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Abstract
In 1979 Vaaler proved that every d-dimensional central section of

the cube [−1, 1]n has volume at least 2d. We prove the following sharp
combinatorial analogue. Let K be a d-dimensional subspace of Rn.
Then, there is a probability measure P on the section [−1, 1]n ∩K, so
that the quadratic form∫

[−1,1]n∩K
v ⊗ v dP (v)

dominates the identity on K (in the sense that the difference is positive
semi-definite).

1 Introduction

In [Va] Vaaler proved that for every d and n, every d-dimensional central
section of the cube [−1, 1]n has volume at least 2d. His result provided a
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sharp version of Siegel’s Lemma in the geometry of numbers and was used
by Bombieri and Vaaler himself ([BV]) for applications in Diophantine ap-
proximation. Vaaler’s theorem is obviously sharp since the sections by d-
dimensional coordinate subspaces are cubes of volume 2d.

If (εi)
d
1 are IID choices of sign and x = (xi) is a vector in Rd then

E
(∑

xiεi

)2

=
∑

x2
i .

Thus, if P is the uniform probability measure on the corners of the cube
[−1, 1]d then the quadratic form∫

[−1,1]d
v ⊗ v dP (v)

is the identity on Rd.
In this paper, we prove the following sharp combinatorial version of

Vaaler’s Theorem.

Theorem 1. Let K be a d-dimensional subspace of Rn. Then, there is a
probability measure P on [−1, 1]n ∩K, with∫

[−1,1]n∩K

v ⊗ v dP ≥ IK (1)

where the dominance is in the sense of positive definite operators.

Thus, each section of the cube not only has large volume but it is also
“fat in all directions” in the same way as a cube.

Observe that if we start with the uniform probability on the corners of
the n-dimensional cube and project it orthogonally onto the subspace K,
we will obtain a probability measure that yields the identity (in the above
sense). However, for most subspaces, the support of this projected measure
will extend far outside the section [−1, 1]n ∩ K so it will not be a suitable
choice in the theorem.

Coordinate subspaces show that Theorem 1 is sharp in the sense that we
cannot guarantee to beat a larger multiple of the identity. What is more sur-
prising is that lower-dimensional cubes do not provide the only extreme cases.
For example, the section of the 3-dimensional cube perpendicular to its main
diagonal is a regular hexagon whose corners are points like (1,−1, 0) which
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are at distance
√

2 from the origin. If we take the traces of the operators
appearing in equation (1) we obtain∫

[−1,1]n∩K

|v|2 ≥ dim(K).

So the probability measure guaranteed by Theorem 1 must be supported on
the corners of the hexagon and we cannot beat any multiple of the identity
larger than 1. A similar argument works for the diagonal section of the cube
in any odd dimension. The existence of a large family of subspaces for which
the inequality is sharp makes it highly unlikely that we could write down the
measure we wish to find in any reasonably explicit way. Our argument will
build the probability as the end result of a sequence of linked optimisation
problems.

Theorem 1 can be reformulated in a variety of ways. It is a consequence of
the Pietsch Factorisation Theorem (see eg. [P]) that the so-called 2-summing
norm π2(T ) of a map T : X → `2 from a Banach space into Hilbert space is
equal to the least C for which there is a probability measure P on the unit
ball in X∗ for which

|Tx|2 ≤ C2

∫
|φ(x)|2 dP (φ)

for every x ∈ X. Thus Theorem 1 can be rewritten as the following “lifting”
theorem for 2-summing norms

Theorem 2. Let K be a d-dimensional subspace of Rn and T : Rn → K the
orthogonal projection onto K. Let T̃ be the map induced by T on the quotient
space `n

1/ ker T , as in the commuting diagram below. Then, T̃ is 2-absolutely
summing, and π2(T̃ ) ≤ 1.

`n
1

id−−−→ `n
2

q

y yT

`n
1/ ker(T )

T̃−−−→ K

(2)

It is a simple (and pretty well-known) fact that if (xi)
d
1 is a sequence of

unit vectors in Rd then there is a unit vector v in Rd for which

|〈v, xi〉| ≤
1√
d
, for all i = 1, . . . , n.

It follows from Theorem 1 that this fact can be generalised:
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Theorem 3. Let (xi)
n
1 ⊂ Rd be a sequence of vectors that satisfy

∑n
i=1 |xi|2 =

d. Then there exists a unit vector v ∈ Rd, such that

|〈v, xi〉| ≤ 1√
d
, for all i = 1, . . . , n. (3)

In this article Theorem 1 and Theorem 3 will both be obtained from the
following.

