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1 Introduction

Originally proposed in 1859, the Riemann Hypothesis is regarded by many as
the most important unsolved problem in Pure Mathematics, with a substantial
prize for proving it. The usual formulation of this problem is that all of the (non
trivial) zeros of the Zeta function have real part equal to 1/2. However, the xi
function , a related function, provides a nicer way to phrase the Hypothesis,
which is actually the way Riemann Originally stated it.

Definition 1.1 (Riemann xi Function). Suppose ω ∈ C. Then the xi function
of ω, denoted ξ(ω) is

ξ(ω) =

∫ ∞

−∞
eiωtΦ(t)dt

where
Φ(t) = Σn≥1(4π

2n4e9t/2 − 6πn2e5t/2)e−πn2e2t .

In terms of the original zeta function, this can be written as:

ξ(ω) =
1

2
s(s− 1)π−s/2Γ(

s

2
)ζ(s).

where s = iω + 1/2.

The Riemann Hypothesis states that all of the zeros of this function are real.
This means that if the zeros of the xi function are also eigenvalues of a self adjoint
linear operator, then this proves the Riemann Hypothesis. The general idea of
relating the non trivial zeros of the Zeta function to a self adjoint operator is
known as the Hilbert-Polya conjecture, which is also explored in various papers.
This has led to an interest in the problem from a perspective relating to quantum
mechanics, in particular looking at Schrodinger Operators, which are obtained
from the time independent Schrodinger Equation (−∂xx + V )ψ = Eψ. In this
project, I made an attempt to fit the zeros of the Riemann xi function to Spectra
of Dirac and Schrodinger Operators, as well as the use of a Simulated Annealing
method to try and improve the fit given by the latter case.

In order to get a ”shooting function” to measure the eigenvalues of our
operators, we will solve the differential equations (as the solutions we find will
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have the sufficient regularity) and evaluate the solutions at x = 0 as we need
Dirichlet boundary conditions. We note that matching the zeros is what we are
interested in, not matching the functions as a whole.

2 Dirac case

The first class of operators I have looked at are Dirac Operators. The reason

for looking at these first is because ω
2 will be used as an eigenvalue instead of ω2

4
(the latter has ± symmetry) and they have a relation to Schrodinger operators
but haven’t been previously explored compared to xi. The particular operator
we will look at is the following differential one:

T : L2(R) → L2(R)
T (ψ1, ψ2) = ((−∂x + V (x))ψ2, (∂x + V (x))ψ1)

and the following equation to solve:

T (ψ1, ψ2) =
√
E(ψ1, ψ2).

Remark 2.1. We are considering L2 with boundary conditions of ψ1(0) = 0
here.

So that we can obtain the correct density of zeros of the shooting func-
tion, we will take V (x) to be perturbations of 2πex by setting V (x) = 2πn on
[log(n), log(n+ 1)) for n ∈ N. This is an example of an unbounded self adjoint
operator. Since the operator is self adjoint, the eigenvalues are all real. This
makes it a contender for our fitting to the xi Function. It will be instead made
piecewise constant by evaluating at x = log(n) ∀ n ∈ N. If we combine this
coupled pair of differential equations into 1 equation, this converts into a second
order differential equation:

−∂xxψ1 + 4π2n2ψ1 = Eψ1

which has the solution on x ∈ [log(n), log(n+ 1))

ψ1(x,w) = Ane
knx +Bne

−knx

where kn(w) =
√
4π2n2 − E.

We then solved this and some graphs of our shooting function compared to
the xi function (suitably scaled, exact scales given in full paper) are shown in
this document.

3 Schrodinger Case and Simulated Annealing

Now what happens if we make the potential and time steps able to be modified
to fit closer to the shooting function? We initially find the shooting function for
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Figure 1: Dirac Shooting Function against xi Function for ω ∈ [0, 30]

Figure 2: Dirac Shooting Function against xi Function for ω ∈ [30, 60].
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Figure 3: Schrodinger Shooting function against xi Function for ω ∈ [0, 20] with
sum of squares on the real line, with improved potential.

the Schrodinger case with V (x) = 4π2e2x. This didn’t fit closely enough so we
ran simulated annealing to vary the time steps xn and potentials Vn at each time
step. Our minimiser was a sum of squares of the functions compared at points
near the zeros on the real line and also points on the unit semicircle. The real
line case is shown in (suitably scaled) graphs here with the potential changed to
a better fitting V (x) = 4π2e2x − 9πex.

4 Conclusion

From this project, we can see that although we have matched zeros closer to that
of xi through the use of simulated annealing, we are still far off a very close fit.
One method that could potentially be tried is the use of delta distributions in
the potential rather than using just continuous or piece wise constant potentials.
This could alleviate the issues of regularities of oscillations. In one of Remlings
books, the setting proposed for general spectral problems is ”canonical systems” of

the form Ju′ = EH(x)u, where x ∈ R+, u ∈ L2(R+,C2), J =

[
0 −1
1 0

]
, H is

a symmetric positive semi definite matrix and the boundary condition u2(0) = 0
is imposed. We can transform the Schrodinger equation case into a system like

this with H =

[
p2 pq
pq q2

]
for functions p, q of x which are solutions of the
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Figure 4: Schrodinger Shooting function against xi Function for ω ∈ [20, 60]
with sum of squares on the real line, with improved potential

Schrodinger equation for E = 0 with basis boundary conditions at x = 0. If we
look at problems of this form, but with p, q allowed to have discontinuities, we
could potentially have some interesting results.
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