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Abstract

Given a probability density, we estimate the rate of decay of the measure of the level sets of its
evolutes by the Ornstein-Uhlenbeck semigroup. It is faster than what follows from the preservation
of mass and Markov’s inequality.

1 Introduction

Let N ≥ 1. For t ≥ 0, consider the probability measure µt = 1−e−t

2 δ−1 + 1+e−t

2 δ1. We simply write µ
for µ∞ = 1

2 (δ−1 + δ1). On the (multiplicative) group {−1, 1}N , we consider the semigroup of operators
(Tt)t≥0 defined for functions f : {−1, 1}N → R by

Ttf = f ∗ µNt .

In other words,

Ttf(x) =
∫
f(x · y)Kt(y) dµN (y),

where Kt(y) =
∏N
i=1(1 + e−tyi). For A ⊂ {1, . . . , N}, we define wA : {−1, 1}N → R by wA(y) =

∏N
i=1 yi

with the convention w∅ = 1. This family, known as the Walsh system, forms an orthonormal basis of
L2({−1; 1}N , µN ). Expanding the product in the definition of the kernel Kt one readily checks that
TtwA = e−t card(A)wA.

The above formulations show that Ts ◦Tt = Ts+t, that Tt is self-adjoint in L2 and preserves positivity
and integrals (with respect to µN ). As a consequence Tt is a contraction from Lp = Lp({−1; 1}N , µN )
into itself: ‖Ttf‖p ≤ ‖f‖p for p ≥ 1. Actually, the hypercontractive estimate of Bonami [2] and Beckner
[1] tells more: if 1 < p < q < +∞ and e2t ≥ q−1

p−1 , then

‖Ttf‖q ≤ ‖f‖p.

Hence the semigroup improves the integrability of functions in Lp provided p > 1. A challenging problem
is to understand the improving effects of Tt on functions f ∈ L1. In the paper [5], Talagrand asks the
following question: for t > 0, is there a function ψt : [1,+∞) → (0,+∞) with limu→+∞ ψt(u) = +∞,
such that for every N ≥ 1 and every function f on {−1, 1}N with ‖f‖1 ≤ 1, and all u > 1,

µN
({
x, |Ttf(x)| > u

})
≤ 1
uψt(u)

? (1)

This would be a strong improvement on the following simple consequence of Markov’s inequality and the
contractivity property:

µN
({
x, |Ttf(x)| > u

})
≤ ‖Ttf‖1

u
≤ ‖f‖1

u
.

Talagrand actually asks a more specific question with ψt(u) = c(t)
√

log(u) and he observes that one
cannot expect a faster rate in u. Question (1) is still open; only in some special cases an affirmative
answer is known (see the last chapter). Its difficulty is essentially due to the lack of convexity of the tail
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condition. Nevertheless, the paper [5] contains a similar result for the averaged operator M :=
∫ 1

0
Tt dt:

there exists K such that for all N and u > 1,

µN
(
{x; |Mf(x)| ≥ u‖f‖1}

)
≤ K log log u

log u
·

The goal of this note is to study the analogue of Question (1) in Gauss space.

2 Gaussian setting

Let n ≥ 1. We work on Rn with its canonical Euclidean structure (〈·, ·〉, | · |). Denote by γn the standard
Gaussian probability measure on Rn:

γn(dx) = e−|x|
2/2 dx

(2π)n/2
·

Let G be a standard Gaussian random vector, with distribution γn. Let f : Rn → R be measurable.
Then the Ornstein-Uhlenbeck semigroup (Ut)t≥0 is defined by

Utf(x) = Ef
(
e−tx+

√
1− e−2tG

)
=

∫
Rn

f
(
e−tx+

√
1− e−2ty

)
e−y

2/2 dy

(2π)n/2

= (1− e−2t)−n/2
∫

Rn

f(z)e−
(z−e−tx)2

2(1−e−2t)
dz

(2π)n/2

= (1− e−2t)−n/2ex
2/2

∫
Rn

f(z)e−
e−2t

2(1−e−2t)
(z−etx)2

dγn(z),

when f is nonnegative or belongs to L1(γn). The operators Ut preserve positivity and mean. They are
self-adjoint in L2(γn). By Nelson’s hypercontractivity theorem [3], Ut is a contraction from Lp(γn) to
Lq(γn) provided 1 < p ≤ q and (p− 1)e2t ≥ q − 1. It is natural to ask the analogue of Question (1) for
Ut: does there exist a function ψt with limu→+∞ ψt(u) = +∞ such that for all n and all nonnegative or
γn-integrable function f : Rn → R,

γn
({
x, |Utf(x)| > u‖f‖L1(γn)

})
≤ 1
uψt(u)

? (2)

This inequality would actually follow from Talagrand’s conjecture on the discrete cube. Indeed, if
f : Rn → R is continuous and bounded, consider the function g : {−1, 1}nk → R defined by

g
(
(xi,j)i≤n,j≤k

)
= f

(
x1,1 + · · ·+ x1,k√

k
, . . . ,

xn,1 + · · ·+ xn,k√
k

)
.

