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Abstract For the circular restricted three-body problem of celestial mechanics with small
secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar
periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones
and gave them the name “second species solutions”. We obtain large subshifts of finite type
containing solutions of this type.

Keywords Collisions · Regularization · Second species orbits · Singular perturbation ·
Three-body problem

1 Introduction

In chapter XXXII of Poincaré 1899, he proposed that there are periodic solutions of the three-
body problem of celestial mechanics with second and third masses m, µ small compared to
the primary mass M , which as m, µ → 0 converge to sequences of pairs of segments of
Kepler orbit joined at collisions. He christened them “second species” orbits. He derived
several necessary conditions on the sequences of collision arcs which occur as the limits and
sketched an argument that these are sufficient for existence of nearby second species orbits
when m, µ are small enough.

It is agreed (Levy 1952), however, that Poincaré did not provide a proof and that the result
is not true in the full generality that he claimed. Despite many analyses (e.g., Alexeev 1970;
Henrard 1980; Bruno 1981; Perko 1981; Gomez and Olle 1991), it is only recently that any
complete proofs have been written, and so far they are only for the “restricted” case where
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µ = 0. Marco and Niederman (1995) proved the existence of a periodic second species orbit
with two collisions per period for the planar circular restricted case. For the same case, we
proved in Bolotin and MacKay (2000) the existence of large sets of second species orbits1,
including aperiodic analogues, to which we proposed to extend the same name. They form
uniformly hyperbolic subshifts. A similar result was subsequently obtained by Font et al.
(2002) by a different method but it is limited to orbits with small angle changes at collisions.
In contrast, the angle changes are large in Bolotin and MacKay (2000) and in the present
paper. In recent work (Bolotin 2005, 2006), an extension has been made to the slightly elliptic
case.

In the present paper, we extend our analysis of the circular restricted three-body problem
to prove existence of uniformly hyperbolic subshifts of nonplanar second species orbits.
The method is the same as in Bolotin and MacKay (2000). Indeed we already prepared the
ground there by allowing for the 3D case in our analysis of the general n-center problem
and in remarking that it was likely that existence of one of Poincaré’s classes of nonplanar
second species orbits could be proved by this method.

Firstly we recall from Bolotin and MacKay (2000) the general mathematical setting for
our method. Next we put the spatial circular restricted three-body problem into this setting
and enunciate our result. Then we construct the set of collision arcs from which we make our
second species orbits and check the conditions of our general setting are satisfied. We close
with some comments and open questions. In Appendix A, we prove uniform hyperbolicity
of any subshift constructed by the general method of Bolotin and MacKay (2000).

2 Mathematical setting

Let P = {p1, . . . , pn} be a finite set in a 3D manifold Q. Consider a Lagrangian system
(Lε) with configuration space Q\P and Lagrangian

Lε(q, q̇) = L0(q, q̇)− εV (q). (2.1)

We assume that L0 is C4 everywhere in Q and quadratic in the velocity:

L0(q, q̇) = T (q, q̇)+ 〈w(q) · q̇〉 − W (q), (2.2)

where the kinetic energy T (q, q̇) is a positive definite quadratic form in q̇, and w(q) is a
covector field on Q. Let V be a C4 function on Q\P having Newtonian singularities on P .
This means that in a neighborhood Uα of any point pα ∈ P ,

V (q) = − fα(q)

dist (q, pα)
, fα(pα) > 0, (2.3)

where fα is a C4 function on Uα , and the distance is defined by means of the Riemannian
metric T . We study system (Lε) for small ε > 0. Then it is a singular perturbation of system
(L0).

Let

Hε = H0 + εV, H0(q, q̇) = T (q, q̇)+ W (q) (2.4)

be the energy integral. We fix E such that the domain D = {q ∈ Q | W (q) < E} contains
the set P and study system (Lε) on the energy level {Hε = E}.
1 See also MacKay (2005) for a summary, some minor additions and a correction.
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We say that a solution γ : [0, τ ] → D of system (L0) is a collision arc if γ (0), γ (τ ) ∈ P
and has

• No early collisions: γ (t) /∈ P for 0 < t < τ .

Let E be the energy of γ . Then γ is a critical point of the Maupertuis–Jacobi functional
(see e.g. Arnold et al. 1989) JE on the set� of nonparameterized curves in D with end points
in P:

JE (γ ) =
∫ τ

0
gE (γ (t), γ̇ (t)) dt, gE (q, q̇) = 2

√
(E − W (q))T (q, q̇)+ 〈w(q) · q̇〉,

where gE is the Jacobi metric. Since W |D < E , the functional JE is well defined on �. We
say that the collision arc γ is

• Nondegenerate if it is a nondegenerate critical point of JE .

The functional JE is independent of the parametrization of γ , so nondegeneracy means
nondegeneracy in the set of curves with fixed parametrization, for example, parameterized
by time or by Jacobi length.

The definition of nondegeneracy in terms of a variational principle seems the most natural,
and it is the one which is actually used in the proof. However, the following definition of
nondegeneracy is more suitable for verification in concrete examples. Represent the general
solution of system (L0) as q(t) = f (q0, v0, t), where q0, v0 ∈ R

3 are initial position and
velocity. Then collision arcs with energy E connecting pα to pβ correspond to solutions of
the system of four equations

f (pα, v, τ ) = pβ, H0(pα, v) = E (2.5)

in four variables v, τ . The nondegeneracy condition is that the Jacobian at the solution is
nonzero. We use a slight variant of this in Section 4.4.

