSS) project with the University of Warwick. This
project was completed under the supervision of Helena Verrill, with the
Warwick Mathematics Institute. The project has synergies with projective
geometry, graph theory and combinatorics.
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1 Introduction and mathematical context

1.1 A brief introduction to projective geometry

The starting point for this project is a problem highlighted by Silversmith in
[7, 8]. To understand the problem, a level of background knowledge in projec-
tive geometry is required. The purpose of this section is to illustrate the core
concepts needed to grasp the essence of the problem. I use [10] as a basis for
this section.

Definition 1.1.1 (Projective space). Let V be a vector space of dimension
n+1 over some field K and define V ∗ := V \{0}. We define the projective space
of V to be the set of equivalence classes of V ∗ under the following equivalence
relation on x, y ∈ V ∗:

x ∼ y ⇔ Kx = Ky

where Kx = {k · x : k ∈ K}. We denote the projective space of V as P(V ),
which can equivalently be written as Pn(K). This is often shortened to Pn. The
equivalence class of x ∈ V ∗ is denoted [x].

Example 1.1.2. P1(R) is often referred to as a projective line. Almost every
point (x, y) ∈ (R2)∗ falls on the line L, given by y = λx, where λ = y/x. L is
equivalent to the set R(x, y). Hence, we can represent the equivalence classes of
(R2)∗, under ∼, as ratios of the form (1 : λ), for λ ∈ R.

The only remaining case to consider is when the point is of the form (0, y) ∈
[(0, 1)], which can be denoted in ratio form as (0 : 1), and is often referred to as
the point at infinity.

We can choose any line in R2, and find that it intersects once with each of
our equivalence classes, excluding the point at infinity. Hence, we can see that
P1(R) is actually a line.

Remark 1.1.3. Note that the choice of line in R2 will influence which element
of P1(R) is the point at infinity. The point at infinity is whichever equivalence
class does not intersect with the chosen line. This notion becomes useful later,
when changing the choice of line can make sense of dealing with infinities.

Definition 1.1.4 (Projective linear group). For A,B ∈ GL(n), the gen-
eral linear group of dimension n, over some field K, we define the following
equivalence relation:

A ∼ B ⇔ A = λB for some λ ∈ K∗

The projective linear group is defined as the set of equivalence classes of
GL(n) under ∼, denoted PGL(n) := GL(n)\ ∼.

Definition 1.1.5 (Projective linear map). Let A ∈ PGL(n + 1) and v ∈
Pn(K). A projective linear map is a map

TA : Pn(K) → Pn(K)
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[v] 7→ [Av]

It is elementary to show that such a map is well-defined.

Example 1.1.6 (Möbius transformations). A classical Möbius transforma-
tion, as stated in [4, p. 11] , is a map

f : C → C

f(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad− bc ̸= 0.
The concept of a Möbius transformation can easily be written in the language

of projective geometry as follows. Let A ∈ PGL(2), with C as the field.

A =

(
a b
c d

)
a, b, c, d ∈ C and ad− bc ̸= 0.

Then for (x, y) ∈ (C2)∗, the projective linear map

TA : P1(C) → P1(C)

[(x, y)] 7→ [(ax+ by, cx+ dy)]

has the equivalent action to a standard Möbius transformation.

Definition 1.1.7 (Projective frame of reference). For Pn, a projective
frame of reference is a set of n + 2 points which are linearly independent, and
hence span Pn. Those readers less inclined to mathematical rigour can think of
it as the projective equivalent of a basis.

One must be careful when using familiar mathematical terms within new
contexts. In projective geometry, we use the phrase ‘linearly independent’ to
refer to when the span of k + 1 points p0, p1, . . . , pk in Pn has dimension k.

Definition 1.1.8 (Standard projective frame of reference). Let e1, . . . , en+1

be the standard basis for Rn+1. It can easily be shown that the projections
[e1], . . . , [en+1] form a projective frame of reference for Pn. This is called the
standard projective frame of reference.