By the Central Limit Theorem, when k goes to infinity, the distribution of g under µnk tends to the one
of f under γn, while the distribution of Ttg under µnk tends to the one of Utf under γn (see e.g. [1]).
This allows to pass from (1) for g to (2) for f . The above argument uses boundedness and continuity.
These assumptions can be removed by a classical truncation argument, and using the semigroup property:
Utf = Ut/2Ut/2f where Ut/2f is automatically continuous. We omit the details.

To conclude this introduction, let us provide evidence that the functions ψt(u) in (2) cannot grow
faster than

√
log u. We will do this for n = 1, which implies the general case (by choosing functions

depending on only one variable). We have showed that

Utf(x) =
∫

R
Qt(x, z)f(z) dγ1(z), (3)

where

Qt(x, z) = (1− e−2t)−
1
2 exp

(
1
2

(
x2 − (z − etx)2

e2t − 1

))
.
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We are going to choose specific functions f ≥ 0 with
∫
f dγ1 = 1 for which Utf can be explicitly computed.

Note that the previous formula allows to extend the definition of Ut to (nonnegative) measures ν with∫
ϕdν < +∞ where ϕ(t) = e−t

2/2/
√

2π is the Gaussian density. The simplest choice is then to take
normalized Dirac masses δ̃y := ϕ(y)−1δy as test measures. Obviously

∫
ϕdδ̃y = 1 and Utδ̃y = Qt(·, y).

Actually, by the semigroup property, Qt(·, y) = Ut/2Ut/2δ̃y = Ut/2Qt/2(·, y), where x 7→ Qt/2(x, y) is a
nonnegative function with unit Gaussian integral. Hence,{

Qt(·, y); y ∈ R
}
⊂
{
Ut/2f ; f ≥ 0 and

∫
f dγ1 = 1

}
.

Fix t > 0 and let u > (1 − e−2t)−1/2. Then using Qt(x, y) = Qt(y, x) and setting v = u
√

1− e−2t one
readily gets that

{x; Qt(x, y) > u} =
{
x, exp

(
1
2

(
y2 − (x− ety)2

e2t − 1

))
> v

}
=

(
ety −

√
(e2t − 1)(y2 − 2 log v)+; ety +

√
(e2t − 1)(y2 − 2 log v)+

)
.

For the particular choice y = y0 := et
√

2 log v, one gets

{x; Qt(x, y0) > u} =
(√

2 log v; (2e2t − 1)
√

2 log v
)
.

Since for 0 < a < b, γ1((a, b)) ≥
∫ b
a
s
be
−s2/2ds/

√
2π = e−a2/2−e−b2/2

b
√

2π
, we can deduce that

γ1

(
{x; Qt(x, y0) > u}

)
≥ 1

2
√

2π(2e2t − 1)
√

log v

(
1
v
− 1
v(2e2t−1)2

)
.

Combining the above observations yields

lim inf
u→+∞

u
√

log u sup
{
γ1

(
{x; Ut/2f(x) > u}

)
; f ≥ 0 and

∫
f dγ1 = 1

}
> 0.

Hence ψt(u) in (2) cannot grow faster than
√

log u.
Using the same one-dimensional test functions and similar calculations, one can check that for t > 0,

the image by Ut of the unit ball B1 = {f ∈ L1(γn); ‖f‖1 ≤ 1} is not uniformly integrable, that is:

lim inf
c→+∞

sup
f∈B1

∫
|Utf |1|Utf |>c dγn > 0.

Consequently Ut : L1(γn)→ Lφ(γn) is not continuous when φ is a Young function with limt→+∞ φ(t)/t =
+∞. Next, we turn to positive results.

3 Main results

In the rest of this section B(a, r) denotes the closed ball of center a and radius r, while C(a, r1, r2) =
{x ∈ Rn; r1 ≤ |x− a| ≤ r2}. We start with an easy inclusion of the upper level-sets of Utf .

Lemma 1. Let f : Rn → R+ be such that
∫
f dγn = 1. Then for all t, u > 0,{

x ∈ Rn; Utf(x) > u
}
⊂ B

(
0,
√(

2 log u+ n log(1− e−2t)
)
+

)c
.