Suppose that system (L0) has nondegenerate collision arcs γk : [0, τk] → D, k ∈ K (a
finite set) with the same energy E connecting the points pαk and pβk . A sequence (γki )i∈Z is
called a collision chain (Poincaré called them “orbites à chocs”) if βki = αki+1 and satisfies

• Direction change: γ̇ki (τki ) �= ±γ̇ki+1(0) for all i .

Collision chains correspond to paths in the graph � with the set of vertices K and the set
of edges

� = {(k, k′) ∈ K 2 | βk = αk′ , γ̇k(τk) �= ±γ̇k′(0)}. (2.6)

The following result is proved in Bolotin and MacKay (2000).

Theorem 2.1 Given a finite set K of nondegenerate collision arcs with the same energy E,
there exists ε0 > 0 such that for all ε ∈ (0, ε0] and any collision chain (γki )i∈Z, ki ∈ K ,
there exists a unique (up to a time shift) trajectory γ : R → D \ P of energy E of system (Lε),
which shadows the chain (γki )i∈Z within order ε. More precisely, there exist c,C > 0, inde-
pendent of ε and the collision chain, and a sequence (ti )i∈Z such that |ti+1 − ti − τi | � Cε,
dist (γ (t), γki (t − ti )) � Cε for ti � t � ti+1, and dist (γ (t), P) � cε.

Hence there is an invariant subset �ε in {Hε = E} on which system (Lε) is a suspension
of a subshift of finite type. It can be proved to be uniformly hyperbolic, and strongly so.
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Theorem 2.2 There exists a cross-section N ⊂ {Hε = E} such that the corresponding
invariant set Mε = �ε ∩ N of the Poincaré map is uniformly hyperbolic with Lyapunov
exponents of order log ε−1.

Corollary 2.1 The set�ε is uniformly hyperbolic, as a suspension of a hyperbolic invariant
set with bounded transition times.

Theorem 2.2 can be deduced from the proof in Bolotin and MacKay (2000) of
Theorem 2.1, but it was not proved there. Thus we prove it here in Appendix A.

The topological entropy of the Poincaré map on Mε is positive provided the graph � has
a connected branched sub-graph. In fact the topological entropy is O(ε)-close to that of the
topological Markov chain determined by the graph �. In the case of a periodic sequence
(ki )i∈Z, local uniqueness of the trajectory γ implies that it is also periodic, closing after one
cycle of the sequence.

Remarks One can allow the nonsingular part L0 of the Lagrangian Lε also to depend on ε.
Then all the results remain true with L0 replaced by L0|ε=0.

The result can be extended to some Lε, which are not quadratic in the velocity; a case like
this arises for the reduction of the motion of two charges in a uniform magnetic field with
respect to Euclidean symmetry.

3 Application to the spatial circular restricted three-body problem

Consider the spatial circular restricted three-body problem (Sun, Jupiter, and Asteroid, with
the Sun and Jupiter moving in circles around their center of mass and the Asteroid of zero
mass free to move in 3D) and suppose that the mass of Jupiter is small with respect to the
mass of the Sun. We normalize the masses to 1 − ε (Sun), ε (Jupiter), and 0 (Asteroid),
with the center of mass stationary and the first two masses in circular orbits about it, having
separation and angular frequency both normalized to 1.

To apply Theorem 2.1, consider the motion of the Asteroid in the frame Oxyz rotating
anti-clockwise about the z-axis through the Sun at angular frequency 1 with Jupiter. Then
the Sun is at O = (0, 0, 0), and Jupiter can be chosen at P = (1, 0, 0). The motion of the
Asteroid q = (x, y, z) ∈ R

3 is described by a Lagrangian system (Lε) of the form (2.1),
where

L0(q, q̇) = 1

2
|q̇|2 + x ẏ − yẋ + W (q), W (q) = 1

2
|q|2 + 1

|q| (3.7)

and

V (q) = 1

|q| − 1

|q − P| + x . (3.8)

Hence L0 has the form (2.2), V has the form (2.3), and Q = R
3\{0}. The singular set consists

of one point P . For the restricted three-body problem, the energy integral (2.4) in the rotating
coordinate frame

Hε = 1

2
|q̇|2 − 1

2
|q|2 − 1 − ε

|q| − ε

|q − p| + εx

is called the Jacobi integral. Its value is traditionally denoted by −C/2 and C is called
the Jacobi constant. Denote the energy of the Asteroid in the fixed coordinate frame by E
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and the z-component of its angular momentum about O by Gz . Then the Jacobi constant
C = −2E + 2Gz .

For ε = 0, system (L0) is the Kepler problem of Sun–Asteroid in the rotating coordi-
nate frame. Its orbits with E < 0 are transformations to the rotating frame of ellipses with
parameters a, e, ι, where a is the semi-major axis, e is the eccentricity, and ι the inclination
of the orbit to the plane of the orbit of the Sun and Jupiter. They have angular frequency
� = a−3/2 and Jacobi constant C = a−1 + 2

√
a(1 − e2) cos ι, where ι is taken in such a

way that cos ι > 0 if the projection to the plane of Jupiter’s orbit rotates in the same direction
as Jupiter, negative if opposite.

