L^{1}-smoothing for the Ornstein-Uhlenbeck semigroup

K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz and P. Wolff *

September 21, 2010

Abstract

Given a probability density, we estimate the rate of decay of the measure of the level sets of its evolutes by the Ornstein-Uhlenbeck semigroup. It is faster than what follows from the preservation of mass and Markov's inequality.

1 Introduction

Let $N \geq 1$. For $t \geq 0$, consider the probability measure $\mu_{t}=\frac{1-e^{-t}}{2} \delta_{-1}+\frac{1+e^{-t}}{2} \delta_{1}$. We simply write μ for $\mu_{\infty}=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)$. On the (multiplicative) group $\{-1,1\}^{N}$, we consider the semigroup of operators $\left(T_{t}\right)_{t \geq 0}$ defined for functions $f:\{-1,1\}^{N} \rightarrow \mathbb{R}$ by

$$
T_{t} f=f * \mu_{t}^{N}
$$

In other words,

$$
T_{t} f(x)=\int f(x \cdot y) K_{t}(y) d \mu^{N}(y)
$$

where $K_{t}(y)=\prod_{i=1}^{N}\left(1+e^{-t} y_{i}\right)$. For $A \subset\{1, \ldots, N\}$, we define $w_{A}:\{-1,1\}^{N} \rightarrow \mathbb{R}$ by $w_{A}(y)=\prod_{i=1}^{N} y_{i}$ with the convention $w_{\emptyset}=1$. This family, known as the Walsh system, forms an orthonormal basis of $L^{2}\left(\{-1 ; 1\}^{N}, \mu^{N}\right)$. Expanding the product in the definition of the kernel K_{t} one readily checks that $T_{t} w_{A}=e^{-t \operatorname{card}(\mathrm{~A})} w_{A}$.

The above formulations show that $T_{s} \circ T_{t}=T_{s+t}$, that T_{t} is self-adjoint in L^{2} and preserves positivity and integrals (with respect to μ^{N}). As a consequence T_{t} is a contraction from $L^{p}=L^{p}\left(\{-1 ; 1\}^{N}, \mu^{N}\right)$ into itself: $\left\|T_{t} f\right\|_{p} \leq\|f\|_{p}$ for $p \geq 1$. Actually, the hypercontractive estimate of Bonami [2] and Beckner [1] tells more: if $1<p<q<+\infty$ and $e^{2 t} \geq \frac{q-1}{p-1}$, then

$$
\left\|T_{t} f\right\|_{q} \leq\|f\|_{p}
$$

Hence the semigroup improves the integrability of functions in L^{p} provided $p>1$. A challenging problem is to understand the improving effects of T_{t} on functions $f \in L^{1}$. In the paper [5], Talagrand asks the following question: for $t>0$, is there a function $\psi_{t}:[1,+\infty) \rightarrow(0,+\infty)$ with $\lim _{u \rightarrow+\infty} \psi_{t}(u)=+\infty$, such that for every $N \geq 1$ and every function f on $\{-1,1\}^{N}$ with $\|f\|_{1} \leq 1$, and all $u>1$,

$$
\begin{equation*}
\mu^{N}\left(\left\{x,\left|T_{t} f(x)\right|>u\right\}\right) \leq \frac{1}{u \psi_{t}(u)} ? \tag{1}
\end{equation*}
$$

This would be a strong improvement on the following simple consequence of Markov's inequality and the contractivity property:

$$
\mu^{N}\left(\left\{x,\left|T_{t} f(x)\right|>u\right\}\right) \leq \frac{\left\|T_{t} f\right\|_{1}}{u} \leq \frac{\|f\|_{1}}{u}
$$

Talagrand actually asks a more specific question with $\psi_{t}(u)=c(t) \sqrt{\log (u)}$ and he observes that one cannot expect a faster rate in u. Question (1) is still open; only in some special cases an affirmative answer is known (see the last chapter). Its difficulty is essentially due to the lack of convexity of the tail

[^0]condition. Nevertheless, the paper [5] contains a similar result for the averaged operator $M:=\int_{0}^{1} T_{t} d t$: there exists K such that for all N and $u>1$,
$$
\mu^{N}\left(\left\{x ;|M f(x)| \geq u\|f\|_{1}\right\}\right) \leq K \frac{\log \log u}{\log u} .
$$

The goal of this note is to study the analogue of Question (1) in Gauss space.

