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1 Probability theory basics

1.1 Axioms of probability theory

Let • Ω be a set (our sample space),

• F ⊆ P(Ω) a collection of subsets of Ω (the events), and

• P : F → [0, 1] a function (probability)

The triple (Ω,F ,P) is called a probability space, if

(F1) ∅,Ω ∈ F

(F2) If A ∈ F , then A{ := Ω \ A ∈ F (closed under complements)

(F3) If A1, A2, . . . ∈ F , then
⋃
i≥1Ai ∈ F (closed under countable unions)

and

(P1) If A1, A2, . . . ∈ F are pairwise disjoint, then P(
⋃
i≥1Ai) =

∑
i≥1 P(Ai)

(countable additivity)

∗Thanks to C. Panagiotis for typing bits of these notes.
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(P2) P(Ω) = 1.

Remark. The pair (Ω,F) is called a measurable space (or measure space).
F is called a σ-algebra.

All sequences A1, A2, . . . above are finite or countably infinite.

Exercises 1.1. • Show that (F1)− (F3) imply

(F4) If A1, A2, . . . ∈ F , then
⋂
i≥1Ai ∈ F (closed under

countable intersections)

Hint: use A ∩B =
(
A{ ∪B{){.

Here, A{ is the complement Ω\A of A.

• Show that (P1), (P2) imply

(P3) P(∅) = 0

• More generally, show that P(A{) = 1− P(A).

See Durrett’s book ‘Elementary Probability for Applications’ for exam-
ples.

1.2 Random variables

Examples: • The height of a randomly chosen person in the room.

• The number of heads in n coin tosses.

• The temperature tomorrow at 1 pm.

Definition 1.1. A (real-valued) random variable is a measurable function
X : Ω→ R on a probability space (Ω,F ,P).

Definition 1.2. A function X : Ω → R is measurable, if for every interval
I ⊂ R X−1(I) ∈ F .

Remark. If Ω is finite, and every singleton lies in F , then every X : Ω→ R
is measurable. (Exercise.)
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More examples: • The indicator function 1H(ω) :=

{
1 if ω = heads

0 if ω = tails

where Ω := { heads, tails } models a flip of a coin.

• More generally, for A ⊂ Ω, 1A(ω) :=

{
1 if ω ∈ A
0 if ω 6∈ A

• The position of the simple random walk (on Z) after
n steps

Exercise: Consider the experiment of rolling two dice. Define a corre-
sponding probability space, and 3 random variables on it.

1.3 Distributions

Every random variable has a (probability) distribution, telling us how likely
each value is. To define it, we need to distinguish between discrete and
continuous random variables.

A continuous random variable is a random variable that takes uncount-
ably many possible values. If X is a continuous random variable, then its
distribution can be described either by the probability density function f
defined by the property

P(X ∈ I) =

∫

ω∈I
f(ω)dλ(ω),

or the cumulative distribution function F defined by F (x) := P(X ≤ x).

Example: The (standard) Gaussian or Normal distribution. Its probability
density function is

f(x) =
1√
2π
e
−
x2

2 .

A discrete random variable is a random variable that takes only finitely
or countably infinite many possible values. If X is such a random variable
whose range is R, then the probability mass function (or distribution func-
tion) of X is the function f : R→ [0, 1] such that f(x) = P(X = x).
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Example: The indicator function X := 1A, where A is the event of hitting
the left half of the dartboard. Its probability mass function satisfies f(0) =
1

2
= f(1). This is the ‘same’ random variable as Y = 1H for a coin flip, in

the sense that X and Y have the same distribution. We say that X and Y
are identically distributed (i.d.). Their distribution is called Bernoulli and is
denoted by Bernoulli(1/2).

More generally, the Bernoulli distribution of parameter p ∈ [0, 1], de-
noted by Bernoulli(p), is the distribution of any random variable X with
P(X = 1) = p, P(X = 0) = 1− p.

Remark: We often give names to distributions without specifying which
probability space they live on!

Another example: The Geometric distribution of parameter p ∈ (0, 1],
denoted by Geometric(p), is the distribution of any random variable N with
P(N = n) = p(1 − p)n−1 for every n = 1, 2 . . .. The random variable N can
be interpreted as the number of trials until the first ‘success’ in a sequence
of Bernoulli(p) trials.

To summarize, the distribution of a random variable X is a complete
description of the possible values of X. In some sense, Probability theory is
the branch of mathematics where some numbers are replaced by probability
distributions, i.e. functions on a probability space.

1.4 Expectation

Definition 1.3. For a (discrete) random variable X, define the expectation
E(X) :=

∑
x xP(X = x), where the sum ranges over all possible values x

that X can take.

Example: Suppose X = Bernoulli(p). Then

E(X) = 1 · p+ 0 · (1− p) = p.

Theorem 1.1. Let X = Geometric(p). Then E(X) = 1/p.
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Proof 1. Set M := E(X). Note that M < +∞, as the exponential function
decays faster than any polynomial. Moreover, M satisfies

M = p · 1 + (1− p)(M + 1). (1)

To see this, let us consider what happens in the first trial. If the first trial
is a ‘success’, which happens with probability p, then the process stops,
and X is equal to 1. If the first trial is a ‘failure’, which happens with
probability 1 − p, then the process starts all over again, and X = Y + 1,
where Y = Geometric(p). Solving (1) for M gives M = 1/p.

Proof 2. We first express E(X) via the sum
∑+∞

k=1 kp(1− p)k−1. In order to
compute the latter sum, we will use that

+∞∑

k=0

xk =
1

1− x
for every x ∈ (0, 1). Differentiating both sides we obtain

+∞∑

k=1

kxk−1 =
1

(1− x)2
.

Setting x = 1− p and multiplying by p gives
+∞∑

k=1

kp(1− p)k−1 = 1/p,

as desired.

Exercise: Compute the second moment E(X2) of the random variable
X = Geometric(p).

Exercise: Define a random variable Y with E(Y ) =∞.
Exercise: Define a random variable Z with E(Z) <∞ and E(Z2) =∞.

1.4.1 Linearity of expectation

We have E(X+Y ) = E(X) +E(Y ) for any two random variables X, Y . This
immediately extends to finite sums of random variables. It also extends to
infinite sums under certain conditions: If (Xi)i∈N is a sequence of random
variables, and

∑
E(|Xi|) <∞ or E(

∑ |Xi|) <∞, then
∑

E(Xi) = E(
∑

Xi).