Given C ∈ R we define the set AC of allowed frequencies of Kepler ellipses to be

• (0, 1) if C ∈ [−1,+2],
• (0, (2 + C)3/2) if C ∈ (−2,−1),
• ((3 − C)3/2, 1) if C ∈ (2, 3), and
• empty if C /∈ (−2,+3)

(the motivation will be revealed in Section 4.1).

Theorem 3.1 For any C ∈ (−2,+3) there exists a dense subset S of the set AC of allowed
frequencies, such that for any finite set� ⊂ S there exists ε0 > 0 such that for any sequence
(�n)n∈Z in� and ε ∈ (0, ε0) there is a trajectory of the spatial circular restricted three-body
problem with Jacobi constant C, which avoids collisions by order ε and in the rotating frame
is within order ε of a concatenation of collision orbits formed from arcs of Kepler ellipses of
frequencies �n with inclinations ιn satisfying cos ιn = C/2 −�

2/3
n . The resulting invariant

set is uniformly hyperbolic.

In particular, the Poincaré map for given Jacobi constant has a chaotic invariant set with
Lyapunov exponents of order log ε−1, and it contains infinitely many nonplanar periodic
second species orbits.

4 Construction of collision arcs

Here we prove Theorem 3.1 by constructing a large set of nonplanar collision arcs with the
given value of C for the case ε = 0 (Lemma 4.1), checking their nondegeneracy (Section 4.4),
and constructing from them a nontrivial set of collision chains which change direction at each
collision (Section 4.5). Theorem 3.1 then follows by applying Theorems 2.1 and 2.2. The
first two aspects are most easily done in the nonrotating frame, to which we now revert.

4.1 Nonplanar circle-crossing orbits

First, we summarize the well-known facts (Hénon 1997) about which elliptic orbits of the
spatial Kepler problem cross the horizontal unit circle. As Poincaré (1899) remarked, seg-
ments of Kepler orbit about the Sun between two intersections with a given one (circle in our
case) fall into four classes as follows:

1. a whole number of revolutions of a coplanar orbit;
2. a segment of coplanar orbit between distinct intersection points;
3. a whole number of revolutions of a noncoplanar orbit;
4. a segment of a noncoplanar orbit between points at opposite ends of a straight line through

the Sun.
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Fig. 1 A nonplanar Kepler
ellipse cutting Jupiter’s orbit at
two points
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n
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Here we consider only the last class of orbit, because construction of subshifts from the first
class was already done in Bolotin and MacKay (2000), construction from the third class
looks problematic to us, and the orbit of Marco and Niederman (1995) was generated from
two arcs in the second class so it is not as virgin territory as the fourth class (though still
merits treating one day). An interesting question that we will address at the end of the paper
is whether one can make subshifts using arcs from a combination of classes.

In this section, we use a nonrotating coordinate system Oxyz, centered on the Sun. Jupiter
moves anticlockwise along the unit circle in the Oxy-plane, so its position is (cos t, sin t, 0).
Let 
 ⊂ R

3 be the plane containing the elliptic collision arc γ: [0, τ ] → R
3. We assume

that 
 is not the plane Oxy of Jupiter’s orbit. We orient 
 in such a way that the motion of
the Asteroid is counter clockwise, and let n be the corresponding unit normal. Let i ∈ 
 be
the unit vector towards the perihelion of the Asteroid’s orbit, and let j = n × i (see Figure 1).
Then j lies in the intersection of 
 with the Oxy plane. We will consider chains of elliptic
collision arcs γ : [0, τ ] → R

3 with γ (0) �= γ (τ) (in the fixed coordinate frame). Then there
exists σ ∈ ± such that γ (0) = −σ j, γ (τ) = σ j.

Define the inclination ι ∈ [0, π ] of a Kepler orbit to be the angle of n to the upward
vertical. Then cos ι = n · ez . We have ι ∈ (0, π) because we chose to exclude planar orbits.

Denote the semi-major axis of the elliptical orbit of the Asteroid by a and its eccentricity
by e. We introduce polar coordinates (r, θ) about O in the plane 
 such that θ = 0 corre-
sponds to the perihelion in the i-direction and θ increases in the direction of motion of the
Asteroid. Then

r = a(1 − e2)

1 + e cos θ
. (4.9)

The angular momentum is G = Gn, with G = √
a(1 − e2). The Jacobi constant has the

value

C = a−1 + 2Gz, Gz = G cos ι. (4.10)
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Fig. 2 Region of inverse
semi-major axis 1/a and Jacobi
constant C for the existence of a
Kepler ellipse cutting Jupiter’s
orbit at two points
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The points ±j at which the intersections of the orbits occur have polar angle θ = ±π/2
in the 
 plane. So θ goes from −σπ/2 to +σπ/2 (modulo 2π) as t goes from 0 to τ . Since
r = 1 at the intersections, we have

a(1 − e2) = 1 (4.11)

and G = 1. Since Jupiter’s period is 2π , the duration of the collision arc is

τ = 2πk + π (4.12)

for some k ∈ Z+. For example, one could start at j in Figure 1 and let the Asteroid per-
form one half revolution in θ , while Jupiter performs one and a half revolutions (this gives a
collision arc with σ = −).