2 Gaussian setting

Let $n \geq 1$. We work on \mathbb{R}^{n} with its canonical Euclidean structure $(\langle\cdot, \cdot\rangle,|\cdot|)$. Denote by γ_{n} the standard Gaussian probability measure on \mathbb{R}^{n} :

$$
\gamma_{n}(d x)=e^{-|x|^{2} / 2} \frac{d x}{(2 \pi)^{n / 2}}
$$

Let G be a standard Gaussian random vector, with distribution γ_{n}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be measurable. Then the Ornstein-Uhlenbeck semigroup $\left(U_{t}\right)_{t \geq 0}$ is defined by

$$
\begin{aligned}
U_{t} f(x) & =E f\left(e^{-t} x+\sqrt{1-e^{-2 t}} G\right) \\
& =\int_{\mathbb{R}^{n}} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) e^{-y^{2} / 2} \frac{d y}{(2 \pi)^{n / 2}} \\
& =\left(1-e^{-2 t}\right)^{-n / 2} \int_{\mathbb{R}^{n}} f(z) e^{-\frac{\left(z-e^{-t} x\right)^{2}}{2\left(1-e^{-2 t)}\right.}} \frac{d z}{(2 \pi)^{n / 2}} \\
& =\left(1-e^{-2 t}\right)^{-n / 2} e^{x^{2} / 2} \int_{\mathbb{R}^{n}} f(z) e^{-\frac{e^{-2 t}}{2\left(1-e^{-2 t)}\right.}\left(z-e^{t} x\right)^{2}} d \gamma_{n}(z),
\end{aligned}
$$

when f is nonnegative or belongs to $L^{1}\left(\gamma_{n}\right)$. The operators U_{t} preserve positivity and mean. They are self-adjoint in $L^{2}\left(\gamma_{n}\right)$. By Nelson's hypercontractivity theorem [3], U_{t} is a contraction from $L^{p}\left(\gamma_{n}\right)$ to $L^{q}\left(\gamma_{n}\right)$ provided $1<p \leq q$ and $(p-1) e^{2 t} \geq q-1$. It is natural to ask the analogue of Question (1) for U_{t} : does there exist a function ψ_{t} with $\lim _{u \rightarrow+\infty} \psi_{t}(u)=+\infty$ such that for all n and all nonnegative or γ_{n}-integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\gamma_{n}\left(\left\{x,\left|U_{t} f(x)\right|>u\|f\|_{L^{1}\left(\gamma_{n}\right)}\right\}\right) \leq \frac{1}{u \psi_{t}(u)} ? \tag{2}
\end{equation*}
$$

This inequality would actually follow from Talagrand's conjecture on the discrete cube. Indeed, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and bounded, consider the function $g:\{-1,1\}^{n k} \rightarrow \mathbb{R}$ defined by

$$
g\left(\left(x_{i, j}\right)_{i \leq n, j \leq k}\right)=f\left(\frac{x_{1,1}+\cdots+x_{1, k}}{\sqrt{k}}, \ldots, \frac{x_{n, 1}+\cdots+x_{n, k}}{\sqrt{k}}\right) .
$$

By the Central Limit Theorem, when k goes to infinity, the distribution of g under $\mu^{n k}$ tends to the one of f under γ_{n}, while the distribution of $T_{t} g$ under $\mu^{n k}$ tends to the one of $U_{t} f$ under γ_{n} (see e.g. [1]). This allows to pass from (1) for g to (2) for f. The above argument uses boundedness and continuity. These assumptions can be removed by a classical truncation argument, and using the semigroup property: $U_{t} f=U_{t / 2} U_{t / 2} f$ where $U_{t / 2} f$ is automatically continuous. We omit the details.