This is implied by the Fubini-Tonelli theorem.
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1.5 Independence

Suppose X1, X2, X3 are Bernoulli(1/2) random variables on a common prob-
ability space. What is P(X1 = X2 = X3 = 1)? It depends!

Example: Ω3 = ‘flip 3 coins’ (I) Xi = 1{coin i heads}

(II) X1 = X2 = X3 = 1{coin 1 heads}

In case (I), the Xi are independent, while in case (II) they are dependent.

Definition 1.4. The events Ai, 1 ≤ i ≤ n are mutually independent, if for
every I ⊂ {1, 2, . . . , n}

P(
⋂

i∈I
Ai) =

∏

i∈I
P(Ai).

Remark. This is stronger than pairwise independence!

Similarly, the random variables Xi, 1 ≤ i ≤ n are mutually independent, if
the events {Xi ≤ xi}1≤i≤n are mutually independent for every family of real
numbers {xi}1≤i≤n.

Examples: In example Ω3 above, the random variables Xi = 1{coin i heads}
are mutually independent. However, if we change X3 to 1{X1+X2 is even}, then
the Xi are pairwise independent but not mutually independent, because

P(X1 = X2 = X3 = 0) = 0 6=
3∏

i=1

P(Xi = 0).

Intuitively, the standard way to produce independent random variables is by
using different experiments.

1.6 Conditioning

For any two events A,B, we define the conditional probability of A subject
to B by P(A | B) := P(A∩B)

P(B)
.

Thus if A,B are independent we have P(A | B) = P(A).

6



1.7 Coupling

LetX1 andX2 be two random variables defined on probability spaces (Ω1,F1,P1)
and (Ω2,F2,P2), respectively. Then a coupling of X1 and X2 is a new prob-
ability space (Ω,F ,P) and a pair of random variables Y1 and Y2 in (Ω,F ,P)
such that Y1 has the same distribution as X1 and Y2 has the same distribution
as X2.

Such a coupling is particularly useful when we can define Y1 and Y2 so
that e.g. Y1(ω) ≥ Y2(ω) holds for every ω ∈ Ω. In this case we can deduce
e.g. that E(X1) ≥ E(X2).

Exercise 1.1. Let X1 and X2 be two random variables with distributions
Bernoulli(1/4) andBernoulli(1/2), respectively. Construct a coupling Y1, Y2

such that Y1(ω) ≤ Y2(ω) for every ω ∈ Ω.

Exercises

Exercise 1.2. Prove P(A | B ∩ C) = P(A ∩ C | B ∩ C) holds for all events
A,B,C in a probability space.

Exercise 1.3. Let (Yi)i∈N be a sequence of mutually independent random
variables with distributions Bernoulli(p) for p > 0. Then
P({Yi = 0∀i ∈ N}) = 0.
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2 Markov chains

2.1 Definition of a Markov chain

A Markov chain X0, X1, . . . is characterised by the property that the final
position depends on the last preceding one, but not on the previous history:

P(Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) = P(Xn+1 = xn+1 | Xn = xn).

Notice that we are actually dealing with generalized S-valued random vari-
ables by considering maps Xn : Ω → S such that X−1

n (x) = {ω ∈ Ω :
Xn(ω) = x} ∈ F for every x ∈ S. Also, we assume that the conditional
probability

P(Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) =
P(X0 = x0, . . . Xn+1 = xn+1)

P(X0 = x0, . . . Xn = xn)

is well defined by assuming that P(X0 = x0, . . . , Xn = xn) > 0.
In general, a sequence of random variables X1, X2, . . . might have very

complicated mutual dependencies. We were often discussing the case of a
sequence of independent random variables (like independent coin tosses). In
Markov chains we have an intermediate situation: there is some dependence,
but of only restricted type–the random variable Xn+1 depends on the pre-
ceding ones only through its last predecessor Xn.

Definition 2.1. Let S be an at most countable set and let Π : S×S → [0, 1]
be a mapping such that

∑
y∈S Π(x, y) = 1 for each x ∈ S. We say that the

matrix Π = (Π(x, y))x,y∈S is a stochastic matrix.
A sequenceX0, X1, . . . of random variables on a probability space (Ω,F ,P)

with values in S, Xn : Ω → S, n = 0, 1, . . ., is called a Markov chain with
state space S and transition matrix Π, if

P(Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) = Π(xn, xn+1)

for every n ≥ 0 and any sequence x0, x1, . . . , xn+1 ∈ S such that
P(X0 = x0, . . . , Xn = xn) > 0.

The distribution α = P ◦X−1
0 of the values of X0 on the state space S is

the initial distribution of the Markov chain.

Remark. Using α = P◦X−1
0 as a shorthand for the function defined on S by

S 3 x→ α(x) = P ({ω ∈ Ω : X0(ω) = x}), we observe that it is a probability
distribution since

∑
x∈S α(x) =

∑
x∈S P(X0 = x) = 1.
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Notice that definition 2.1 implies 2 statements:

• Markov property: P(Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) = P(Xn+1 =
xn+1 | Xn = xn)

• Time homogeneity: P(Xn+1 = y | Xn = x) does not depend on n.

The fact that the matrix Π is stochastic, its elements are nonnegative and
each row sums to one, assures a consistence. It means that with a fixed x,
the matrix element Π(x, y) may indeed play a role of the probability of the
move from x to y, P(Xn+1 = y | Xn = x) = Π(x, y), with the probability of
moving to anywhere in S equal to one,

∑
y∈S P(Xn+1 = y | Xn = x) = 1, as

it should.
Notation: It is useful to introduce a special notation

Px(Xn = xn, . . . , X1 = x1) = P(Xn = xn, . . . , X1 = x1 | X0 = x)

and

Pα(Xn = xn, . . . , X1 = x1) =
∑

x∈S
Px(Xn = xn, . . . , X1 = x1)α(x)

for the probability with the initial condition x or the initial distribution α,
respectively.

Lemma 2.1. We have Px(Xn = y) = Πn(x, y), where Πn(x, y) is the matrix
element of the matrix Πn, the n-th power of Π, at the intersection of the row
and the column labelled by x and y, respectively. Also, for any k < n we
have Px(Xn = y | Xk = z) = Pz(Xn−k = y).