The set of parameters for nonplanar circle-crossing orbits with given Jacobi constant is
indicated in the (a−1,C)-plane of Figure 2. In particular, for each C ∈ (−2,+3) the set of
frequencies of Kepler ellipse of Jacobi constant C cutting Jupiter’s orbit at opposite ends of
a diameter is the set AC defined in Section 3.

Note that given a, e satisfying (4.11), ι ∈ (0, π) and a diameter of Jupiter’s orbit, there
are two Kepler ellipses with these parameters cutting Jupiter’s orbit at the ends of the cho-
sen diameter. They are reflections of each other in the horizontal plane (see Figure 3). We
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Fig. 3 The two collision arcs
with the same starting point, C ,
a, and σ (σ = − in this picture)

t= τ

λ=+

λ= −

J
t=0

distinguish them by a symbol λ ∈ ±, with λ = + if the perihelion i is above the horizontal
plane, λ = − if it is below.

4.2 Conditions to start and end on Jupiter

Let ±η, η ∈ [0, π/2], be the eccentric anomaly of the points ±j corresponding to polar angle
θ = ±π/2. From the equation

r cos θ = a(cos η − e)

relating θ and eccentric anomalyη, we obtain e = cos η. Combining this with (4.11) we obtain
a = sin−2 η. Then the mean angular velocity of the elliptic orbit is � = a−3/2 = sin3 η.
Hence by (4.10),

C = sin2 η + 2 cos ι.

There are two cases for the collision arc γ : [0, τ ] → R
3:

σ = + It starts (t = 0) at the point −j, θ = −π/2, and ends (t = τ ) at the point j, θ = π/2.
Then for 0 � t � τ , the eccentric anomaly changes from −η to η+ 2πm, for some
m ∈ Z+. Hence for σ = +, denoting changes by �,

�η = 2πm + 2η, � sin η = 2 sin η.

σ = − It starts at j, θ = π/2, and ends at −j, θ = −π/2. The eccentric anomaly changes
from η to −η + 2π(m + 1), for some m ∈ Z+. Hence for σ = −,

�η = 2π(m + 1)− 2η, � sin η = −2 sin η.
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From Kepler’s equation of time

�τ = �η − e� sin η

and (4.12) we obtain

π(2k + 1) sin3 η − π(2m + 1)+ σg(η) = 0, (4.13)

where

g(η) = π − 2η + sin 2η.

Let us analyze solutions of equation (4.13) for η ∈ [0, π/2] (see Figure 4). We have
g(0) = π , g(π/2) = 0 and 0 � g(η) � π , g′(η) � 0 on [0, π/2]. Hence, for both σ = ±,
no solutions exist if m > k. Write m = k − l, l ∈ Z+, 0 � l � k. Then (4.13) gives

π(2k + 1)(1 − sin3 η) = 2πl + σg(η). (4.14)

For 0 � η � π/2, the left-hand side is decreasing from π(2k + 1) to 0. For σ = − the
right-hand side is increasing from 2πl − π to 2πl. The derivatives are nonzero on (0, π/2).
Hence for any 1 � l � k there exists a unique nondegenerate solution η−(k,m) ∈ (0, π/2).
For l = 0 there is the unique solution η = π/2 and it is nondegenerate, but it will turn out
slightly problematic to make use of this solution, so we will ignore it.

For σ = + the right-hand side of (4.14) is decreasing from π(2l + 1) to 2πl, so both
sides are decreasing. Although existence of a solution for each 0 � l < k is clear by the
intermediate value theorem, we need to establish their nondegeneracy (we exclude the case
l = k from consideration because the obvious solution η = 0 is degenerate). It will turn out
from the calculation that the solutions are also unique. Equating the derivative of (4.13) to
zero, we obtain

(2l−1) π

(2l+1) π

η

(2k+1) π

π/2

LHS

RHS− 

RHS+

2l π

Fig. 4 Sketches of the left (LHS) and right (RHS± for σ = ±)-hand sides of (4.14) as functions of the
eccentric anomaly η at collision
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3π(2k + 1) sin2 η cos η − 4σ sin2 η = 0.

Hence, as expected, for σ = − the only critical point is η = 0, and all solutions of (4.14) in
(0, π/2) are nondegenerate.

For σ = + there is one other critical point η∗ ∈ (0, π/2), given by

cos η∗ = 4

3π(2k + 1)
.

We will show that this point can not be a solution of (4.13). One can write

1 − sin3 η = cos2 η
1 + sin η + sin2 η

1 + sin η
.

Since

g(η) = 2(π/2 − η)+ 2 sin η cos η > 2 cos η(1 + sin η),

for any solution of (4.14) with σ = + we obtain

π(2k + 1) cos η
1 + sin η + sin2 η

1 + sin η
> 2(1 + sin η).

This implies

cos η >
2(1 + sin η)2

π(2k + 1)(1 + sin η + sin2 η)
>

2

π(2k + 1)
> cos η∗.

Hence 0 < η∗ < η, and no solution is a critical point. Thus for σ = + and 0 � l < k there
is a unique nondegenerate solution η+(k,m) of (4.13) in (0, π/2).