To conclude this introduction, let us provide evidence that the functions $\psi_{t}(u)$ in (2) cannot grow faster than $\sqrt{\log u}$. We will do this for $n=1$, which implies the general case (by choosing functions depending on only one variable). We have showed that

$$
\begin{equation*}
U_{t} f(x)=\int_{\mathbb{R}} Q_{t}(x, z) f(z) d \gamma_{1}(z) \tag{3}
\end{equation*}
$$

where

$$
Q_{t}(x, z)=\left(1-e^{-2 t}\right)^{-\frac{1}{2}} \exp \left(\frac{1}{2}\left(x^{2}-\frac{\left(z-e^{t} x\right)^{2}}{e^{2 t}-1}\right)\right) .
$$

We are going to choose specific functions $f \geq 0$ with $\int f d \gamma_{1}=1$ for which $U_{t} f$ can be explicitly computed. Note that the previous formula allows to extend the definition of U_{t} to (nonnegative) measures ν with $\int \varphi d \nu<+\infty$ where $\varphi(t)=e^{-t^{2} / 2} / \sqrt{2 \pi}$ is the Gaussian density. The simplest choice is then to take normalized Dirac masses $\widetilde{\delta}_{y}:=\varphi(y)^{-1} \delta_{y}$ as test measures. Obviously $\int \varphi d \widetilde{\delta}_{y}=1$ and $U_{t} \widetilde{\delta}_{y}=Q_{t}(\cdot, y)$. Actually, by the semigroup property, $Q_{t}(\cdot, y)=U_{t / 2} U_{t / 2} \widetilde{\delta}_{y}=U_{t / 2} Q_{t / 2}(\cdot, y)$, where $x \mapsto Q_{t / 2}(x, y)$ is a nonnegative function with unit Gaussian integral. Hence,

$$
\left\{Q_{t}(\cdot, y) ; y \in \mathbb{R}\right\} \subset\left\{U_{t / 2} f ; f \geq 0 \text { and } \int f d \gamma_{1}=1\right\}
$$

Fix $t>0$ and let $u>\left(1-e^{-2 t}\right)^{-1 / 2}$. Then using $Q_{t}(x, y)=Q_{t}(y, x)$ and setting $v=u \sqrt{1-e^{-2 t}}$ one readily gets that

$$
\begin{aligned}
\left\{x ; Q_{t}(x, y)>u\right\} & =\left\{x, \exp \left(\frac{1}{2}\left(y^{2}-\frac{\left(x-e^{t} y\right)^{2}}{e^{2 t}-1}\right)\right)>v\right\} \\
& =\left(e^{t} y-\sqrt{\left(e^{2 t}-1\right)\left(y^{2}-2 \log v\right)_{+}} ; e^{t} y+\sqrt{\left(e^{2 t}-1\right)\left(y^{2}-2 \log v\right)_{+}}\right) .
\end{aligned}
$$

For the particular choice $y=y_{0}:=e^{t} \sqrt{2 \log v}$, one gets

$$
\left\{x ; Q_{t}\left(x, y_{0}\right)>u\right\}=\left(\sqrt{2 \log v} ;\left(2 e^{2 t}-1\right) \sqrt{2 \log v}\right)
$$

Since for $0<a<b, \gamma_{1}((a, b)) \geq \int_{a}^{b} \frac{s}{b} e^{-s^{2} / 2} d s / \sqrt{2 \pi}=\frac{e^{-a^{2} / 2}-e^{-b^{2} / 2}}{b \sqrt{2 \pi}}$, we can deduce that

$$
\gamma_{1}\left(\left\{x ; Q_{t}\left(x, y_{0}\right)>u\right\}\right) \geq \frac{1}{2 \sqrt{2 \pi}\left(2 e^{2 t}-1\right) \sqrt{\log v}}\left(\frac{1}{v}-\frac{1}{v^{\left(2 e^{2 t}-1\right)^{2}}}\right) .
$$

Combining the above observations yields

$$
\liminf _{u \rightarrow+\infty} u \sqrt{\log u} \sup \left\{\gamma_{1}\left(\left\{x ; U_{t / 2} f(x)>u\right\}\right) ; f \geq 0 \text { and } \int f d \gamma_{1}=1\right\}>0
$$

Hence $\psi_{t}(u)$ in (2) cannot grow faster than $\sqrt{\log u}$.
Using the same one-dimensional test functions and similar calculations, one can check that for $t>0$, the image by U_{t} of the unit ball $B_{1}=\left\{f \in L^{1}\left(\gamma_{n}\right) ;\|f\|_{1} \leq 1\right\}$ is not uniformly integrable, that is:

$$
\liminf _{c \rightarrow+\infty} \sup _{f \in B_{1}} \int\left|U_{t} f\right| \mathbf{1}_{\left|U_{t} f\right|>c} d \gamma_{n}>0
$$

Consequently $U_{t}: L^{1}\left(\gamma_{n}\right) \rightarrow L^{\phi}\left(\gamma_{n}\right)$ is not continuous when ϕ is a Young function with $\lim _{t \rightarrow+\infty} \phi(t) / t=$ $+\infty$. Next, we turn to positive results.