Definition 1.1.9 (Cross-ratio). The cross-ratio is a function of 4 distinct
points in projective space. There are multiple ways to define it, based on the
context of the problem. I will state it here as it is given in [7, p. 2].

For 4 distinct points a, b, c, d on the projective line P1, we define the cross
ratio of these points, CR(a, b, c, d), as follows:

CR(a, b, c, d) =
(c− a)(d− b)

(c− b)(d− a)
∈ C\{0, 1} (∗)
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Remark 1.1.10 (Simplification). To make it easier to understand what the
cross-ratio actually represents, consider that {∞, 0, 1} is a projective frame of
reference for P1. For any 4 distinct points a, b, c, d on P1, we can find the unique
projective linear map T such that T (a) = ∞, T (b) = 0 and T (c) = 1. It follows
that CR(a, b, c, d) is given by T (d). This is stated in more detail in [3, p. 141].

Remark 1.1.11 (Dealing with infinities). It is necessary to note that we
may end up in a situation where one of a, b, c, d is ∞, which causes problems
when substituting the points into (∗). Since the cross-ratio is well-defined (as
we will see below in Lemma 1.1.12) we can adopt the context of Remark 1.1.3
and chose a different line in R2 with which to define P1. This will change the
original point at infinity to a different point, and then we can substitute into (∗)
without issue. Although the notation is somewhat unorthodox, this framework
essentially allows us to do the following:

CR(∞, b, c, d) = ����(c−∞)(d− b)

(c− b)����(d−∞)
=

(d− b)

(c− b)

Lemma 1.1.12 (Invariance of cross-ratio under projective linear trans-
formations). Let T be a projective linear transformation acting on P1. Then
for p1, p2, p3, p4 ∈ P1, CR(p1, p2, p3, p4) = CR(T (p1), T (p2), T (p3), T (p4)).

Outline of proof. Let T be the projective linear transformation given by the
matrix

A =

(
a b
c d

)
∈ PGL(2)

and let the images of p1, p2, p3, p4 under T be given by

qi = T (pi) = [(axi + byi, cxi + dyi)]

for i ∈ {1, 2, 3, 4}, where pi = [(xi, yi)] ∈ P1.
We can calculate each of (q3−q1), (q3−q2), (q4−q2), (q4−q1) in terms of the

pis and use these to find that CR(q1, q2, q3, q4) = CR(p1, p2, p3, p4), as required.
For a full proof of this form, see [5, p. 411].

1.2 My research question

My URSS is concerned with counting the cross-ratio degrees of groups of 7
and 8 points in the projective plane. In this section I will provide some further
definitions and material required to understand this problem, however these will
be more informal, with the intention of giving the reader a feel for the project,
and to keep this report as accessible as possible.

Definition 1.2.1 (Cross-ratio degree). Let P = {p1, p2, . . . , pn} be a set of
n distinct points on P1, with n ≥ 4. We then choose a collection of (n − 3)
4-tuples such that at least every point in P appears in at least one of these
4-tuples. Let us call this set of 4-tuples T .
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We can then define a new set CRT to be the set of cross-ratios for each of the
4-tuples in T . Omitting some of the algebraic geometry Silversmith includes in
his definition of cross-ratio degree in [7, pp. 1–2], we essentially set each element
of CRT equal to a number a1, . . . , an−3. Depending on the tuples we chose for
T , this may uniquely determine the values of the points in P (in terms of the
ais), or the resulting equations may have multiple solutions. Informally, the
cross-ratio degree, dT , is the number of possible solutions.

Definition 1.2.2 (Hypergraph). I take the definition of hypergraph from [1,
p. 1]. A hypergraph H = (V,E) is given by V , a finite set of vertices, and E,
family of subsets of V . We call each of the subsets in E a hyperedge. The order
of H is |V | and the size of H is |E|.