Note that the frequency � = sin3 η satisfies

� = 2m + 1

2k + 1
− σg(η)

π(2k + 1)
,

and

g(η)

π(2k + 1)
∈ (0, 1).

Hence � ∈ (2m/(2k + 1), (2m + 2)/(2k + 1)).
Thus for any inclination ι ∈ (0, π), the label σ = ± shows the direction of γ (τ) = σ j

relative to j. For given σ and any pairs of integers 1 � m � k (if σ = +), 0 � m < k
(if σ = −), we obtain an arc γ : [0, τ ] → R

3 with end points on Jupiter and frequency
�(σ, k,m) = sin3 η in the interval (2m/(2k + 1), (2m + 2)/(2k + 1)). It follows that for
given σ the �(σ, k,m) form a dense subset of (0, 1).

4.3 Early collisions

Next we have to restrict to arcs γ : [0, τ ] → R
3 for which there is no early collision,

i.e. t ∈ (0, τ ) for which γ (t) coincides with Jupiter, because such an arc should be divided
into more than one collision arc.

If an early collision exists, then there are at least two collisions along the arc at the same
position of Jupiter in the inertial frame. Hence � = sin3 η must be rational. More impor-
tantly, at least one of the arcs produced by subdividing at an early collision has the same start
point and same end point as the original arc, so by reducing m and k appropriately, we obtain
a replacement collision arc on the same Kepler orbit, with no early collision.
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More precisely, suppose for definiteness that σ = + and the last early collision in (0, τ )
occurs at θ = −π/2 at time t = 2πp. So 0 < p � k is an integer. Then in the time inter-
val [0, t] the eccentric anomaly increases by 2πq , where 0 < q � m is an integer. Hence
� = q/p. If we replace the initial time t = 0 with t = 2πp (and shift time accordingly), then
we obtain a collision arc γ̃ : [0, τ − 2πp] → R

3, γ̃ (t) = γ (t − 2πp). It has the same start
and end points and frequency�, and no early collisions. It corresponds to the pair of integers
k̃ = k − p, m̃ = m − q . Alternatively, suppose that σ = + and the first early collision in
(0, τ ) occurs at θ = π/2, at time t = τ − 2πp. Then, similarly,� = q/p, and we can replace
γ by the collision arc γ̃ : [0, τ − 2πp] → R

3, γ̃ (t) = γ (t), corresponding to k̃ = k − p,
m̃ = m − q . Similar observations work for σ = −.

We obtain

Lemma 4.1 For σ = ±, there exists a dense subset �σ ⊂ (0, 1) such that:

• For any � ∈ �σ , ι ∈ (0, π), λ = ± and starting point u on the horizontal unit circle,
there exists a collision arc γ = γ (�, σ, λ): [0, τ ] → R

3 with frequency �, inclination
ι, γ (0) = u, and γ (τ) = −u.

• For σ = +, at t = 0 the orbit moves towards the perihelion and at t = τ away from it;
for σ = −, at t = 0 the orbit moves away from the perihelion and at t = τ towards it.

• For λ = + the perihelion is above the horizontal plane; for λ = − it is below.

The Jacobi constant of the arc γ is

C = �2/3 + 2 cos ι.

If we fix Jacobi’s constant C ∈ (−2,+3), and� in the allowed set AC of Section 3, then the
inclination ι is determined by this equation.

Hence for given C ∈ (−2,+3) and σ , collision arcs from a given starting point to its
opposite point are determined by � ∈ �σ ∩ AC and λ = ±.

4.4 Nondegeneracy

Given a nonplanar collision arc γ , we evaluate for all nearby trajectories from the same initial
point p the distance D from the origin to the point where it repierces the horizontal plane, the
time τ taken to this point, and the Jacobi constant C . By the second criterion of Section 2, the
collision arc is nondegenerate if the derivative of (D, τ,C) with respect to initial velocity v
is invertible.

As in Bolotin and MacKay (2000),2 we can replace initial velocity v by position F ∈ R
3 of

the second focus. Indeed, for fixed p the parameters of the elliptic orbit are smooth functions
of v. In particular this holds for F = −2aL, where L = v × G − p is the Laplace vector.
Conversely, the parameters of the ellipse passing through p are smooth functions of F. In
particular this holds for L = ei and G = √

a(1 − e2)n. Thus v = G−2G × (L + p) is a
smooth function of F.

Moving F on a circle around O perpendicular to 
 makes no change to D or τ but
changes C at nonzero rate, because it changes ι at nonzero rate and does not change a, and
C = a−1 + 2 cos ι and ι �= 0, π . Moving F radially within 
 makes no change to D but
changes τ at nonzero rate: this is equivalent to the nondegeneracy of the solutions η of the
equation for a collision arc, proved in Section 4.2. Moving F parallel to the intersection of

 with the horizontal plane changes D at nonzero rate, because

2 We take the opportunity to correct a typographical error in the proof of Lemma 3.2 there: the three references
to Equation (1.6) should refer to (1.8).
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D = 1 + e cos α

1 − e cos α
,

where α is the angle between the vectors from O to F and the initial point (measured anti-
clockwise), so

∂D

∂α
= −2e sin α + 2 cos α∂e/∂α

(1 − e cos α)2
= ∓2e �= 0

at α = ±π/2 (since cos α = 0 there was no need to evaluate the derivative of e with respect
to α).