3 Main results

In the rest of this section $B(a, r)$ denotes the closed ball of center a and radius r, while $C\left(a, r_{1}, r_{2}\right)=$ $\left\{x \in \mathbb{R}^{n} ; r_{1} \leq|x-a| \leq r_{2}\right\}$. We start with an easy inclusion of the upper level-sets of $U_{t} f$.

Lemma 1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be such that $\int f d \gamma_{n}=1$. Then for all $t, u>0$,

$$
\left\{x \in \mathbb{R}^{n} ; U_{t} f(x)>u\right\} \subset B\left(0, \sqrt{\left(2 \log u+n \log \left(1-e^{-2 t}\right)\right)_{+}}\right)^{c}
$$

Proof. As already explained

$$
U_{t} f(x)=\left(1-e^{-2 t}\right)^{-n / 2} e^{x^{2} / 2} \int_{\mathbb{R}^{n}} f(z) e^{-\frac{e^{-2 t}}{2\left(1-e^{-2 t}\right)}\left(z-e^{t} x\right)^{2}} d \gamma_{n}(z)
$$

Consequently $U_{t} f(x) \leq\left(1-e^{-2 t}\right)^{-n / 2} e^{x^{2} / 2} \int f d \gamma_{n}$. Our normalization hypothesis then implies that $\left\{x ; U_{t} f(x)>u\right\} \subset\left\{x ;|x|^{2}>2 \log u+n \log \left(1-e^{-2 t}\right)\right\}$.

The probability measure of complements of balls appearing in the above lemma can be estimated thanks to the following classical fact.

Lemma 2. For all $n \in \mathbb{N}^{*}$ there exists a constant c_{n} such that for all $u \geq \sqrt{2 n}$ it holds

$$
\gamma_{n}\left(B(0, u)^{c}\right) \leq c_{n} u^{n-2} e^{-u^{2} / 2}
$$

Actually, when $n \leq 2$ this is valid for all $u>0$. Also one may take $c_{1}=\sqrt{2 / \pi}$.
Proof. Polar integration gives that

$$
\gamma_{n}\left(B(0, u)^{c}\right)=(2 \pi)^{-n / 2} \cdot n \operatorname{vol}_{n}(B(0,1)) \int_{u}^{+\infty} r^{n-1} e^{-r^{2} / 2} d r
$$

For $u^{2} \geq 2 n-4$ the map $r \mapsto r^{n-2} e^{-r^{2} / 4}$ is non-decreasing on (u, ∞). Thus we may bound the last integral:

$$
\int_{u}^{\infty} r^{n-2} e^{-r^{2} / 4} \cdot r e^{-r^{2} / 4} d r \leq \int_{u}^{\infty} u^{n-2} e^{-u^{2} / 4} \cdot r e^{-r^{2} / 4} d r=2 u^{n-2} e^{-u^{2} / 2}
$$

Combining the previous statements gives a satisfactory estimate in dimension 1, which improves on the Markov estimate $\gamma_{n}\left(U_{t} f \geq u\right) \leq \min (1,1 / u)$ if f is non-negative with integral 1 .

Proposition 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$be integrable. Then for all $t>0$ and $v>1$,

$$
\gamma_{1}\left(\left\{x ; U_{t} f(x)>v \frac{\int f d \gamma_{1}}{\sqrt{1-e^{-2 t}}}\right\}\right) \leq \frac{1}{v \sqrt{\pi \log v}}
$$

In higher dimension, the above reasoning gives a weaker estimate than Markov's inequality. However a more precise approach allows to get a slightly weaker decay for the level sets of $U_{t} f$. Our main result is stated next. It contains a dimensional dependence that we were not able to remove.