Definition 1.2.3 (k-uniform hypergraph). We define the rank of H, r(H)
to be the maximum cardinality of a hyperedge, i.e the number of elements in
the largest subset in E. Similarly, the co-rank of H, cr(H), is the minimum
cardinality of a hyperedge. we say H is k-uniform if r(H) = cr(H) = k. In
other words, a hypergraph is k-uniform when all of its edges have k elements.

Remark 1.2.4. We can use the above two definitions to frame the cross-ratio
degree problem in terms of graph theory. The set P in definition 1.2.1 is our
V , and E is given by T . Every element of T is a 4-tuple, so we are working in
the context of a 4-uniform hypergraph, of order n and size (n− 3). There is the
extra condition from the context of the problem that every vertex in V must
appear in at least one element of E.

Definition 1.2.5 (Biadjaceny matrix). We can represent all the necessary
information for a cross-ratio degree problem with an (n−3)×n matrix, called a
biadjaceny matrix. Each row of the matrix gives an element of T . For any given
row, a 1 in the ith column indicates that pi is contained in the corresponding
hyperedge, and similarly a 0 in the ith column indicates that pi is not contained
in that hyperedge.

Example 1.2.6. I will work through an example in the case of n = 7 whereby
we begin with a biadjacency matrix and compute the cross-ratio degree in that
instance. For n = 7, our matrix will be a 4× 7, which we will call A:

A =


1 1 1 1 0 0 0
0 1 1 1 1 0 0
1 1 0 0 0 1 1
0 0 0 1 1 1 1


From this, we determine that the elements of T are:

{p1, p2, p3, p4}, {p2, p3, p4, p5}, {p1, p2, p6, p7}, {p4, p5, p6, p7}

and we obtain the following system of equations:

6




CR(p1, p2, p3, p4) = a1,

CR(p2, p3, p4, p5) = a2,

CR(p1, p2, p6, p7) = a3,

CR(p4, p5, p6, p7) = a4

(1)

(2)

(3)

(4)

Since cross-ratio is invariant under projective linear transformations (see
Lemma 1.1.12), we can choose to work in a projective frame of reference where
p1 = ∞, p2 = 0 and p3 = 1. From remark 1.1.10, we know (1) yields that
p4 = a1. For (2), we get

(p4 − p2)(p5 − p3)

(p4 − p3)(p5 − p2)
= a2

Using p2 = 0, p3 = 1 and p4 = a1, this simplifies to

a1
a1 − 1

· p5
p5 − 1

= a2

So

p5 =
α

α− 1
,where α =

a2(a1 − 1)

a1

Through similar manipulation, (3) yields that p7 = a3p6. For (4), we can
substitute a3p6 for p7, and a2 for p4 to get

p6 − a2
p6 − p5

· a3p6 − p5
a3p6 − a2

= a4 (∗)

Note that here we can treat p5 as a constant, since we found its value from
(2). Cross-multiplying in (∗) gives a quadratic equation in the variable p6. Since
we are working under the assumption that a1, a2, a3, a4 can have any values,
there will be cases in which p6 has two allowed values. It is also important to
note that whilst this means p7 also has two allowed values (p7 = a3p6), p7 is
determined by the values of p6, hence there are two possible sets of solutions to
this cross-ratio degree problem, rather than 4.

So, we obtain that for the given biadjacency matrix, the cross-ratio degree
dT = 2.

My URSS project is concerned with finding the maximal cross-ratio degree
over all possible sets T . The main focus will be doing this for seven points
(n = 7), with a short study of how the methods I use can be applied to n = 8.

2 n=7 case

As described in Definition 1.2.1, for the n = 7 case, we consider a set of 7 points
in P1. The objects we are working with to find the maximal cross ratio degree
can be considered as 4-uniform hypergraphs of order 7 and size 4, as stated in
Remark 1.2.4. I give one possible visualisation of this in Fig. 1.
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Figure 1: An example of 4 hyperedges on a 4-uniform hypergraph of order 7

2.1 Initial approach

In this section I will outline the initial approaches I took when beginning this
project. In search of insights about the problem, I roughly followed the order
set out below.