Proof. We will repeatedly rely on the equality

P(Xn = y,Xn−1 = xn−1, . . . , X1 = x1, X0 = x) =

P(Xn = y | Xn−1 = xn−1, . . . , X0 = x) · · ·P(X1 = x1 | X0 = x)P(X0 = x) =

P(Xn = y | Xn−1 = xn−1) · · ·P(X1 = x1 | X0 = x)P(X0 = x) =

P(X0 = x)Π(x, x1)Π(x1, x2) · · ·Π(xn−1, xn)

To verify the first equality, it suffices to use sequentially, starting at the end
of the second line, the equality

P(Xk = xk | Xk−1 = xk−1, . . . , X0 = x)P(Xk−1 = xk−1, . . . , X0 = x) =

P(Xk = xk, Xk−1 = xk−1, . . . , X0 = x)
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for k = 1, 2 . . . , n, which holds by the definition of conditional probability.

For the first claim, we thus get

P(Xn = y | X0 = x) =∑
x1,...,xn−1∈S P(Xn = y,Xn−1 = xn−1, . . . , X1 = x1, X0 = x)

P(X0 = x)
=

∑

x1,...,xn−1∈S
Π(x, x1)Π(x1, x2) · · ·Π(xn−1, y) = Πn(x, y).

Similarly, for the second claim,

P(Xn = y,Xk = z,X0 = x) =
∑

xn−1,...,xk+1,xk−1,...,x1∈S
P(Xn = y,Xn−1 = xn−1, . . . , Xk = z, . . . , X0 = x) =

∑

xn−1,...,xk+1,xk−1,...,x1∈S
P(X0 = x)Π(x, x1) · · ·Π(xk−1, z)Π(z, xk+1) · · ·Π(xn−1, y)

yielding
P(Xn = y,Xk = z | X0 = x) = Πk(x, z)Πn−k(z, y).

Hence,

Px(Xn = y | Xk = z) =
Px(Xn = y,Xk = z)

Px(Xk = z)
=

P(Xn = y,Xk = z | X0 = x)

P(Xk = z | X0 = x)
=

=
Πk(x, z)Πn−k(z, y)

Πk(x, z)
= Πn−k(z, y) = Pz(Xn−k = y).

In the definition above we are assuming that a suitable probability space
and a sequence of random variables Xn are given so that the defining equa-
tions linking particular conditional probabilities with the transition matrix
are satisfied.

We could ask the opposite: given an initial distribution α and a transition
matrix Π, do there exist a probability space (Ω,F ,P) and a sequence of
random variables Xn on it so that the defining equations are satisfied? And
is this probability unique?

The answer on both is positive. Without going into technical details,
let us sketch the main steps of construction of the probability measure Pα:
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1) Let Ω := SN, and let F be the σ-algebra generated by cylindrical sets
C(n, x0, . . . , xn) := {ω ∈ Ω : ω(0) = x0, . . . , ω(n) = xn}.
2) For any cylindrical set C(n, x0, . . . , xn), set

Pα(C(n, x0, . . . , xn)) = α(x0)Π(x0, x1), . . . ,Π(xn−1, xn).

If we were happy to consider only times n up to some large N we could
restrict ourselves to the sample space SN and stop here. But often we need
to consider times that are not a priori restricted; for example, the time of
first return to the origin for a random walk. As a result we have to stick with
Ω := SN. Hence the need of the next step.
3) Extend the measure Pα to F with the help of the Kolmogorov consistence
theorem to get a σ-additive measure on the set G of all cylinder sets in
Ω combined with the subsequent Caratheodory construction extending the
measure to the full σ-algebra F . In our case, when Ω is given as a product of
countable sets, both steps are relatively simple but will be omitted here. In
any case, however, the extension, once constructed, is uniquely determined
by the step 2) in view of Theorem 2.2 and the fact that the set G of cylindrical
sets is closed under intersections.

Theorem 2.2. Let (Ω,F ,P) be a probability space and suppose that F is
generated by a set G ⊂ F (F is the smallest σ-algebra containing G) and
that the set G is closed under intersections. Then the probability measure P
is uniquely determined by its restriction P|G to G.

4) The random variables Xn are then simply projections Xn : Ω → S
defined by Xn(ω) = ωn. The claim that the probability Pα with the sequence
of random variables Xn now constitutes the Markov chain with transition
matrix Π can be read from the equation in step 2) combined with the defini-
tion in step 4) and with the first equation in the proof of Lemma 2.1. Notice
that only the measure restricted to cylindrical sets is actually needed here.

As we saw above, applying Π n-times amounts to the use of the power
Πn which corresponds to moving by n steps forward in time. One can trace a
particular path x, x1, x2, . . . , xn down to a contribution to the matrix product
of the form Π(x, x1)Π(x1, x2) . . .Π(xn−1, xn). Matrix product is obtained as
the sum over all paths.

Exercise 2.1. Prove that the power Πn of a stochastic matrix Π is also a
stochastic matrix.
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We now explore the effect of left and right multiplication by the
matrix Π. If the probability distribution of the random variable Xn is µ, i.e.
P(Xn = x) = µ(x), then the probability distribution of Xn+1 is µΠ where
µ is viewed as a row vector (with coordinates labeled by elements from S),
and µΠ denotes the matrix product of µ and Π. Indeed, this follows from a
straightforward computation employing the definition of a Markov chain:

P(Xn+1 = y) =
∑

x∈S
P(Xn+1 = y|Xn = x)P(Xn = x) =

∑

x∈S
Π(x, y)µ(x) = (µΠ)(y).

This fact can be summarised as follows: Multiplying by Π on the right
moves today’s distribution into tomorrow’s distribution.

We now turn to left multiplication by Π. Let f be a function on the state
space S, considered as a column vector. Multiplying on the left by Π we
have:

(Πf)(x) =
∑

y∈S
Π(x, y)f(y) =

∑

y∈S
P(Xn+1 = y|Xn = x)f(y) = E(f(Xn+1)|Xn = x).