Theorem 4. Let $n \geq 2$ and $t>0$. Then there exists a constant $K(n, t)$ such that for all non-negative functions f defined on \mathbb{R}^{n} with $\int f d \gamma_{n}=1$, for all $u>10$,

$$
\gamma_{n}\left(\left\{x \in \mathbb{R}^{n} ; U_{t} f(x)>u\right\}\right) \leq K(n, t) \frac{\log \log u}{u \sqrt{\log u}}
$$

Proof. Note that it is enough to show the inequality for u larger than some number $u_{0}(n, t)>10$ depending only of n and t. We will just write that we choose u large enough, but an explicit value of $u_{0}(n, t)$ can be obtained from our argument. Let us define

$$
\begin{aligned}
& R_{1}=R_{1}(u, n, t):=\left(2 \log u+n \log \left(1-e^{-2 t}\right)\right)_{+}^{\frac{1}{2}}, \\
& R_{2}=R_{2}(u, n):=(2 \log u+(n-1) \log \log u)^{\frac{1}{2}} .
\end{aligned}
$$

It is clear that for u large enough $R_{2}>\sqrt{2 n}$ and also $R_{2}>R_{1}>0$. So by Lemma 2 ,

$$
\begin{aligned}
\gamma_{n}\left(B\left(0, R_{2}\right)^{c}\right) & \leq c_{n} e^{-R_{2}^{2} / 2} R_{2}^{n-2}=\frac{c_{n}}{u} \frac{(2 \log u+(n-1) \log \log u)^{\frac{n-2}{2}}}{(\log u)^{\frac{n-1}{2}}} \\
& \leq \frac{c_{n}}{u} \frac{((n+1) \log u)^{\frac{n-2}{2}}}{(\log u)^{\frac{n-1}{2}}}=\frac{c_{n}^{\prime}}{u \sqrt{\log u}}
\end{aligned}
$$

By Lemma 1, $\left\{x ; U_{t} f(x)>u\right\}$ is a subset of $B\left(0, R_{1}\right)^{c}$. Hence we may write, using Markov's inequality on the annulus $C\left(0, R_{1}, R_{2}\right)$ and the self-adjointness of U_{t} :

$$
\begin{aligned}
\gamma_{n}\left(\left\{x ; U_{t} f(x)>u\right\}\right) & \leq \gamma_{n}\left(\left\{x ; U_{t} f(x)>u\right\} \cap B\left(0, R_{2}\right)\right)+\gamma_{n}\left(B\left(0, R_{2}\right)^{c}\right) \\
& =\gamma_{n}\left(\left\{x ; U_{t} f(x)>u\right\} \cap B\left(0, R_{1}\right)^{c} \cap B\left(0, R_{2}\right)\right)+\gamma_{n}\left(B\left(0, R_{2}\right)^{c}\right) \\
& \leq \int \frac{U_{t} f}{u} \mathbf{1}_{C\left(0, R_{1}, R_{2}\right)} d \gamma_{n}+\gamma_{n}\left(B\left(0, R_{2}\right)^{c}\right) \\
& =\frac{1}{u} \int\left(U_{t} \mathbf{1}_{C\left(0, R_{1}, R_{2}\right)}\right) f d \gamma_{n}+\gamma_{n}\left(B\left(0, R_{2}\right)^{c}\right) \\
& \leq \frac{1}{u}\left\|U_{t} \mathbf{1}_{C\left(0, R_{1}, R_{2}\right)}\right\|_{\infty}+\frac{c_{n}^{\prime}}{u \sqrt{\log u}} .
\end{aligned}
$$

To prove the theorem, it remains to show that $\left\|U_{t} \mathbf{1}_{C\left(0, R_{1}, R_{2}\right)}\right\|_{\infty}=O\left(\frac{\log \log u}{\sqrt{\log u}}\right)$. First note that for any set $A \subset \mathbb{R}^{n}$ and all $x \in \mathbb{R}^{n}$,

$$
U_{t} \mathbf{1}_{A}(x)=E \mathbf{1}_{A}\left(e^{-t} x+\sqrt{1-e^{-2 t}} G\right)=P\left(G \in \frac{A-e^{-t} x}{\sqrt{1-e^{-2 t}}}\right)=\gamma_{n}\left(\frac{A-e^{-t} x}{\sqrt{1-e^{-2 t}}}\right)
$$