1. Calculations of examples by hand, such as in Example 1.2.6.

2. Consider an alternative visualisation of the problem, in terms of bigraphs.
This will be explained below.

3. Move focus towards the biadjacency matrix and searching for a canonical
form.

4. A combinatorial approach, utilising computational methods. This will be
explored in Section 2.2.

2.1.1 Visualisation using bigraphs

We already have two different ways in which we can visualise the cross-ratio
degree problem: hypergraphs and biadjacency matrices. Bigraphs provide a
third, and very useful, way to visualise this set-up.

Definition 2.1.1 (r-partite graph). Let r be an integer, with r ≥ 2, and let
G = (E, V ) be a graph. G is an r-partite graph if it can be partitioned into r
distinct classes such that every edge has its ends in different classes. A 2-partite
graph is usually called a bipartite graph, or bigraph. This definition is taken
from [2, p. 17].

Remark 2.1.2. We can consider our 4-uniform hypergraph from 1.1.10 as a
bigraph of order 11, with one class containing 4 vertices and a second class
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containing 7 vertices. Each of the 7 vertices in the second class correspond to
one of p1, . . . , p7. Each of the 4 vertices in the first class represent an element
of T . We can draw 4 edges connecting each of the first 4 vertices to 4 distinct
elements of the second class, such that overall every element of the second class
has an edge to at least one of the first 4 vertices. An example of this can be
seen below in Fig. 2, where E1, E2, E3, E4 represent the hyperedges.

Figure 2: A bigraph representation of the hypergraph in Example 1.2.6

Throughout this section of the project, I was primarily calculating examples,
using the method in Example 1.2.6, without use of a diagram or visualisation,
however the bigraph visualisation provides a more compact way to conceptualise
the problem.

2.1.2 Features of the biadjacency matrices

After calculating a reasonable amount of cross-ratio degrees by hand, I made
a realisation that would help reduce the number of biadjacency matrices one
needs to consider to find the maximal cross-ratio degree.

Example 2.1.3. Consider the biadjacency matrix

B =


1 1 1 1 0 0 0
1 1 1 0 0 1 1
1 1 0 1 1 0 0
1 0 1 0 1 0 1


As in Example 1.2.6, we take the cross-ratio of each of the 4 sets of points

in P1 that are specified by B, and set them equal to the constants a1, a2, a3, a4.
We obtain the following equations.

CR(p1, p2, p3, p4) = a1,

CR(p1, p2, p3, p6) = a2,

CR(p1, p2, p4, p5) = a3,

CR(p1, p3, p5, p7) = a4

(5)

(6)

(7)

(8)
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Equations (5) and (6), are simply the definition of the cross-ratio, as in
Remark 1.1.10. These give p4 − a1 and p6 = a2 respectively. For (7), we get

p4 − p1
p4 − p2

· p5 − p2
p5 − p1

= a3

We can then substitute p1 = ∞, p2 = 0, p4−a1 and p6 = a2 to get the following.

�����(a4 −∞)(p5 − 0)

(a1 − 0)�����(p5 −∞)
= a3

So p5 = a3 · a1. We can do a similar substitution and cancellation in (8) to
obtain

�����(p5 −∞)(p7 − 1)

(p5 − 1)�����(p7 −∞)
= a4

Substituting p5 = a3a1 and rearranging yields p7 = a4(a1a3 − 1) + 1. Clearly
there is only one possible solution set for this particular case, hence dT = 1.

Remark 2.1.4. Note that whenever p1 appear in one of the cross-ratio equa-
tions, the cancellation of infinity, as in Remark 1.1.3, yields a linear equation.
Hence, if p1 appears in all 4 equations in our cross-ratio degree problem, as we
solve the equations chronologically we will simply be solving a series of linear
equations that each yield a single solution in terms of the previously solved
variables. Thus in any of these cases, dT will be 1. This occurrence corresponds
to having the first column of the biadjacency matrix containing only 1s.