Thus the derivative of (D, τ,C) with respect to F is triangular with nonzero diagonal
entries, so invertible.

4.5 Direction change

We make collision chains by connecting collision arcs with the same Jacobi constant, but we
must be sure that they satisfy the “direction change” condition. This requires the velocity in
the rotating frame just after each collision to be neither parallel nor opposite to the velocity
just before the collision.3

Suppose the chain contains consecutive collision arcs γ : [0, τ ] → R
3, γ ′: [0, τ ′] → R

3

with given C . Suppose they correspond to σ,�, λ and σ ′,�′, λ′. We want to rule out the
possibility that the relative (to Jupiter) velocities v of γ at t = τ and v′ of γ ′ at t = 0 satisfy
v′ = ±v.

Let us represent the relative collision velocity v in the cylindrical coordinates z, ρ, φ in
the rotating frame:

v = vzez + (vφ − 1)eφ + vρeρ.

We have vφ = Gz = cos ι. Thus, if the direction change condition does not hold, then

cos ι = cos ι′ or cos ι+ cos ι′ = 2.

For a nonplanar orbit, the second case is impossible. In the first case, conservation of C =
1
a + 2 cos ι implies that � = �′. Hence if � �= �′, the changing direction condition holds
automatically.

Now suppose that � = �′. Then η = η′, cos ι = cos ι′, and vφ = v′
φ . So there are two

choices: to continue on the same ellipse, or to change to the one with the opposite sign of λ.
In the first case, the direction change condition fails, but in the second it is always satisfied
because the orbits are nonplanar. So by choosing to switch sign of λ we satisfy the changing
direction condition.

Now for given C and any sequence �n, σn , we can find a sequence λn so that the corre-
sponding collision chain satisfies the changing direction condition.

This completes the proof of Theorem 3.1.

5 Comments

For small enough ratio ε of secondary to primary mass in the circular restricted three-body
problem and any value of Jacobi constant in the range for which there exist nonplanar Kepler

3 At the analogous point in Bolotin and MacKay (2000) we mistakenly studied the direction change in the
inertial frame; this error was corrected in MacKay (2005).
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ellipses crossing the unit circle twice, we have proved existence of arbitrarily large uniformly
hyperbolic subshifts of finite type consisting of non-planar second species orbits. This result
is a 3D analog of the planar result proved in Bolotin and MacKay (2000).

As in the planar case, the result remains true if the Sun is replaced by an extended mass
distribution provided it is constant in the rotating frame, because the only effect is to make
a small change to the potential W . Similarly, Jupiter can be replaced by a spherically sym-
metric mass distribution confined to a sphere of radius cε, because it produces the same field
as a point mass at its center and the constructed orbits avoid collision by at least cε. In fact,
one can also replace Jupiter by any nonspherically symmetric mass distribution provided
it is constant in the rotating frame, contained within a radius less than cε about its center
of mass, and the effect on the gravitational field of deviation from spherical symmetry has
decayed to much less than 1/c2ε at this radius. This allows Jupiter a significant oblateness
(J2 component) for example.

We have also proved in Appendix A a general result which implies that in both the
planar and nonplanar cases, the resulting second species orbits are highly unstable, with
Lyapunov exponents of order log ε−1. This strong instability implies strong controllabil-
ity, a key fact long recognized by the designers of solar system exploration missions using
flyby.

Probably we could also make subshifts of finite type using some parabolic and hyperbolic
Kepler arcs in addition to the elliptical ones used here.

We could probably make subshifts using infinitely many collision arcs (also in the planar
case), by restricting to sequences for which the direction change is bounded away from 0
and π , but this would need more careful control on the nondegeneracy, and uniform hyperb-
olicity for the flow (though perhaps not the map) would be lost because the durations of
the collision arcs would be unbounded. Probably, we could make unbounded orbits too, for
any C ∈ (−2,+2), by taking a sequence with an going to infinity [and the analogous result
for any C ∈ (−2

√
2,+2

√
2) for the planar case]. However, it easier to obtain unbounded

orbits by switching from an ellipse to a hyperbola via just one near collision (as e.g. in
Alexeev 1970). There are many other mechanisms for the existence of unbounded orbits
(Xia 1994).

An interesting question is whether one could construct subshifts based on sequences
of both planar and nonplanar collision arcs. Their existence does not follow from our
analysis because although the planar arcs used in Bolotin and MacKay (2000) are non-
degenerate with respect to variations in the plane, they are degenerate with respect to 3D
variations.

Presumably we could extend the result of Bolotin and MacKay (2000) to make planar
subshifts using class 2 arcs (in the terminology of Section 4.1 here), like Marco and Nieder-
man’s orbit. Presumably we could also combine them with the class 1 arcs used in Bolotin
and MacKay (2000), to make even bigger planar subshifts.

We recall from Bolotin and MacKay (2000), however, a problem with using class 3 arcs,
namely that they are all degenerate. So more delicate analysis would be required to make
trajectories to shadow sequences of them. Existence is not impossible, but might require an
analog of the method of Bolotin (2006).