Therefore

$$
\left\|U_{t} \mathbf{1}_{C\left(0, R_{1}, R_{2}\right)}\right\|_{\infty}=\sup _{a \in \mathbb{R}^{n}} \gamma_{n}\left(C\left(a, \widetilde{R}_{1}, \widetilde{R}_{2}\right)\right),
$$

where $\widetilde{R}_{i}:=R_{i} / \sqrt{1-e^{-2 t}}$. The main idea is the above shells can be covered by a thin slab and the complement of a large ball. Set

$$
r=r(u):=2(\log \log u)^{\frac{1}{2}},
$$

then for u large enough, Lemma 2 yields

$$
\gamma_{n}\left(B(0, r)^{c}\right) \leq c_{n} e^{-r^{2} / 2} r^{n-2}=c_{n} 2^{n-2} \frac{(\log \log u)^{\frac{n-2}{2}}}{(\log u)^{2}} \leq c_{n}^{\prime \prime \log \log u} \frac{\sqrt{\log u}}{}
$$

For an arbitrary point $a \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\gamma_{n}\left(C\left(a, \widetilde{R}_{1}, \widetilde{R}_{2}\right)\right) & \leq \gamma_{n}\left(C\left(a, \widetilde{R}_{1}, \widetilde{R}_{2}\right) \cap B(0, r)\right)+\gamma_{n}\left(B(0, r)^{c}\right) \\
& \leq \gamma_{n}\left(C\left(a, \widetilde{R}_{1}, \widetilde{R}_{2}\right) \cap B(0, r)\right)+c_{n}^{\prime \prime} \frac{\log \log u}{\sqrt{\log u}}
\end{aligned}
$$

For u large enough, $r<\widetilde{R}_{1}$, and the forthcoming Lemma 5 ensures that $C\left(a, \widetilde{R}_{1}, \widetilde{R}_{2}\right) \cap B(0, r)$ is contained in a strip S of width

$$
w:=\widetilde{R}_{2}-\sqrt{\widetilde{R}_{1}^{2}-r^{2}} .
$$

By the product properties of the Gaussian measure, $\gamma_{n}(S)$ coincides with the one-dimensional Gaussian measure of an interval of length w. Therefore it is not bigger than $w / \sqrt{2 \pi} \leq w$. Hence

$$
\begin{aligned}
& \gamma_{n}\left(C\left(a, \widetilde{R}_{1}, \widetilde{R}_{2}\right) \cap B(0, r)\right) \leq \widetilde{R}_{2}-\sqrt{\widetilde{R}_{1}^{2}-r^{2}} \\
= & \sqrt{\frac{2 \log u+(n-1) \log \log u}{1-e^{-2 t}}}-\sqrt{\frac{2 \log u+n \log \left(1-e^{-2 t}\right)}{1-e^{-2 t}}-4 \log \log u} \\
\leq & \frac{\left(n-1+4\left(1-e^{-2 t}\right)\right) \log \log u-n \log \left(1-e^{-2 t}\right)}{\sqrt{1-e^{-2 t}} \sqrt{2 \log u+(n-1) \log \log u}} \leq \kappa(n, t) \frac{\log \log u}{\sqrt{\log u}},
\end{aligned}
$$

where the last inequality is valid for u large enough. The proof of the theorem is therefore complete.
Lemma 5. Let $0<r<\rho_{1}<\rho_{2}$ and $a, b \in \mathbb{R}^{n}$, then the set

$$
C\left(a, \rho_{1}, \rho_{2}\right) \cap B(b, r)
$$

is contained in a strip of width at most $\rho_{2}-\sqrt{\rho_{1}^{2}-r^{2}}$.

Proof. Assume that the intersection is not empty. Then without loss of generality, $a=0$ and $b=t e_{1}$ with $t>0$. Let z be an arbitrary point in the intersection. Obviously $z_{1} \leq|z| \leq \rho_{2}$. Next, since $z \in B(b, r)$ and $|z| \geq \rho_{1}$, one gets

$$
r^{2} \geq\left|z-t e_{1}\right|^{2}=|z|^{2}-2 t z_{1}+t^{2} \geq \rho_{1}^{2}-2 t z_{1}+t^{2}
$$

Hence by the arithmetic mean-geometric mean inequality

$$
z_{1} \geq \frac{1}{2}\left(\frac{\rho_{1}^{2}-r^{2}}{t}+t\right) \geq \sqrt{\rho_{1}^{2}-r^{2}}
$$

Summarizing, $z \in\left[\sqrt{\rho_{1}^{2}-r^{2}}, \rho_{2}\right] \times \mathbb{R}^{n-1}$.