Here, we are using the conditional expectation E(Y |X = x) of a random
variable Y : Ω→ R defined as

E(Y |X = x) =
∑

a∈Y (Ω)

aP(Y = a|X = x)

(assuming that P(X = x) > 0). We also rely on the fact that the expectation
(or conditional expectation) of a function f(Y ) of a random variable Y is

E(f(Y )) =
∑

b∈f(Y )(Ω)

bP(f(Y ) = b) =
∑

a∈Y (Ω)

f(a)P(Y = a),

using that P(f(Y ) = b) =
∑

a:f(a)=b P(Y = a). This fact can be summarised
as follows: Multiplying a column vector f by Π on the left takes us
from a function on the state space today to the expected value of
that function tomorrow in dependence on the position today.
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Examples

Examples 5

Here, we are using the conditional expectation E(Y |X = x) of a random variable Y : ⌦ ! R
defined as

E(Y |X = x) =
X

a2Y (⌦)

a P(Y = a |X = x)

(assuming that P(X = x) > 0). We also rely on the fact that the expectation (or conditional
expectation) of a function f(Y ) of a random variable Y is

E(f(Y )) =
X

b2f(Y )(⌦)

b P(f(Y ) = b) =
X

a2Y (⌦)

f(a) P(Y = a),

using that P(f(Y ) = b) =
P

a:f(a)=b P(Y = a).

Multiplying a column f by ⇧ from the left takes us from a function on the state space today
to the expected value of that function tomorrow in dependence on the position today.

3.2. Examples

1. Simple Random Walk on Z.
Walker starts at 0 and at every integer time flips a coin and moves one step right or left.

(Think about a walker on a long road they stops every hundred meters and tossing a coin
decides whether to proceed in the same direction for another hundred meters or to walk back
for hundred meters.) Notice that here the state space S = Z is not finite!

This corresponds to the Markov chain with transition probabilities

P(Xn+1 = x ± 1 |Xn = x) = 1
2
.

The corresponding weighted digraph is:

. . . . . .

and the transition matrix:

⇧ =

0
BBBB@

. . . . . . . . . . . . . . . . . . .
. . . , 1

2
, 0, 1

2
, 0, 0, 0 . . .

. . . , 0, 1
2
, 0, 1

2
, 0, 0, . . .

. . . , 0, 0, 1
2
, 0, 1

2
, 0, . . .

. . . . . . . . . . . . . . . . . . .

1
CCCCA
 � x

"
y

An alternative description: if Zk 2 {�1, 1} is the outcome of the k-th coin flip and X0 = 0,
then Xn = Z1 + Z2 + · · · + Zn.
2. Simple Random Walk on Zd.

For any x 2 S = Zd,

P(Xn+1 = x ± ek |Xn = x) = 1
2d

, k = 1, 2, . . . , d.

As we already know, for d = 1, 2 the random walk is recurrent: with probability one, the
walker returns to the origin in finite time.

On the other hand, for d � 3 the walk is transient: there is a non vanishing probability that
the walker never returns.
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6 Markov chains 6.2.18

3. Random Walk on a Graph.
The random walk on a graph G = (V, E) is the Markov chain on the state space V with

the transition matrix

⇧(x, y) =

(
1

dG(x)
if {x, y} 2 E,

0 otherwise.

I.e., when at x, the walker examines the neighbourhood and moves to an adjacent vertex chosen
uniformly from all neighbours.

For example, the random walk on the graph
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is a Markov chain with the transition matrix

⇧ =

0
BBBBBBBBB@

0, 1
4
, 1

4
, 0, 0, 1

4
, 0, 1

4
1
4
, 0, 0, 1

4
, 1

4
, 0, 1

4
, 0

1
3
, 0, 0, 0, 1

3
, 0, 0, 1

3
0, 1

2
, 0, 0, 0, 0, 1

2
, 0

0, 1
2
, 1

2
, 0, 0, 0, 0, 0

1, 0, 0, 0, 0, 0, 0, 0
0, 1

3
, 0, 1

3
, 0, 0, 0, 1

3
1
3
, 0, 1

3
, 0, 0, 0, 1

3
, 0

1
CCCCCCCCCA

.

5. Coin Tossing Game (Gambler’s Ruin).
Two gamblers, A and B, each owns a, b pounds, respectively. They flip a fair coin and,

according the result, pay each other 1 £. The game ends once one of them is ruined (of course,
that one with less money probably earlier).

Let Xn be the gain of the gambler A, Xn 2 {�a, . . . , b} (negative gain is a loss). The
corresponding Markov chain is represented by the weighted digraph

�2 �1 0 1 2 3 41
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
1

with the transition matrix

⇧(x, y) =

8
><
>:

1
2

if � a < x < b, |x� y| = 1,

1 if x = y 2 {�a, b},

0 otherwise.

There are several natural questions:
What is the probability P(Xn = �a) (relatively to P(Xn = b))?
Notice that once Xn arrives at �a, it stays there forever, {Xn = �a} = {Xm = �a, m � n}.)

2.2 Irreducibility

Definition 2.2. A transition matrix Π is irreducible, if for each x, y ∈ S
there exists n = n(x, y) such that Πn(x, y) > 0.

Notice that according to the definition, for any x, y ∈ S there exists also
n(y, x) (not necessarily equal to n(x, y)) such that Πn(y, x) > 0.

Recalling that Πn(x, y) = Px(Xn = y), the irreducibility of a transition
matrix means that, for the corresponding Markov chain, the probability of
reaching y after n = n(x, y) steps if starting at x is non-vanishing.

Usually we assume irreducibility. However, this is not really a loss of
generality; if Π is not irreducible and S is finite, it can be split into irreducible

14



pieces. To show this formally, we first introduce some notation.

Definition 2.3. We say that y ∈ S is accessible from x ∈ S, in symbols
x→ y, if there exists n = n(x, y) > 0 such that Px(Xn = y) > 0.

We say that x communicates with y, in symbols x↔ y, if either x→ yand
x← y or x = y.

A communicating class is an equivalence class with respect to the equiv-
alence relation ↔.

We say that x is essential if x→ y implies y → x for every y ∈ S, and x
is inessential if it is not essential.

Exercise 2.2. Check that ↔ is an equivalence relation.

Lemma 2.3. 1. If Π is irreducible, then S consists of a single communi-
cating class.