Theorem 4. Let (ui)
n
i=1 be a sequence of vectors in Rd that satisfies

∑n
i=1 ui⊗

ui = Id and Q a positive semi-definite quadratic form on Rd. Then there is
a vector w ∈ Rd, such that |〈w, ui〉| ≤ 1, for all i = 1, . . . , n and

wT Qw ≥ tr(Q).

In Section 2 we shall give the main argument: the proof of Theorem
4. The most intriguing feature of the proof is that it is to some extent
constructive. In view of the importance in Diophantine approximation of
finding vectors with small inner product with a given sequence, it is natural to
ask whether there is a lattice version of Theorem 3 that can be proved without
the averaging technique implicit in the proof of the Dirichlet-Minkowski box
principle. In Section 3 we deduce Theorem 1 and in Section 4, Theorem 3.

2 Proof of Theorem 4

Let C be the set

{x ∈ Rd : |〈x, ui〉| ≤ 1, ∀i = 1, . . . , n}.

Our aim is to find a point w = (w1, . . . , wd) ∈ C, that satisfies wT Qw ≥
tr(Q), for the positive semi-definite quadratic form Q.

Assume that Q is diagonal with respect to the standard basis of Rd, with
eigenvalues s1 ≥ s2 ≥ · · · ≥ sd ≥ 0. We wish to find a point w ∈ C that
satisfies

d∑
i=1

siw
2
i ≥

d∑
i=1

si. (4)

Note that vT (ui⊗ui)v is equal to the number 〈v, ui〉2 so for any vector v = (vi)

d∑
i=1

v2
i = vT

(
n∑

i=1

ui ⊗ ui

)
v =

n∑
i=1

〈v, ui〉2. (5)

4



For each m between 1 and d let Cm be the section of C by the subspace
of Rd spanned by the first m basis vectors.

Cm = C ∩ {x ∈ Rd : x = (x1, . . . , xm, 0, . . . , 0)}, m = 1, . . . , d.

We shall construct inductively a sequence of points w(1), w(2) and so on,
with w(m) being a corner of Cm. Each w(m) will be “large” as measured
by a certain quadratic form (a different one for each m). The last of these
quadratic forms will be just

w 7→
d∑

i=1

siw
2
i

so that the last point in the sequence, w(d) will satisfy the conclusion of the
theorem.

Let w(1) be an extreme point of the line segment C1. Since w(1) belongs
to the boundary of C, there will be at least one index i for which |〈w(1), ui〉| =
1. So equation (5) gives

w1(1)
2 ≥ 1.

The point w(1) belongs to C2 since the Ci are nested. Since the function
x 7→ x2

1 is convex, it attains its maximum over the section C2 at a vertex of
C2 which therefore also satisfies w1(2)

2 ≥ 1. This vertex is a point w(2) =
(w1(2), w2(2), 0, . . . , 0) that lies on a (d − 2)-dimensional face of C. So it
belongs to at least two of the boundary hyperplanes of C and we will have
|〈w(2), ui〉| = 1 for at least two indices i. Hence by equation (5) again

w1(2)
2 + w2(2)

2 ≥ 2.

Thus, we have found a point w(2) which satisfies

w1(2)2 ≥ 1 and w1(2)
2 + w2(2)

2 ≥ 2. (6)

Since (s1−s2) and (s2−s3) are nonnegative, we can combine these inequalities
to get

(s1 − s3)w1(2)2 + (s2 − s3)w2(2)
2 = (s1 − s2)w1(2)

2

+(s2 − s3)(w1(2)
2 + w2(2)

2)

≥ (s1 − s2) + 2(s2 − s3)

= (s1 − s3) + (s2 − s3). (7)
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Now we maximise the function x 7→ (s1 − s3)x
2
1 + (s2 − s3)x

2
2 over the

section C3. The maximum will occur at a corner w(3) satisfying

(s1 − s3)w1(3)2 + (s2 − s3)w2(3)
2 ≥ (s1 − s3) + (s2 − s3) and

w1(3)2 + w2(3)2 + w3(3)
2 ≥ 3. (8)

These inequalities can be combined to give

3∑
i=1

(si − s4)wi(3)2 =
2∑

i=1

(si − s3)wi(3)
2 + (s3 − s4)

3∑
i=1

wi(3)
2

≥
2∑

i=1

(si − s3) + 3(s3 − s4) =
3∑

i=1

(si − s4). (9)

Continuing in this way, at the k-th step we maximise the function x 7→∑k−1
i=1 (si − sk)x

2
i to get a corner w(k) of Ck for which

k∑
i=1

(si − sk+1)wi(k)2 ≥
k∑

i=1

(si − sk+1). (10)

For the final step, we may choose sd+1 = 0 and get a vertex w(d) of
Cd = C for which

d∑
i=1

siwi(d)2 =
d∑

i=1

(si − sd+1)wi(d)2 ≥
d∑

i=1

(si − sd+1) =
d∑

i=1

si. (11)

So we have found a point w = w(d) ∈ C such that wT Qw ≥ tr(Q). This
completes the proof.