Proof. As already explained

Utf(x) = (1− e−2t)−n/2ex
2/2

∫
Rn

f(z)e−
e−2t

2(1−e−2t)
(z−etx)2

dγn(z).

Consequently Utf(x) ≤ (1 − e−2t)−n/2ex
2/2
∫
f dγn. Our normalization hypothesis then implies that{

x; Utf(x) > u
}
⊂
{
x; |x|2 > 2 log u+ n log(1− e−2t)

}
.
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The probability measure of complements of balls appearing in the above lemma can be estimated
thanks to the following classical fact.

Lemma 2. For all n ∈ N∗ there exists a constant cn such that for all u ≥
√

2n it holds

γn
(
B(0, u)c

)
≤ cnun−2e−u

2/2.

Actually, when n ≤ 2 this is valid for all u > 0. Also one may take c1 =
√

2/π.

Proof. Polar integration gives that

γn
(
B(0, u)c

)
= (2π)−n/2 · n voln(B(0, 1))

∫ +∞

u

rn−1e−r
2/2 dr.

For u2 ≥ 2n − 4 the map r 7→ rn−2e−r
2/4 is non-decreasing on (u,∞). Thus we may bound the last

integral: ∫ ∞
u

rn−2e−r
2/4 · re−r

2/4 dr ≤
∫ ∞
u

un−2e−u
2/4 · re−r

2/4 dr = 2un−2e−u
2/2.

Combining the previous statements gives a satisfactory estimate in dimension 1, which improves on
the Markov estimate γn(Utf ≥ u) ≤ min(1, 1/u) if f is non-negative with integral 1.

Proposition 3. Let f : R→ R+ be integrable. Then for all t > 0 and v > 1,

γ1

({
x;Utf(x) > v

∫
f dγ1√

1− e−2t

})
≤ 1
v
√
π log v

·

In higher dimension, the above reasoning gives a weaker estimate than Markov’s inequality. However
a more precise approach allows to get a slightly weaker decay for the level sets of Utf . Our main result
is stated next. It contains a dimensional dependence that we were not able to remove.

Theorem 4. Let n ≥ 2 and t > 0. Then there exists a constant K(n, t) such that for all non-negative
functions f defined on Rn with

∫
f dγn = 1, for all u > 10,

γn

({
x ∈ Rn; Utf(x) > u

})
≤ K(n, t)

log log u
u
√

log u
·

Proof. Note that it is enough to show the inequality for u larger than some number u0(n, t) > 10
depending only of n and t. We will just write that we choose u large enough, but an explicit value of
u0(n, t) can be obtained from our argument. Let us define

R1 = R1(u, n, t) :=
(
2 log u+ n log(1− e−2t)

) 1
2

+
,

R2 = R2(u, n) :=
(
2 log u+ (n− 1) log log u

) 1
2 .

It is clear that for u large enough R2 >
√

2n and also R2 > R1 > 0. So by Lemma 2,

γn(B(0, R2)c) ≤ cne
−R2

2/2Rn−2
2 =

cn
u

(
2 log u+ (n− 1) log log u

)n−2
2(

log u
)n−1

2

≤ cn
u

(
(n+ 1) log u

)n−2
2(

log u
)n−1

2

=
c′n

u
√

log u
·
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By Lemma 1, {x; Utf(x) > u} is a subset of B(0, R1)c. Hence we may write, using Markov’s inequality
on the annulus C(0, R1, R2) and the self-adjointness of Ut:

γn
(
{x; Utf(x) > u}

)
≤ γn

(
{x; Utf(x) > u} ∩B(0, R2)

)
+ γn

(
B(0, R2)c

)
= γn

(
{x; Utf(x) > u} ∩B(0, R1)c ∩B(0, R2)

)
+ γn

(
B(0, R2)c

)
≤

∫
Utf

u
1C(0,R1,R2)dγn + γn

(
B(0, R2)c

)
=

1
u

∫
(Ut1C(0,R1,R2)) f dγn + γn

(
B(0, R2)c

)
≤ 1

u
‖Ut1C(0,R1,R2)‖∞ +

c′n
u
√

log u
·

To prove the theorem, it remains to show that ‖Ut1C(0,R1,R2)‖∞ = O
(

log log u√
log u

)
. First note that for any

set A ⊂ Rn and all x ∈ Rn,

Ut1A(x) = E1A
(
e−tx+

√
1− e−2tG

)
= P

(
G ∈ A− e−tx√

1− e−2t

)
= γn

( A− e−tx√
1− e−2t

)
.