4 Product functions on the discrete cube

Finally, we provide an affirmative answer to the Question (1) in the case of functions with product structure.

Proposition 6. Assume that functions $f_{1}, f_{2}, \ldots, f_{N}:\{-1,1\} \rightarrow[0, \infty)$ satisfy $\int f_{i} d \mu=1$ for $i=$ $1,2, \ldots, N$. Let $f=f_{1} \otimes f_{2} \otimes \ldots \otimes f_{N}$, i.e. $f(x)=\prod_{i=1}^{N} f_{i}\left(x_{i}\right)$. Then for every $t>0$ there exists a positive constant c_{t} such that for all $u>1$ there is

$$
\mu^{N}\left(\left\{x,\left|T_{t} f(x)\right|>u\right\}\right) \leq \frac{c_{t}}{u \sqrt{\log u}}
$$

Proof. The above result is immediately implied by the following inequality.
Proposition 7. ([4]) Let $b>a>0$. Let $X_{1}, X_{2}, \ldots, X_{N}$ be independent non-negative random variables such that $E X_{i}=1$ and $a \leq X_{i} \leq b$ a.s. for $i=1,2, \ldots, N$. Then for every $u>1$ we have

$$
P\left(\prod_{i=1}^{N} X_{i}>u\right) \leq C u^{-1}(1+\log u)^{-1 / 2}
$$

where C is a positive constant which depends only on a and b.
Indeed, $T_{t} f=T_{t} f_{1} \otimes T_{t} f_{2} \otimes \ldots \otimes T_{t} f_{N}$, where $T_{t} f_{i}:\{-1,1\} \rightarrow\left[1-e^{-t}, 1+e^{-t}\right]$ satisfy $\int T_{t} f_{i} d \mu=$ $\int f_{i} d \mu=1$ for $i=1,2, \ldots, N$. Thus random variables $X_{1}, X_{2}, \ldots, X_{N}$ defined on the probability space $\left(\{-1,1\}^{N}, \mu^{N}\right)$ by $X_{i}(x)=T_{t} f_{i}\left(x_{i}\right)$ satisfy assumptions of Proposition 7 with $a=1-e^{-t}$ and $b=1+e^{-t}$ while $f=\prod_{i=1}^{N} X_{i}$.

References

[1] W. Beckner, Inequalities in Fourier analysis. Ann. of Math. (2) 102 (1975), no. 1, 159-182.
[2] A. Bonami, Etude des coefficients de Fourier des fonctions de $L^{p}(G)$. (French) Ann. Inst. Fourier (Grenoble) 201970 fasc. 2 335-402 (1971).
[3] E. Nelson, The free Markoff field. J. Functional Analysis 12 (1973), 211-227.
[4] K. Oleszkiewicz, On Eaton's property. (In preparation)
[5] M. Talagrand, A conjecture on convolution operators, and a non-Dunford-Pettis operator on L^{1}. Israel J. Math. 68 (1989), no. 1, 82-88.
K. Ball: Department of Mathematics University College London. Gower Street. London WC1E 6BT. UNITED KINGDOM. Email: kmb@math.ucl.ac.uk
F. Barthe: Institut de Mathématiques de Toulouse (CNRS UMR 5219). Université Paul Sabatier. 31062 Toulouse cedex 09. FRANCE. Email: barthe@math.univ-toulouse.fr
W. Bednorz: Institute of Mathematics. University of Warsaw. Banacha 2. 02-097 Warszawa. POLAND. Email: W.Bednorz@mimuw.edu.pl
K. Oleszkiewicz: Institute of Mathematics. University of Warsaw. Banacha 2. 02-097 Warszawa. POLAND and Institute of Mathematics. Polish Academy of Sciences. Śniadeckich 8. 00-956 Warszawa. POLAND. Email: K.Oleszkiewicz@mimuw.edu.pl
P. Wolff: Department of Mathematics. Case Western Reserve University. 10900 Euclid Avenue Cleveland, OH 44106-7058. USA. E-mail: pawel.wolff@case.edu

[^0]: *Research of the third, fourth and fifth named authors was partially supported by Polish MNiSzW grants 1 PO3A 012 29 and N N201 397437

