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Suppose we have probability measures µ and ν on a sample space X. How should one
quantify how “different” the two probability measures are? If the sample space is X = R
and the measures µ and ν admit probability density functions f and g respectively, so that
µ(A) =

󰁕
A f(x) dx and ν(A) =

󰁕
A g(x) dx, then a quantity which could measure the “distance”

between µ and ν is

󰀂f − g󰀂L1 :=

󰁝

R
|f(x)− g(x)| dx.

If 󰀂f −g󰀂L1 is close to 0 then we would say that the two measures are really close to each other,
and if 󰀂f − g󰀂L1 is close to 2 then we would say that the two measures are really quite different
from each other.

There are two problems with this approach. Firstly, some measures may not even admit a
probability density function. For instance, the Dirac measure δ0 on R given by

δ0(A) :=

󰀫
1 if 0 ∈ A,

0 else.

The elephant in the room, though, is that the L1 distance between f and g may not match up
with our intuitive notion of how far measures µ and ν may be from each other. Consider, for
instance, the measures µ and ν having densities

f(x) :=

󰀫
108 if 0 ≤ x ≤ 1

108
,

0 else,
and g(x) :=

󰀫
108 if 1

108
≤ x ≤ 2

108
,

0 else,

respectively. Then 󰀂f − g󰀂L1 = 2, which as large as 󰀂f − g󰀂L1 could possibly be, and so we
would say that µ and ν are “really far apart from each other”. There is, however, still a sense
in which µ and ν are really close to each other: the graph of g is just the graph of f translated
to the right by a mere 10−8 units. Furthermore, if we consider a third measure ξ with density

h(x) :=

󰀫
108 if 500 ≤ x ≤ 500 + 1

108
,

0 else,

then we would also have 󰀂f − h󰀂L1 = 2. The L1 distance is unable to capture this huge shift of
500 units to the right; it is unable to distinguish µ from ξ any more than it can distinguish µ
from ν.

Instead, we turn to a way of quantifying the distance between two probability measures µ
and ν based off of this intuitive notion of how much “effort” would it take to “move” from µ
to ν. Underpinning this whole theory is the Monge-Kantorovich problem [Gar18, Chapter 20.2]
[RR, Chapter 2.1], named after Gaspard Monge and Leonid Kantorovich (Russian: Леонид
Канторович):

The Monge-Kantorovich problem.
Fix Polish spaces X and Y , and a lower semicontinuous cost function c : X × Y →
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R≥0. Given two Borel probability measures µ and ν on X and Y respectively, the
Monge-Kantorovich problem seeks to minimise1 the following total cost:

󰁝

X×Y
c dπ,

with π ranging over the space of all Borel probability measures on X × Y with
marginals µ and ν.

An intuitive view of the Monge-Kantorovich problem is as follows. Suppose you had a pile
of sand spread about in a space X according to a probability measure µ, and you wished to
transport that pile of sand to a space Y and spreading it out according to a probability measure
ν. Moving one particle of sand from x ∈ X to y ∈ Y costs $c(x, y). A transport plan π tells
you how you should move the pile of sand: a volume of space B ⊆ Y gets π(A×B) of the sand
available the volume of space A ⊆ X. Of course, there are restrictions for what constitutes a
transport plan: after the transportation has finished, the amount of sand in any B ⊆ Y should
equal π(X ×B). Similarly, the amount of sand leaving any A ⊆ X should equal π(A× Y ).

It is these restrictions which are captured by the requirement that π has marginals µ and
ν, that is, given the projection maps pX : X × Y → X and pY : X × Y → Y defined by

pX(x, y) := x and pY (x, y) := y,

we require that µ is the image measure of π under the map pX , and ν is the image measure of
π under the map pY .

A transport plan always exists: the product measure π := µ × ν works. The Monge-
Kantorovich problem, however, seeks to find the optimal transport plan. It is an important
result that the Monge-Kantorovich problem always has a solution, in the sense that an optimal
transport plan always exists (see ??). It is this fact that allows us to develop the Wasserstein
metric2.

For a topological space X, let us use P (X) to denote the space of Borel probability measures
on X, though we will mainly be concerned with the spaces P (R) and P (R2). For µ, ν ∈ P (R),
we define the space

Πµ,ν := {π ∈ P (R2) : π has marginals µ and ν }.