3 Proof of Theorem 1

Our aim is to prove that there is a positive semi-definite symmetric operator
H, and a sequence λi of nonnegative numbers with

∑m
i=1 λi = 1 such that

the identity on K can be written as

IK =
m∑

i=1

λivi ⊗ vi −H,
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where each vi belongs to [−1, 1]n ∩ K and we regard vi ⊗ vi as an operator
on K. Our probability P will then assign mass λi to the point vi (and m

can be taken to be at most d(d+1)
2

: the dimension of the space of symmetric
matrices).

Assume this is false. Then we can separate IK from the set conv{v⊗v−H :
v ∈ [−1, 1]n ∩K, H ≥ 0} by a hyperplane. So there is a linear functional f
on the space of operators, such that

f(IK) > f(v ⊗ v)− f(H), (12)

for all v ∈ [−1, 1]n ∩K and all H. With respect to some orthonormal basis
of K we may regard this functional as a d × d matrix Q = (qij), where for
any d× d matrix A = (aij),

f(A) =
d∑

i,j=1

qijaij = tr(QT A)

and without loss of generality we may assume that Q is symmetric.
So, writing H = (hij), condition (12) can be written

tr(Q) >
d∑

i,j=1

qij(v ⊗ v)ij −
d∑

i,j=1

qijhij =
d∑

i,j=1

qijvivj −
d∑

i,j=1

qijhij

= vT Qv −
d∑

i,j=1

qijhij, for all v, H.

Since we can choose H to be any positive semi-definite matrix, this can
only hold if Q is positive semi-definite. So, we have found a positive semi-
definite symmetric Q, such that

tr(Q) > vT Qv, (13)

for every v ∈ [−1, 1]n ∩K.
To obtain a contradiction, we will show that there is a point v ∈ [−1, 1]n∩

K, with vT Qv ≥ tr(Q). Let e1, e2, . . . , en be the standard basis of the ambient
space Rn. For each i let ui be the orthogonal projection of ei onto the
subspace K. Clearly these points satisfy the hypothesis

∑n
i=1 ui⊗ui = IK of

Theorem 4. Therefore there is a vector v ∈ K which satisfies |〈v, ui〉| ≤ 1, for
all i and vT Qv ≥ tr(Q). The conditions |〈v, ui〉| ≤ 1, for all i imply that the
point v belongs to the cube [−1, 1]n (and hence to the section [−1, 1]n ∩K)
since for each i, |〈v, ei〉| = |〈v, ui〉| ≤ 1. This contradicts (13).
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4 Proof of Theorem 3

Let (xi)
n
i=1 ⊂ Rd be a sequence of vectors for which

∑n
i=1 ‖xi‖2 = d. Define

the d× d matrix H to be
∑n

i=1 xi ⊗ xi and set Q = H−1. Note that tr(H) =∑n
i=1 ‖xi‖2 = d and therefore tr(Q) ≥ d (by the Cauchy-Schwarz inequality).

Let ui = H−1/2xi, for all i = 1, . . . , n. The vectors ui satisfy the hypothesis
of Theorem 4 because

n∑
i=1

ui⊗ui =
n∑

i=1

H− 1
2 xi⊗H− 1

2 xi = H− 1
2

(
n∑

i=1

xi ⊗ xi

)
H− 1

2 = H− 1
2 HH− 1

2 = Id.

Hence, there exists a vector w ∈ Rd such that |〈w, ui〉| ≤ 1, for all i = 1, . . . , n
and wT Qw ≥ d. The conditions |〈w, ui〉| ≤ 1, can be re-written as follows:

|〈w, ui〉| = |〈H−1/2xi, w〉| = |〈xi, H
−1/2w〉| ≤ 1.

Now set v = H−1/2w ∈ Rd. Then |〈xi, v〉| ≤ 1, for all i = 1, . . . , n. Also,

〈v, v〉 = 〈H1/2v, QH1/2v〉 = 〈w,Qw〉 ≥ d.

So, ‖v‖ ≥
√

d.
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