Acknowledgements Our collaboration was partly funded by an INTAS grant. SB was supported by the NSF
grant # 0300319 and RFBR grant # 050101119. RSM thanks IMPA (Rio de Janeiro) and the Fields Institute
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Appendix A: Hyperbolicity

In this appendix, we prove Theorem 2.2.
For each singularity pα ∈ P let �α be a small sphere (with respect to the metric T )

around pα . The proof of Theorem 2.1 of this paper in Bolotin and MacKay (2000) involved
showing uniform nondegeneracy of the critical points for the variational problem for the
sequence of points at which orbits cross the spheres �α for small enough ε. This in turn
implies hyperbolicity of the shadowing orbit.

Let us recall some notations from the proof of Theorem 2.1 in Bolotin and MacKay (2000).
Let (γki )i∈Z be a collision chain. The collision arcs γk joining the points pαk and pβk cross
the spheres �αk and �βk at the points u0

k and v0
k , respectively. Then shadowing orbits of

system (Lε) were obtained as critical points of a formal functional

Fε(u, v) =
∑
i∈Z

fki ki+1(ui , vi , ui+1, ε),

where for each (k, k′) ∈ � with βk = αk′ = α,

fkk′(u, v, u′, ε) = gk(u, v, ε)+ εsα(v, u′, ε), u ∈ Ak, v ∈ Bk, u′ ∈ Ak′ .

Here, Ak , Bk are neighborhoods of u0
k and v0

k in �αk and �βk , respectively, gk is the action
for given4 ε from u to v near γk plus the actions for ε = 0 from pαk to u and v to pβk , and εsα
is the action for given ε from v to u′ near pα minus the actions for ε = 0 from v to p and from
p to u′. The function gk is C2 on Ak × Bk × [0, ε0), and for ε = 0, it has a nondegenerate
critical point (u0

k , v
0
k ). The function sα is C2 in a set in �2

α containing Bk × Ak′ . Thus for
small ε ∈ (0, ε0] the functional Fε has a nondegenerate critical point near (u0, v0), which
gives the shadowing orbit.

We will show that the resulting orbit is uniformly hyperbolic. To do this, we will reduce
Fε to a functional �ε of the sequence u = (ui )i∈Z only,

�ε(u) =
∑
i∈Z

Ski ,ki+1(ui , ui+1, ε), �0(u) =
∑
i∈Z

φki (ui ),

eliminating v by stationarity, where Skk′ is defined on Ak × Ak′ . Then we apply a result of
Aubry et al. (1992), where it was proved that if the Skk′ have nondegenerate mixed second
derivative then nondegeneracy of a stationary sequence u for �ε is equivalent to uniform
hyperbolicity of the corresponding orbit of the associated symplectic twist map. Actually,
the proof was written for the case that all the Skk′ are the same function, but it goes through
without change if the Skk′ have uniformly nondegenerate mixed second derivative, as in the
present case where there are only finitely many of them (and the same number of associated
symplectic twist maps). In fact we can replace Skk′ with a single function defined on a disjoint
union of Ak × Ak′ .

First we perform the reduction to �ε , next we state a result about a mixed second deriv-
ative, then we use this to deduce the uniform hyperbolicity from Aubry et al. (1992), plus
bounds on the Lyapunov exponents, and finally we prove the claimed result about the mixed
second derivative.

An alternative strategy would have been to write Fε without adding and subtracting the
extra terms, check the nondegeneracy of the mixed second derivatives, and extend the proof

4 The dependence of gk on ε was not made explicit in Bolotin and MacKay (2000), but the proofs need
virtually no change.
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of Proposition 1 of Aubry et al. (1992) to the case of block tridiagonal matrices with weak
coupling between only alternate pairs of blocks.

Without loss of generality we assume that

det D2
vgk(u

0
k, v

0
k , 0) �= 0.

Indeed, if this is not true, then u0
k is conjugate to pβk along γk . Since conjugate points are

isolated, it is enough to change the radii of the spheres �α a little. Then for small ε > 0 we
can locally solve the equation

Dv fkk′(u, v, u′, ε) = 0, u ∈ Ak, v ∈ Bk, u′ ∈ Ak′

for

v = wkk′(u, u′, ε) = wk(u)+ O(ε).

Then

fkk′(u, v, u′, ε) = Skk′(u, u′, ε) = φk(u)+ εψkk′(u, u′)+ O(ε2),

where

φk(u) = gk(u, wk(u), 0), ψkk′(u, u′) = sα(wk(u), u′, 0).

The function Skk′ is well defined in a small neighborhood Ak × Ak′ of (u0
k, u0

k′). Stationary
sequences (u, v) of Fε correspond to stationary sequences u of �ε. For small ε, �ε has a
nondegenerate critical point near u0.

Since D2gk(u, wk(u), 0) ≡ 0, u0
k is a nondegenerate critical point of φk . We will show

later that

det D2
vu′sα(v, u′, 0) �= 0 in Yα. (5.15)

It follows that D2
uu′ Skk′(u, u′, ε) is nondegenerate for small ε ∈ (0, ε0], and:

‖(D2
uu′ Skk′(u, u′, ε))−1‖ � Cε−1 in Wkk′ . (5.16)

Hence Skk′ is a generating function of a symplectic map Tkk′: Nk → Nk′ . The cross-section
Nk is an open set in T ∗ Ak , which can be identified with an open set in TAk Q ∩{Hε = E} via
the Legendre transform. In fact the twist condition (5.16) is equivalent to ‖DTkk′ ‖ � cε−1

uniformly in Nk .
Critical points of �ε correspond to orbits of a sequence of symplectic twist maps Tki ki+1

with the generating functions Ski ki+1(ui , ui+1, ε). As proved by Aubry et al. (1992), hy-
perbolicity of an orbit of this sequence is equivalent to nondegeneracy of the critical point
of �ε.