Understanding that certain features of the biadjacency matrix rule out the
possibility of having a particular cross-ratio degree led me to considering the
problem through studying the biadjaceny matrix. In particular, I shifted my
focus to reducing the number of biadjacency matrices one needs to consider in
order to find the maximal cross-ratio degree.

2.2 Reducing cases of possible biadjacency matrices

The problem we are considering on hypergraphs displays a level of symmetry.
For example, rotating the hypergraph in Fig 1 will not change the value of
dT , but it will change the biadjacency matrix. Hence, it is natural to consider
how to classify all possible biadjacency matrices up to hypergraph (or bigraph)
isomorphism. In particular, the aim of this part of my project was to find a
canonical form for these biadjacency matrices.

Definition 2.2.1 (Isomorphism of graphs). We say that two graphs, G1

and G2, are isomorphic if there is a bijection f : G1 → G2 between the vertices
of the two graphs such that for any two vertices a, b on G1, the number of edges
between them is equal to the number of edges between f(a) and f(b). This
definition is taken from [11, p. 11].
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2.2.1 Counting and reducing by sorting

This area of the project was devoted to studying the possible biadjacency ma-
trices and using computational methods to restrict those needed to find the
maximal cross-ratio degree.

Since the cross-ratio is invariant under projective linear transformations
(Lemma 1.1.12), we can fix the first row to be the same for all biadjacency
matrices we consider. For simplicity, let this row be(

1 1 1 1 0 0 0
)

There are 7C3 = 35 possible choices for any given row of such a biadjacency
matrix. This leaves us with 34C3 = 5984 choices for the remaining rows.

However, every pi for i ∈ {1, 2, 3, 4, 5, 6, 7} must appear at least once in the
system of cross-ratio equations, hence all columns must be non-zero. To filter
these cases, I added a ‘column sum row’ to each biadjacency matrix, where the
ith entry in the row contained the sum of the elements of the ith column of the
original 4× 7 matrix.

Example 2.2.2. This is a very trivial demonstration. Taking the matrix from
Example 1.2.6 and adding a ‘column sum row’ results in the following matrix.

2 3 2 3 2 2 2
1 1 1 1 0 0 0
0 1 1 1 1 0 0
1 1 0 0 0 1 1
0 0 0 1 1 1 1


1 import numpy as np

2

3 R7=[] #list of all possible rows

4

5 for i in range (4):

6 for j in range(i+1,5):

7 for k in range(j+1,6):

8 for l in range(k+1,7):

9 s = [0,0,0,0,0,0,0]

10 s[i]=1

11 s[j]=1

12 s[k]=1

13 s[l]=1

14 R7.append(s)

15

16 A7 = []

17 #list of all possible biadjacency matrices without col sum row

18 M7 = []

19 #list of all possible biadjacency matrices with col sum row

20

21 for i in range (1 ,35):

22 for j in range(i+1,35):

23 for k in range(j+1,35):

24 su = [x + y + z + w for x, y, z, w in zip(R7[0],R7[i],R7[j

],R7[k])] #su = sum of 1s in each column
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25 if (not(0 in su)):

26 s=[su,R7[0],R7[i],R7[j],R7[k]] # adding top row to the

matrix to sum column sums

27 M7.append(s)

28 A7.append ([R7[0],R7[i],R7[j],R7[k]])

Listing 1: Python code to generate biadjacency matrices and remove those with
zero-columns

One can use the code in Listing 1 to show the number of matrices, after
removing any with zero-columns, has been reduced to 4904 by enumerating the
list A7.