2. If x is essential and x→ y, then y is essential.

3. If S is finite then there exists an essential communicating class.

4. If Π is not irreducible, then it is irreducible on each essential class.

Proof. (i) If Π is irreducible, then x↔ y for all x, y ∈ S.
(ii) Let x be essential and x → y. The main idea is now summarised in the
following illustration.
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x y z
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Namely, if y ! z for some z, then also x ! z and thus z ! x as x is

essential. Since x! y, we have z ! y implying that y is essential.
(iii) Define inductively a sequence (y0, y1, . . . ) of distinct states so that at each step yk ! yk+1

but yk+1 6! yk as illustrated here:

If for any yk such yk+1 does not exist, then yk is essential. Indeed, there does not exist j < k
such that yk ! yj since this would mean that yk ! yk�1 (via the sequence yk ! yj ! yj+1 !
. . . yk�1) in contradiction to the construction. On the other hand, for any y 2 S \ {y0, . . . , yk}
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(ii) If x is essential and x! y, then y is essential.
(iii) If S is finite then there exists an essential communicating class.
(iv) If ⇧ is not irreducible, then it is irreducible on each essential class.
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(i) If ⇧ is irreducible, then x$ y for all x, y 2 S.
(ii) Let x be essential and x! y. The main idea is now summarized in the following illustration.

Namely, if y ! z for some z, then also x ! z and thus z ! x as x is

essential. Since x! y, we have z ! y implying that y is essential.
(iii) Define inductively a sequence (y0, y1, . . . ) of distinct states so that at each step yk ! yk+1

but yk+1 6! yk as illustrated here: y0
⇥

y1
⇥

y2 · · · yk�1
⇥
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If for any yk such yk+1 does not exist, then yk is essential. Indeed, there does not exist j < k
such that yk ! yj since this would mean that yk ! yk�1 (via the sequence yk ! yj ! yj+1 !
. . . yk�1) in contradiction to the construction. On the other hand, for any y 2 S \ {y0, . . . , yk}

If for any yk such yk+1 does not exist, then yk is essential. Indeed, there
does not exist j < k such that yk → yj since this would mean that yk → yk−1

(via the sequence yk → yj → yj+1 → . . . yk−1) in contradiction to the con-
struction. On the other hand, for any y ∈ S \ {y0, . . . , yk} such that yk → y
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we also have y → yk (otherwise we could have proceeded with the construc-
tion beyond yk). If S = y0, . . . , yk, then no y ∈ S \ {yk} is accessible from
yk and thus yk is essential. Given that S is finite and no repetitions are
possible, the sequence necessarily terminates. We get at least one essential
equivalence class [yk].

(iv) We just have to verify that Π restricted to an essential class [x] is
stochastic. Indeed, for all y 6∈ [x] we have Π(z, y) = 0 for any z ∈ [x] since
Π(z, y) > 0 would imply that z → y and thus also y → z (by the essentiality
of z) in contradiction with the assumption y 6∈ [x].

Example: for the Markov chain represented by the digraph below, there
are four classes, two essential and two inessential.

Irreducibility and Periodicity 9

such that yk ! y we also have y ! yk (otherwise we could have proceeded with the construction
beyond yk). If S = {y0, . . . , yk} (and S \ {y0, . . . , yk} = ;, then no y 2 S \ {yk} is accessible
from yk and thus yk is essential. Given that S is finite and no repetitions are possible, the
sequence necessarily terminates. We get at least one essential equivalence class [yk].
(iv) We just have to verify that ⇧ restricted to an essential class [x] is stochastic. Indeed, for
all y 62 [x] we have ⇧(z, y) = 0 for any z 2 [x] since ⇧(z, y) > 0 would imply that z ! y and
thus also y ! z (essentiality of z) in contradiction with the assumption y 62 [x]. ⇤

For the Markov chain represented by the digraph below, there are four classes, two essential
and two inessential.

⌅

⌅

⌅

⇤ ⇤

⇤

⇤

⌅

⌅

⌅

⌅

Definition. Let T (x) = {n � 1 : ⇧n(x, x) > 0} be the set of possible times of returns
to x.
A period of the state x is the greatest common divisor of T (x).
A Markov chain is aperiodic if all its states have period 1.

A simple random walk on Zd, d � 1, has period 2 since T (x) = {2k, k 2 N}.
With help of the properties of the greatest common divisor we get the following.

Lemma 4. If ⇧ is irreducible, then gcd T (x)=gcd T (y) for all x, y 2 S.

Proof. Fix x, y 2 S. There exist m, n 2 N such that ⇧m(x, y) > 0 and ⇧n(y, x) > 0.
Take ` = m + n. We have ` 2 T (x) \ T (y). Indeed, ⇧m+n(x, x) =

P
z2S ⇧

m(x, z)⇧n(z, x) �
⇧m(x, y)⇧n(y, x) > 0 and thus m+n 2 T (x). Similarly, n+m 2 T (y). Also, T (x)+ ` ⇢ T (y).
To see this, taking k 2 T (x) implies ⇧n+k+m(y, y) > 0 and thus k + ` 2 T (y). Hence, gcd T (y)
divides all elements of T (x) and thus gcd T (y)  gcd T (x). Similarly, exchanging the role of
x and y, gcd T (x)  gcd T (y). ⇤

Lemma 5. If ⇧ is aperiodic and irreducible with finite state space S, then there exists
r such that ⇧n(x, y) > 0 for all x, y 2 S and any n 2 N, n � r.

Proof. This is based on the following claim from number theory that we state without
proof:

Any set of non-negative integers closed under addition and with gcd equal to one contains
all but finite number of integers.

The set T (x) is closed under addition: s, t 2 T (x) implies ⇧s+t(x, x) � ⇧s(x, x)⇧t(x, x) > 0.
Thus T (x) equals N up to a finite set: there exists n(x) such that n 2 T (x) for all n �

2.3 Periodicity

Definition 2.4. Let T (x) := {n ≥ 1 : Πn(x, x) > 0} be the set of possible
times of returns to x.
A period of the state x is the greatest common divisor of T (x).
A Markov chain is aperiodic, if all its states have period 1.

For example, a simple random walk on Zd, d ≥ 1, has period 2 since
T (x) = 2k | k ∈ N . With help of the properties of the greatest common
divisor we get the following.

Lemma 2.4. If Π is irreducible, then gcd T (x) = gcd T (y) for all x, y ∈ S.