Therefore
‖Ut1C(0,R1,R2)‖∞ = sup

a∈Rn

γn
(
C(a, R̃1, R̃2)

)
,

where R̃i := Ri/
√

1− e−2t. The main idea is the above shells can be covered by a thin slab and the
complement of a large ball. Set

r = r(u) := 2(log log u)
1
2 ,

then for u large enough, Lemma 2 yields

γn
(
B(0, r)c

)
≤ cne−r

2/2rn−2 = cn2n−2 (log log u)
n−2

2

(log u)2
≤ c′′n

log log u√
log u

.

For an arbitrary point a ∈ Rn,

γn
(
C(a, R̃1, R̃2)

)
≤ γn

(
C(a, R̃1, R̃2) ∩B(0, r)

)
+ γn(B(0, r)c)

≤ γn
(
C(a, R̃1, R̃2) ∩B(0, r)

)
+ c′′n

log log u√
log u

.

For u large enough, r < R̃1, and the forthcoming Lemma 5 ensures that C(a, R̃1, R̃2)∩B(0, r) is contained
in a strip S of width

w := R̃2 −
√
R̃2

1 − r2.

By the product properties of the Gaussian measure, γn(S) coincides with the one-dimensional Gaussian
measure of an interval of length w. Therefore it is not bigger than w/

√
2π ≤ w. Hence

γn
(
C(a, R̃1, R̃2) ∩B(0, r)

)
≤ R̃2 −

√
R̃2

1 − r2

=

√
2 log u+ (n− 1) log log u

1− e−2t
−
√

2 log u+ n log(1− e−2t)
1− e−2t

− 4 log log u

≤ (n− 1 + 4(1− e−2t)) log log u− n log(1− e−2t)√
1− e−2t

√
2 log u+ (n− 1) log log u

≤ κ(n, t)
log log u√

log u
,

where the last inequality is valid for u large enough. The proof of the theorem is therefore complete.

Lemma 5. Let 0 < r < ρ1 < ρ2 and a, b ∈ Rn, then the set

C(a, ρ1, ρ2) ∩B(b, r)

is contained in a strip of width at most ρ2 −
√
ρ2
1 − r2.
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Proof. Assume that the intersection is not empty. Then without loss of generality, a = 0 and b = te1
with t > 0. Let z be an arbitrary point in the intersection. Obviously z1 ≤ |z| ≤ ρ2. Next, since
z ∈ B(b, r) and |z| ≥ ρ1, one gets

r2 ≥ |z − te1|2 = |z|2 − 2tz1 + t2 ≥ ρ2
1 − 2tz1 + t2.

Hence by the arithmetic mean-geometric mean inequality

z1 ≥
1
2

(
ρ2
1 − r2

t
+ t

)
≥
√
ρ2
1 − r2.

Summarizing, z ∈
[√

ρ2
1 − r2, ρ2

]
× Rn−1.

4 Product functions on the discrete cube

Finally, we provide an affirmative answer to the Question (1) in the case of functions with product
structure.

Proposition 6. Assume that functions f1, f2, . . . , fN : {−1, 1} → [0,∞) satisfy
∫
fi dµ = 1 for i =

1, 2, . . . , N . Let f = f1 ⊗ f2 ⊗ . . . ⊗ fN , i.e. f(x) =
∏N
i=1 fi(xi). Then for every t > 0 there exists a

positive constant ct such that for all u > 1 there is

µN
({
x, |Ttf(x)| > u

})
≤ ct

u
√

log u
.

Proof. The above result is immediately implied by the following inequality.

Proposition 7. ([4]) Let b > a > 0. Let X1, X2, . . . , XN be independent non-negative random variables
such that EXi = 1 and a ≤ Xi ≤ b a.s. for i = 1, 2, . . . , N . Then for every u > 1 we have

P (
N∏
i=1

Xi > u) ≤ Cu−1(1 + log u)−1/2,

where C is a positive constant which depends only on a and b.

Indeed, Ttf = Ttf1 ⊗ Ttf2 ⊗ . . .⊗ TtfN , where Ttfi : {−1, 1} → [1− e−t, 1 + e−t] satisfy
∫
Ttfi dµ =∫

fi dµ = 1 for i = 1, 2, . . . , N . Thus random variables X1, X2, . . . , XN defined on the probability space
({−1, 1}N , µN ) by Xi(x) = Ttfi(xi) satisfy assumptions of Proposition 7 with a = 1−e−t and b = 1+e−t

while f =
∏N
i=1Xi.
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