The ‘column sum row’ also provides another way of sorting these matrices.
Again, by Lemma 1.1.12, changing the order of rows or columns in our biadja-
cency matrix won’t alter the value of dT since the cross-ratio is invariant under
projective linear transformations. Additionally, we know from Remark 2.1.4
that any case in which the first column is

1
1
1
1


will have dT = 1. Such matrices can be disregarded, since we know from
Example 1.2.6 that the maximal cross-ratio degree in n = 7 is at least 2. Hence
we are motivated to sort the matrices in such a way that the first column has
as many 1s as possible. This can be achieved writing the columns in order of
decreasing column sum. In cases where multiple columns have the same sum, we
treat each column as a binary string and sort by decreasing lexicographic order.
After this sorting process, we can expect some of the biadjacency matrices that
represent isomorphic graphs to have been put into an identical format.

Example 2.2.3 (Sorting by column sum). Consider the following matrix.
4 2 2 3 2 2 1
1 1 1 1 0 0 0
1 0 1 1 0 1 0
1 0 0 0 1 1 1
1 1 0 1 1 0 0


After sorting, this becomes

4 3 2 2 2 2 1
1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 0 0 0 1 1 1
1 1 0 1 0 1 0


Note that I have included the ‘column sum row’ here to clearly demonstrate

the sorting process.
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1 M7a =[]

2

3 for i in range(len(M7)):

4 x=(np.transpose(M7[i])).tolist () #makes the array into a list of

lists , which we call x

5 x.sort(reverse=True) #lists the list elements in descending order

by first element

6 y=np.transpose(x).tolist () #y is the list of rows of matrices in

M7

7 y.sort(reverse=True) #sorts rows in the same way as above

8 x=(np.transpose(y)).tolist ()

9 x.sort(reverse=True)

10 y=np.transpose(x).tolist ()

11 y.sort(reverse=True)

12 M7a.append(y)

13

14 M7a.sort(reverse=True)

15

16 M7b=[M7a [0]] #filtering sorted matrices that are the same

17

18 for i in range(1,len(M7a)):

19 if (not(M7a[i]== M7a[i-1])):

20 M7b.append(M7a[i])

Listing 2: Sorting and filtering using Python

It is important to note that Listing 2 uses M7 as it appears in Listing 1.
Additionally, the list of interest here isM7b, which is the list of possible matrices
after filtering those that are identical after sorting. Asking Python to return
the length of M7b gives the number of remaining matrices we need to consider
to find the maximal cross-ratio degree. This number is 66.

2.2.2 Reducing by graph isomorphisms

A reduction from 5984 to 66 matrices is significant, although not enough to
begin considering dT for individual cases. At this point I started to exploit the
fact that each biadjacency matrix represents bigraph. Rather than coding in
Python, I used a coding language called Magma, which is better developed to
deal with graph theory. Further information about Magma can be found in [9].

Hypergraph (and bigraph) isomorphisms are defined in the same way as in
Definition 2.2.1. Programming Magma to identify the biadjacency matrices with
their respective bigraphs, and remove any repeated graphs up to isomorphism,
returns a list of 29 unique bigraphs that fit the conditions of the problem, in
the form of biadjacency matrices. After examining this list and removing those
matrices containing 

1
1
1
1


in any column, we obtain 14 matrices with a dT possibly greater than 1. These
are displayed in Table 1.
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1 1 1 0 0 0 1
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 0 1 1 0



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 0 1 1 1 0 1



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 1
0 0 1 1 1 1 0



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 1 1 0
0 0 1 1 0 1 1



1 1 1 1 0 0 0
1 1 1 0 0 0 1
1 1 0 0 1 1 0
0 0 1 1 1 1 0



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 1 0 0 1 0
0 0 0 1 1 1 1



1 1 1 1 0 0 0
1 1 0 1 1 0 0
1 0 1 0 1 1 0
0 1 1 0 0 1 1



1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 1 0 0 1
0 1 0 0 1 1 1



1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 1



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 0 0 1 0 1 1
0 1 0 0 1 1 1



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 1
0 0 0 1 1 1 1



1 1 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 0 1 0 1 1 1



1 1 1 0 1 0 0
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



1 1 1 1 0 0 0
1 1 0 1 0 0 1
1 0 1 0 1 1 0
0 1 1 0 1 1 0


Table 1: The 14 matrices returned from Magma, after filtering those with a
column of 1s.
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2.3 Final insights for n=7

Since the biadjacency matrix in Example 1.2.6 has dT = 2, we know the maximal
cross-ratio degree is at least 2, so can limit our search to a cross-ratio degree of
3 or more. With 14 matrices to consider, it is feasible (but arduous) to calculate
dT by hand for each case.