Proof. Fix x, y ∈ S. There exist m,n ∈ N such that Πm(x, y) > 0 and
Πn(y, x) > 0. Take l := m + n. We have l ∈ T (x) ∩ T (y). Indeed,
Πm+n(x, x) =

∑
z∈S Πm(x, z)Πn(z, x) ≥ Πm(x, y)Πn(y, x) > 0 and thus

m+n ∈ T (x). Similarly, n+m ∈ T (y). We claim that T (x) + l ⊂ T (y). To
see this, notice that k ∈ T (x) implies Πn+k+m(y, y) > 0 and thus k+l ∈ T (y).
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Hence, gcd T (y) divides all elements of T (x) and thus gcd T (y) ≤ gcd T (x).
Similarly, exchanging the role of x and y, we obtain gcd T (x) ≤ gcd T (y).

Lemma 2.5. If Π is aperiodic and irreducible with finite state space S, then
there exists r such that Πn(x, y) > 0 for all x, y ∈ S and any n ∈ N, n ≥ r.

Proof. This is based on the following proposition from number theory that
we state without proof:

Proposition 2.6. Any set of non-negative integers closed under addition
and with gcd equal to one contains all but finite number of integers.

The set T (x) is closed under addition: s, t ∈ T (x) implies Πs+t(x, x) ≥
Πs(x, x)Πt(x, x) > 0. Thus T (x) equals N up to a finite set: there exists
n(x) such that n ∈ T (x) for all n ≥ n(x). For n ≥ n(x) + n(x, y) (taking
into account the irreducibility of Π), we have
Πn(x, y) ≥ Πn−n(x,y)(x, x)Πn(x, y)(x, y) > 0 and thus, for any n ≥ m(x) =
n(x) + maxy∈S n(x, y) we have Πn(x, y) > 0 for all y ∈ S. Finally, for any
r ≥ maxx∈Sm(x) we have Πr(x, y) > 0 for all x, y ∈ S.

Finally, let us observe that any periodic chain may turn into aperiodic by
lazyness: each time do nothing with a small probability or, with the comple-
mentary probability, proceed by applying Π. This amounts to replacing Π
by a ‘lazy’ Markov chain (1− ε)Π + ε1, for which

[(1− ε)Π + ε1](x, x) ≥ ε > 0.

2.4 Asymptotic stationarity

Definition 2.5. We say that a probability distribution
α : S → [0, 1],

∑
x∈S α(x) = 1, is stationary, if

αΠ = α

that is,
∑

x∈S α(x)Π(x, y) = α(y) for every y ∈ S.

We will prove:
If S is finite, Π is aperiodic and irreducible, and α is stationary, then
Px(Xn = y) converges to α(y) as n→∞ for any x, y ∈ S.

First, we will show the existence and uniqueness of a stationary distribu-
tion:
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Theorem 2.7. Let (Xn)n≥0 be an irreducible Markov chain with finite state
space S and the transition matrix Π. Then:
i) There exists a unique probability distribution α on S such that αΠ = α,
and moreover,
ii) α(x) > 0 for all x ∈ S, and α(x) = Ex(τx).

Let us begin by proving uniqueness assuming existence:

Lemma 2.8. For an irreducible Markov chain with finite S, there exists at
most one probability distribution α such that αΠ = α.

Proof. If α satisfies the equation αΠ = α, then any product λα, λ ∈ R, also
does. Existence and uniqueness of stationary probability is thus equivalent
to the claim that the row rank of the matrix Π−1 is |S|−1 (one-dimensional
space of solutions of the equation α(Π−1) = 0). As the row rank equals the
column rank, this is equivalent to showing that the column rank of Π− 1 is
|S|−1, i.e. the equation (Π−1)h = 0 has a 1-dimensional space of solutions.

Since we are trying to show that there exists at most one stationary
distribution, we want to show that the space of solutions of Πh = h is at
most one-dimensional. Notice that the vector (h(x) = 1, x ∈ S) is a solution,
as
∑

y Π(x, y)1 = 1 for every x ∈ S. It thus remains to show that Πh = h
implies that h is constant on S. To prove this, let us denote M = h(x0) =
maxx∈S h(x). If Π(x0, z) > 0, then h(z) = M , because if it were the case
that h(z) < M , then M = h(x0) = Π(x0, z)h(z) +

∑
y 6=z Π(x0, y)h(y) < M ,

a contradiction. Since every y ∈ S can be reached from x0 by a sequence
x0, x1, . . . , xn, y with Π(x0, x1) > 0,Π(x1, x2) > 0, . . . ,Π(xk, y) > 0, we have
M = h(x0) = h(x1) = . . . = h(y). It is only in the last claim that we used
irreducibility.

In the preparation for the proof of the claim ii), we first show that it
makes sense:

Lemma 2.9. If Π is irreducible with finite S, then Ex(τy) < ∞ for any
x, y ∈ S.

Proof. Irreducibility implies that there exists ε > 0 and r > 0 such that for
any z, y ∈ S there exist n ≤ r such that Πn(z, y) > ε. Indeed, for each
z, y there exists n(z, y) such that Πn(z,y)(z, y) > 0. Observing that the sets
{n(z, y) : z, y ∈ S} and {Πn(z,y)(z, y) : z, y ∈ S} are finite, we just choose r
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as the maximum of the former and ε smaller than the minimum of the latter.
As a consequence, for any value of Xm, the probability of hitting y for some
Xn, n ∈ [m,m+ r], is at least ε.

We claim that Px(Xm+1, . . . , Xm+r 6= y | Xm 6= y) ≤ 1− ε.
Indeed, the LHS equals

Px(Xm, . . . , Xm+r 6= y)

Px(Xm 6= y)
= (considering all possible positions at step m)

∑
z 6=y Px(Xm+1, . . . , Xm+r 6= y | Xm = z)Px(Xm = z)

Px(Xm 6= y)
≤ ( by definition of ε)

(1− ε)∑z 6=y Px(Xm = z)

Px(Xm 6= y)
= 1− ε,

and so our claim is proved.
Next, we claim that

Px(Xm+1, . . . , Xm+r 6= y | Xm 6= y) = Px(τy > m+ r | τy > m).

