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Suppose we have probability measures p and v on a sample space X. How should one
quantify how “different” the two probability measures are? If the sample space is X = R
and the measures p and v admit probability density functions f and g respectively, so that
1(A) = [, f(x)dx and v(A) = [, g(x) dz, then a quantity which could measure the “distance”
between p and v is

Ilf — gl IZ/RIf(a:) —g(z)|dz.

If || f — g/ 71 is close to O then we would say that the two measures are really close to each other,
and if || f — g/ ;1 is close to 2 then we would say that the two measures are really quite different
from each other.

There are two problems with this approach. Firstly, some measures may not even admit a
probability density function. For instance, the Dirac measure dy on R given by

1 if0eA,
do(A) = {

0 else.

The elephant in the room, though, is that the L' distance between f and g may not match up
with our intuitive notion of how far measures p and v may be from each other. Consider, for
instance, the measures p and v having densities

8 1 8 ¢ 1 2
f(q:): 10 lfOSLUSW, and g(x): 10 lfﬁgligw,
0 else, 0 else,

respectively. Then ||f — g||;1 = 2, which as large as ||f — g||z1 could possibly be, and so we
would say that p and v are “really far apart from each other”. There is, however, still a sense
in which p and v are really close to each other: the graph of g is just the graph of f translated
to the right by a mere 10~® units. Furthermore, if we consider a third measure ¢ with density

. 1
hz) {108 if 500 < 2 < 500 + 1,

0 else,

then we would also have ||f — k|1 = 2. The L! distance is unable to capture this huge shift of
500 units to the right; it is unable to distinguish g from £ any more than it can distinguish
from v.

Instead, we turn to a way of quantifying the distance between two probability measures p
and v based off of this intuitive notion of how much “effort” would it take to “move” from p
to v. Underpinning this whole theory is the Monge-Kantorovich problem [Garl8, Chapter 20.2]
[RR, Chapter 2.1], named after Gaspard Monge and Leonid Kantorovich (Russian: Jleonms
Kanroposuu):

The Monge-Kantorovich problem.
Fix Polish spaces X and Y, and a lower semicontinuous cost function ¢: X x Y —



R>o. Given two Borel probability measures 1 and v on X and Y respectively, the
Monge-Kantorovich problem seeks to minimise' the following total cost:

/ cdm,
XxXY

with 7 ranging over the space of all Borel probability measures on X x Y with
marginals p and v.

An intuitive view of the Monge-Kantorovich problem is as follows. Suppose you had a pile
of sand spread about in a space X according to a probability measure u, and you wished to
transport that pile of sand to a space Y and spreading it out according to a probability measure
v. Moving one particle of sand from x € X to y € Y costs $c(x,y). A transport plan 7 tells
you how you should move the pile of sand: a volume of space B C Y gets m(A x B) of the sand
available the volume of space A C X. Of course, there are restrictions for what constitutes a
transport plan: after the transportation has finished, the amount of sand in any B C Y should
equal m(X x B). Similarly, the amount of sand leaving any A C X should equal 7(A x Y).

It is these restrictions which are captured by the requirement that m has marginals p and
v, that is, given the projection maps px: X XY — X and py: X XY — Y defined by

px(z,y) =2z and py(x,y) =y,

we require that p is the image measure of 7 under the map px, and v is the image measure of
7 under the map py.

A transport plan always exists: the product measure 7w := p X v works. The Monge-
Kantorovich problem, however, seeks to find the optimal transport plan. It is an important
result that the Monge-Kantorovich problem always has a solution, in the sense that an optimal
transport plan always exists (see 77). It is this fact that allows us to develop the Wasserstein
metric?.

For a topological space X, let us use P(X) to denote the space of Borel probability measures
on X, though we will mainly be concerned with the spaces P(R) and P(R?). For u,v € P(R),
we define the space

I, = {7 € P(R?) : 7 has marginals y and v }.

We shall use the cost function ¢: R x R — R>( given by ¢(z,y) = |z — y| to define the
Wasserstein metric, named after Leonid Vaserstein® (Russian: Jleonn Bacepmrreiin), on the
subspace

A®) = {ne P | Jolaua) <oc }.

Definition 1 (The Wasserstein metric W; [Garl8, Chapter 21] [Vil09, Definition 6.1, Definition
6.4])

LA priori, we seek to find the infimum value of Jx»y ¢(x,y) dm, rather than the minimum value. It will turn
out that the infimum value is actually always achieved (see 77).

2Also known as the Kantorovich-Rubinstein metric or the Earth Mover’s distance [Vil09, Chapter 6 Biblio-
graphical Notes].

3Leonid Vaserstein was actually not the first person to come up with the Wasserstein metric. The metric
is due to Leonid Kantorovich and Gennadii Rubinstein (Russian: T'eanaguun Py6unmreitn) [Vil09, Chapter 6
Bibliographical Notes] [Vil09, Chapter 3].




We define the function W1: Pi(R) x Pi(R) — Rx, called the Wasserstein metric*, by

Wi(u,v) == inf { / |z —yldm(z,y) :me1l,, } .
R2

The Wasserstein metric W, is indeed a metric on P;(R) (see ?7), so it captures the ideas of
“distance” between measures as one would expect, including the triangle inequality.

Calculating Wi (u, v) for specific probability measures p and v can be challenging given only
this definition. Often, if there is enough similarity between p and v, we can obtain an upper
bound for Wi (u, v) by finding a suitable transport plan from u to v. Recall again the measures
from the Prelude section:

H(A) = 10° - A (Am [0, 1—(1)8]) and  v(A) = 10% - A (Am [%081—(2)8]) ,

where A is the Lebesgue measure on R. Consider the transport plan 7: R — R given by
T(z) = =+ %. Let G: R — R? be defined by G(z) := (z,T(z)), and define the Borel
probability measure 7 on R? to be the image measure of ;i under G, that is,

r(A) = u(G1(A)).

Then 7 has marginals p and v, and we observe that

1
/]R? |33 —y|d7f(1',y) = 1—08’

yielding 0 < Wy (u,v) < #. Given that the graph of the distribution of v is just a translation of
# units to the right of the graph of the distribution of i, would it not be nice if W1 (u, v) = %?
Furthermore, if we recall the other Borel probability measure £ from the Prelude section, namely

1
E(A) :=10%- X (A N [500, 500 + WD ,

a similar argument to the one above would yield 0 < Wi (p,&) < 500. Again, it would be
wonderful if we indeed had Wi (u,§) = 500.

Theorem 2 ([Garl8, Corollary 21.2.3))
If two Borel probability measures p and v on R have respective probability density functions f,

and f,, then
/mfu(x)da:—/xf,,(:v)dx .
R R

In other words, the Wasserstein distance between i and v is at least the distance between their
means.

Wi(p,v) >

Recall our example Borel probability measures on R:

=2 (40 o))

12
. 8
Z/(A) =10°- A (Aﬁ _W’ 1—08:|) s and

108

E(A) :=10%- X (A N _500, 500 + LD .

Theorem 2 together with our earlier discussions yield W1 (p,v) = # and W1y (u, &) = 500.

4The appearance of the subscript “1” in the notations “W;” and “P;” is due to the definition of the more
general Wasserstein p-metric W,,, defined by

1/p
Wy (p,v) = <inf { / |z —yP dm(z,y) : m € }> ,
R2

where 1 < p < oo. This metric W, will be defined on the space P,(R) consisting of all 4 € P(R) such that
Je lzIP du(z) < co.
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