We shall use the cost function c : R × R → R≥0 given by c(x, y) := |x − y| to define the
Wasserstein metric, named after Leonid Vaserstein3 (Russian: Леонид Васерштейн), on the
subspace

P1(R) :=
󰀝
µ ∈ P (R) :

󰁝

R
|x| dµ(x) < ∞

󰀞
.

Definition 1 (The Wasserstein metric W1 [Gar18, Chapter 21] [Vil09, Definition 6.1, Definition
6.4])

1A priori, we seek to find the infimum value of
󰁕
X×Y

c(x, y) dπ, rather than the minimum value. It will turn
out that the infimum value is actually always achieved (see ??).

2Also known as the Kantorovich-Rubinstein metric or the Earth Mover’s distance [Vil09, Chapter 6 Biblio-
graphical Notes].

3Leonid Vaserstein was actually not the first person to come up with the Wasserstein metric. The metric
is due to Leonid Kantorovich and Gennadii Rubinstein (Russian: Геннадии Рубинштейн) [Vil09, Chapter 6
Bibliographical Notes] [Vil09, Chapter 3].
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We define the function W1 : P1(R)× P1(R) → R≥0, called the Wasserstein metric4, by

W1(µ, ν) := inf

󰀝󰁝

R2

|x− y| dπ(x, y) : π ∈ Πµ,ν

󰀞
.

The Wasserstein metric W1 is indeed a metric on P1(R) (see ??), so it captures the ideas of
“distance” between measures as one would expect, including the triangle inequality.

Calculating W1(µ, ν) for specific probability measures µ and ν can be challenging given only
this definition. Often, if there is enough similarity between µ and ν, we can obtain an upper
bound for W1(µ, ν) by finding a suitable transport plan from µ to ν. Recall again the measures
from the Prelude section:

µ(A) := 108 · λ
󰀕
A ∩

󰀗
0,

1

108

󰀘󰀖
and ν(A) := 108 · λ

󰀕
A ∩

󰀗
1

108
,

2

108

󰀘󰀖
,

where λ is the Lebesgue measure on R. Consider the transport plan T : R → R given by
T (x) := x + 1

108
. Let G : R → R2 be defined by G(x) := (x, T (x)), and define the Borel

probability measure π on R2 to be the image measure of µ under G, that is,

π(A) := µ(G−1(A)).

Then π has marginals µ and ν, and we observe that
󰁝

R2

|x− y| dπ(x, y) = 1

108
,

yielding 0 < W1(µ, ν) ≤ 1
108

. Given that the graph of the distribution of ν is just a translation of
1

108
units to the right of the graph of the distribution of µ, would it not be nice if W1(µ, ν) =

1
108

?
Furthermore, if we recall the other Borel probability measure ξ from the Prelude section, namely

ξ(A) := 108 · λ
󰀕
A ∩

󰀗
500, 500 +

1

108

󰀘󰀖
,

a similar argument to the one above would yield 0 < W1(µ, ξ) ≤ 500. Again, it would be
wonderful if we indeed had W1(µ, ξ) = 500.

Theorem 2 ([Gar18, Corollary 21.2.3])
If two Borel probability measures µ and ν on R have respective probability density functions fµ
and fν , then

W1(µ, ν) ≥
󰀏󰀏󰀏󰀏
󰁝

R
xfµ(x) dx−

󰁝

R
xfν(x) dx

󰀏󰀏󰀏󰀏 .

In other words, the Wasserstein distance between µ and ν is at least the distance between their
means.

Recall our example Borel probability measures on R:

µ(A) := 108 · λ
󰀕
A ∩

󰀗
0,

1

108

󰀘󰀖

ν(A) := 108 · λ
󰀕
A ∩

󰀗
1

108
,

2

108

󰀘󰀖
, and

ξ(A) := 108 · λ
󰀕
A ∩

󰀗
500, 500 +

1

108

󰀘󰀖
.

Theorem 2 together with our earlier discussions yield W1(µ, ν) =
1

108
and W1(µ, ξ) = 500.

4The appearance of the subscript “1” in the notations “W1” and “P1” is due to the definition of the more
general Wasserstein p-metric Wp, defined by

Wp(µ, ν) :=

󰀕
inf

󰀝󰁝

R2

|x− y|p dπ(x, y) : π ∈ Πµ,ν

󰀞󰀖1/p

,

where 1 ≤ p < ∞. This metric Wp will be defined on the space Pp(R) consisting of all µ ∈ P (R) such that󰁕
R |x|

p dµ(x) < ∞.
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