Moreover the Lyapunov exponents of the corresponding Poincaré map are of order log ε−1.
An upper bound of this order comes from ‖DTkk′ ‖ � cε−1. A lower bound of this order
comes from the proof of Proposition 1 of Aubry et al. (1992).

Thus to complete the proof of Theorem 2.2 it is enough to prove (5.15). We recall how the
function sα was defined in Lemma 4.1 of Bolotin and MacKay (2000). For any a, b ∈ �α
let v+(a) be the collision velocity of the collision arc γ+

a of system (L0) joining a with p.
Similarly, let v−(b) be the collision velocity of the collision arc γ−

b of system (L0) joining
p with b. Both have energy E :

‖v+(a)‖ = ‖v−(b)‖ = √
2(E − W (pα)).
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Fix small δ > 0 and let

Yα = {(a, b) ∈ �2
α : ‖v+(a)× v−(b)‖ � δ}.

The cross-product is taken with respect to the Riemannian metric T .
It was proved in Bolotin and MacKay (2000) that for any ε ∈ (0, ε0) and any (a, b) ∈ Yα

there exists a unique orbit γ εab : [0, τ ] → Uα of system (Lε) of energy E joining a, b. Its
Maupertuis action has the form

JE (γ
ε
ab) = Sα(a, b, ε) = S+(a)+ S−(b)+ εsα(a, b, ε)− cαε log ε,

where cα = fα(pα) in (2.3) and S+(a) and S−(b) are Maupertuis actions of the collision
orbits γ+

a and γ−
b . This defines a function sα on Yα × (0, ε0). One can show sα can be C2

extended to ε = 0 and

sα(a, b, 0) = cα log ‖v+(a)× v−(b)‖. (5.17)

Computing the derivative and using that Dv+(a)δa ⊥ v+(a), Dv−(b)δb ⊥ v−(b), we
obtain

D2
absα(a, b, 0)(δa, δb) = −cα〈Dv+(a) δa, Dv−(b) δb〉

‖v+(a)× v−(b)‖ .

Hence D2
absα(a, b, 0) is nondegenerate as a bilinear form on Ta�α×Tb�α . Indeed, the maps

Dv+(a): Ta�α → Tpα Q and Dv−(b): Tb�α → Tpα Q have rank 2.
Equation (5.17) was not proved in Bolotin and MacKay (2000), although all the ingredi-

ents were there. However, we can also verify nondegeneracy of sα without performing the
computation. Indeed, the twist condition for the generating function Sα means that the cor-
responding Poincaré map Pε is well defined. Take some (a, b) ∈ Yα and the corresponding
connecting orbit γ = γ εa,b : [0, τ ] → Uα . Let v = γ̇ (0), w = γ̇ (τ ). Since γ crosses �α
transversely at b, by the implicit function theorem (b, w) is locally a C2 function of (a, v).
The map (a, v) → (b, w) is the Poincaré map Pε. It is well defined and C2 in the set

N = {(a, v) : v = γ̇ (0), (a, b) ∈ Yα} ⊂ {Hε = E} ∩ T�α Q.

Uniform twist condition for the function Sα(a, b, ε) on Yα is equivalent to boundedness of
the derivative of Pε:

det D2
absα(a, b, ε) � c > 0 ⇔ ‖D Pε(a, v)‖ � Cε−1.

To estimate D Pε we recall that Lemma 4.1 was proved in Bolotin and MacKay (2000) by
KS regularization. Let h: R

4 → R
3 be the quadratic Hopf map such that h(0) = pα . There

exists a C3+ Hamiltonian

H(x, y) = 1

2
(|y|2 − |x |2)+ O4(x, y)

in a neighborhood of 0 in R
8, invariant under the transformation group (x, y) → (et J x,

e−t J y), such that if (x(t), y(t)) is an orbit of the regularized system (H) on the level set

Zε = {(x, y) : 〈J x, y〉 = 0, H(x, y) = ε}
of the first integrals of (H), then h(x(t)) is an orbit of system (Lε) with Hε = E .

The Poincaré map Pε of system (Lε) is a quotient of the Poincaré map of system (H) in
Zε. Orbits of system (Lε) connecting (a, b) ∈ Yα correspond to orbits of system (H) in Zε
connecting a pair of points in X = h−1(�α). It is shown in Bolotin and MacKay (2000)
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that connecting orbits have time intervals of order log ε−1. Since the regularized system
(H) is nonsingular, for τ of order log ε−1 the time-τ map of system (H) is uniformly C2-
bounded by Cε−1. Corresponding solutions cross X transversely with speed bounded away
from zero independent of ε. By the implicit function theorem, the Poincaré map is uniformly
C1 bounded by Cε−1. This proves nondegeneracy of the mixed second derivative of sα .

The proof of Theorem 2.2 is finished.
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