Indeed, we have

Px(Xm+1, . . . , Xm+r 6= y | Xm 6= y) = (by the Markov Property reversed)

Px(Xm+1, . . . , Xm+r 6= y | X0, . . . , Xm 6= y) = (using Exercise 1.2)

Px(X0, . . . , Xm+r 6= y | X0, . . . , Xm 6= y) = (by definition of τ)

Px(τy > m+ r | τy > m)

as claimed.
Combining these two claims we deduce

Px(τy > m+ r | τy > m) ≤ 1− ε.

Hence, for k > 0:

Px(τy > kr) = Px(τy > kr | τy > (k−1)r)Px(τy > (k−1)r) ≤ (1−ε)Px(τy > (k−1)r).

Iterating the right hand side, we get Px(τy > kr) ≤ (1− ε)k. Using now that
the values of τy are nonnegative integers, and that Px(τy > n) is decreasing
in n, we have

Ex(τy) =
∑

n≥0

Px(τy > n) ≤
∑

k≥0

rPx(τy > kr) ≤ r
∑

k≥0

(1− ε)k <∞.
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The next figure helps to clarify the last line:

14 Markov chains 10.2.18

⇧(x0, x1) > 0,⇧(x1, x2) > 0, . . . ,⇧(xk, y) > 0, we have M = h(x0) = h(x1) = · · · = h(y). It is
only in the last claim when we used irreducibility. ⇤

Why the absorbtion probability hz(x), which also satisfies the equation ⇧hz = hz, is not
necessarily a constant?

Notice that the claim that ⇧-harmonic function is necessarily constant reminds (not acci-
dentally) the maximum principle for harmonic functions on continuum: a harmonic function
on a compact set attains its maximum and minimum on its boundary.

In the preparation for the proof of the claim ii), we first show that it makes sense:

Lemma 10. If ⇧ is irreducible with finite S, then Ex(⌧y) <1 for any x, y 2 S.

Proof. Irreducibility implies that there exists " > 0 and r > 0 such that for any z, y 2 S
there exist n  r such that ⇧n(z, y) > ✏. Indeed, for each z, y there exists n(z, y) such that
⇧n(z,y)(z, y) > 0. Observing that the sets {n(z, y) : z, y 2 S} and {⇧n(z,y)(z, y) : z, y 2 S}
are finite, we just take r as the maximum of the former and ✏ smaller than the minimum of
the latter. As a consequence, for any value of Xm, the probability of hitting y for some Xn,
n 2 [m, m + r], is at least ". Hence, also

Px(⌧y > m + r |⌧y > m) =
X

z 6=y

Px(Xn 6= y, n = m + 1, . . . , m + r |Xm = z)  1� ✏,

where we took into account that {⌧y > m} = {X1 6= y, . . . , Xm 6= y}. Hence, for k > 0:

Px(⌧y > kr) = Px(⌧y > kr |⌧y > (k � 1)r)Px(⌧y > (k � 1)r)  (1� ")Px(⌧y > (k � 1)r).

Iterating the right hand side, we get Px(⌧y > kr)  (1� ")k.
Using now that the values of ⌧y are nonnegative integers,

Ex(⌧y) =
X

n�0

Px(⌧y > n) 
Px(⌧y>n) is decreasing in n

X

k�0

rPx(⌧y > kr)  r
X

k�0

(1� ")k <1.

The enclosed figure helps to clarify the last line:

1 2 3 4 5 . . . k . . .

• • • • • . . . • . . .
• • • • • . . . • . . .
• • • • • . . . • . . .

• • . . . • . . .
• • . . . • . . .
• • . . . • . . .

1

Indicating the value of ⌧y on the horizontal axis, each bullet above the value k represents the
probability Px(⌧y = k). Hence, the k black bullets above the value k represent the contribution
kPx(⌧y = k) to Ex(⌧y), with a horizontal line of black bullets starting at n + 1 representing
the the probability Px(⌧y > n). The equality is just the expression of the fact that the sum
over all black bullets grouped vertical-wise equal the sum with bullets grouped horizontal-
wise. The green bullets indicate the additional contributions added in the first inequality
(with r = 3). ⇤

Indicating the value of τy on the horizontal axis, each bullet above the
value k represents the probability Px(τy = k). Hence, the k black bullets
above the value k represent the contribution kPx(τy = k) to Ex(τy), with a
horizontal line of black bullets starting at n + 1 representing the the proba-
bility Px(τy > n). The equality is just the expression of the fact that the sum
over all black bullets grouped vertically equal the sum with bullets grouped
horizontally. The green bullets indicate the additional contributions added
in the first inequality (with r = 3).

We can now complete the proof of the main result of this section:

Proof of Theorem 2.7. (We use Px and Px interchangeably.)
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Proof of Theorem 8.
Considering an arbitrary fixed z 2 S, let us define

↵̃z(y) = Ez(# of visits to y before returning to z) =
X

n�0

Pz(Xn = y, ⌧z > n).

Notice that

Ez(⌧z) =
X

n�0

Pz(⌧z > n) =
X

y

↵̃z(y)

and thus ↵̃z(y)  Ez(⌧z) <1 for all y 2 S.
The distribution ↵̃z is stationary. Indeed, consider

X

x

↵̃z(x)⇧(x, y) =
X

x

X

n�0

Pz(Xn = x, ⌧z > n)⇧(x, y).

Using that the event {⌧z > n} is determined by X1, . . . , Xn, {⌧z > n} = {X1 6= z, . . . , Xn 6= z},
we get

Pz(Xn+1 = y, Xn = x, ⌧z > n) = Pz(Xn = x, ⌧z > n)Pz(Xn+1 = y |Xn = x, ⌧z > n) =

= Pz(Xn = x, ⌧z > n)Pz(Xn+1 = y |Xn = x, X1 6= z, . . . , Xn 6= z) = Pz(Xn = x, ⌧z > n)⇧(x, y)

X

x

X

n�0

Pz(Xn = x, ⌧z > n)⇧(x, y) =
X

n�0

X

x

Pz(Xn+1 = y, Xn = x, ⌧z > n) =

=
X

n�0

Pz(Xn+1 = y, ⌧z > n) =
X

n�1

Pz(Xn = y, ⌧z > n� 1).