At this point in the project, I had a final realisation that greatly simplified
this problem. Given that a column 

1
1
1
1


means each of the cross-ratio equations are linear, if the biadjacency matrix
contains a column 

1
1
1
0


then the first 3 equations solved must be linear, followed by a 4th equation that
is at most quadratic, after substituting expressions from the previously solved
linear equations. By Definition 1.2.1 this means the cross-ratio degree for such
a matrix is at most 2. Note that this works if any column of the matrix is
of this form, since it can be moved to the first column by a projective linear
transformation, under which the cross-ratio is invariant (Lemma 1.1.12), then
p1 = ∞ will lead to a cancellation as in Remark 1.1.3.

All of the 14 matrices in Table 1 have
1
1
1
0


as their first column, hence dT ≤ 2 for n = 7. As stated already, Example 1.2.6
has dT = 2, hence we have found that the maximal cross-ratio degree for n = 7
is 2.

3 Reflections and additional ideas

3.1 n=8 case

Much of the work done on the n = 7 case can be generalised and applied to any
n, however due to the cumulative complexity of the problem when n is increased,
such ideas become considerably less decisive. I will state the two main results
from Section 2 for a general n.
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• If the (n − 3) × n biadjaceny matrix contains a column of n 1s, then we
get a system of (n− 3) linear cross-ratio equations resulting in dT = 1.

• If the (n− 3)× n biadjaceny matrix contains a column of (n− 1) 1s and
exactly one 0, then we get a system of (n− 4) linear cross-ratio equations
and one equation that is at most quadratic. This results in dT ≤ 2.

In the interest of formality, one may wish to prove these first for n = 7 and
then proceed inductively, but I shall omit this. The results are intuitive enough
for the lack of proof not to hinder the overall coherence of this report.

For n = 8, in addition to the above insights, I used Magma in the same way
as Section 2.2.2 to return a list of biadjacency matrices up to graph isomorphism.
This returned 741 unique bigraphs. Clearly this is not enough to approach the
problem from a directly computational perspective.

In [7][p. 2], Silversmith provides a lower bound of 4 on the maximal cross-
ratio degree for n = 8. Given further time on this project, my initial approach
would be to aim for an upper bound, similar to my final approach in n = 7,
through examination of the biadjacency matrix.

3.2 Hypergraph enumeration

Having taken a computational approach to finding the number of unique bi-
graphs for n = 7 and n = 8, it is natural to consider how one can rigourously
prove this number is correct. As in Remark 1.2.4, this is equivalent to counting
the number of 4-uniform hypergraphs, with order n and size (n− 3).

In [6, pp. 378–380], Palmer introduces a method of enumerating hypergraphs
of this type, using the Pólya enumeration theorem. He introduces a counting
polynomial

snp (x) =
∑

snp,kx
k

for n-plexes of order p, where snp,k is the number of k-simplexes of dimension n.
For n = 7, computing the number of unique hypergraphs was equivalent

to finding s37,4. Palmer explains the method to calculate snp (x), after which we
can examine the coefficients to find the desired result. Roughly speaking, the
polynomial is constructed using ideas of group actions of the symmetric group
of n elements on general subsets of a certain size. This computation becomes
very complex very quickly, so given further time on the project, I would write
some code aid the calculation. Additionally, with some further mathematical
background, it would be valuable to explore a proof of the Pólya enumeration
theorem and how it gives the polynomial snp (x).
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