The right hand side is almost the expression for ↵̃z(y). Let us see, how much it di↵ers.
X

n�1

Pz(Xn = y, ⌧z > n� 1)� ↵̃z(y) =
X

n�1

Pz(Xn = y, ⌧z > n� 1)�
X

n�0

Pz(Xn = y, ⌧z > n) =

=
X

n�1

Pz(Xn = y, ⌧z = n)� Pz(X0 = y, ⌧z > 0) = Pz(X⌧z = y)| {z }
�y,z

�Pz(X0 = y)| {z }
�y,z

= 0.

For the last equality, just check the cases y = z and y 6= z, noticing that always X⌧z = z.
To get a probability measure, we normalize ↵̃z by

P
y ↵̃

z(y) = Ez(⌧z). The resulting

probability distribution ↵z(x) = ↵̃z(x)
Ez(⌧z)

is also stationary, ↵z⇧ = ↵z. Moreover, as ↵̃z(z) = 1

(the number of visits of the chain Xn to the state z before returning to z is exactly one, X0 = z)
we get ↵z(z) = 1

Ez(⌧z)
.

However, in view of unicity, we can conclude that the probability distributions ↵z actually

do not depend on z, yielding a unique stationary ↵ such that ↵(x) = ↵̃x(x)
Ex(⌧x)

= 1
Ex(⌧x)

for any

x 2 S. ⇤
The proof implies also a claim that is often useful and thus we formulate it as a corollary.

Corollary 11. Let (Xn)n�0 be an irreducible Markov chain with finite state space S,
the transition matrix ⇧, and let ↵ be its unique stationary distribution. Then

Ex(# of visits to y before returning to x) =
↵(y)

↵(x)
for every x, y 2 S.

21



2.5 Convergence of Markov chains

In this section we prove that, under mild conditions, the distribution of the
state of a Markov chain at time n converges to the stationary distribution
as n→∞. To formulate this statement we introduce a metric on the set of
probability distributions that will allow as to define convergence:

Definition 2.6. The total variation distance of two probability measures
µ, ν on a probability space (S,F) is defined by

‖µ− ν‖ = sup
A∈F
|µ(A)− ν(A)|.

Exercise: prove that, for S finite,
‖µ− ν‖ = maxA⊂S |µ(A)− ν(A)| = 1

2

∑
x∈S |µ(x)− ν(x)|.

Theorem 2.10 (Convergence of Markov chains). Suppose that S is finite
and Π is irreducible and aperiodic. Let α be the stationary distribution.
Then there exists ζ ∈ (0, 1) and C > 0 such that

max
x∈S
‖Px(Xn = ·)− α‖ = max

x∈S

1

2

∑

y∈S
|Px(Xn = y)− α(y)| ≤ Cζn.

Remark: Considering the stochastic matrix A consisting of |S| identical
rows, each equal to α, i.e. A(x, y) = α(y) for all x, y ∈ S, the statement
implies |Πn(x, y)− A(x, y)| → 0. For example,

16 Markov chains 10.2.18

Proof. Using the definition of ↵̃x, ↵̃x(y) = Ex(# of visits to y before returning to x), and

the equations ↵(y) = ↵̃x(y)
Ex(⌧x)

and ↵(x) = 1
Ex(⌧x)

, we get

↵̃x(y) = Ex(⌧x)↵(y) =
↵(y)

↵(x)
. ⇤

3.6. Convergence of Markov chains

To formulate the statement about convergence of a Markov chain to the stationary distri-
bution, we first introduce a metric on the set of probability distributions.

Definition (Total variation). Total variation distance of probability measures
µ, ⌫ on a probability space (S, F) is defined by

kµ� ⌫k = sup
A2F

|µ(A)� ⌫(A)|.

Prove that, for S finite, kµ� ⌫k = maxA⇢S |µ(A)� ⌫(A)| = 1
2

P
x2S |µ(x)� ⌫(x)|.

Theorem 12 (Convergence of Markov chains). Suppose that S is finite and ⇧ is
irreducible and aperiodic. Let ↵ be the stationary distribution. Then there exists ⇣ 2 (0, 1)
and C > 0 such that

max
x2S
kPx(Xn = ·)� ↵k = max

x2S

1

2

X

y2S

|Px(Xn = y)� ↵(y)|  C⇣n

Remark 13. Considering the stochastic matrix A consisting of |S| identical rows, each
equal to ↵, A(x, y) = ↵(y) for all x, y 2 S, the statement implies |⇧n(x, y)� A(x, y)|! 0.
For example, ✓

0 1 0
0 1/2 1/2

1/2 0 1/2

◆n

!
✓

1/5 2/5 2/5
1/5 2/5 2/5
1/5 2/5 2/5

◆
.

Proof. According to Lemma 5, there exists r such that all elements of ⇧r are positive.
Choose � such that ⇧r(x, y) � �↵(y) for any x, y 2 S. Consider the stochastic matrix A
introduced in the Remark above and define

Q =
1

⇠

�
⇧r � (1� ⇠)A

�
with ⇠ = 1� �.

The matrix Q is stochastic,

X

y

Q(x, y) =
1

⇠

�
1� (1� ⇠)1

�
= 1.

By induction in k we prove that ⇧rk almost equals A:

⇧rk = (1� ⇠k)A + ⇠kQk

Indeed, for k = 1, we have ⇧r = (1� ⇠)A + ⇠Q by the definition of Q.

Proof. By Lemma 2.5, there exists r such that all elements of Πr are positive.
Choose δ such that Πr(x, y) ≥ δα(y) for any x, y ∈ S. Consider the stochastic
matrix A introduced in the Remark above, and define

Q :=
1

ξ
(Πr − (1− ξ)A) where ξ := 1− δ.

The matrix Q is stochastic:

∑

y∈S
Q(x, y) =

1

ξ
(1− (1− ξ)1) = 1.
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By induction on k we prove that Πrk almost equals A:

Πrk = (1− ξk)A+ ξkQk.

Indeed, for k = 1, we have Πr = (1− ξ)A+ ξQ by the definition of Q.
Assuming the induction hypothesis is true for k, we calculate

Πr(k+1) = ΠrkΠr = [(1−ξk)A+ξkQk]Πr = (1−ξk)AΠr+ξk(1−ξ)QkA+ξk+1Qk+1.
(2)

Using the stationarity of α, we can show that AΠr = A:

(AΠr)(x, y) =
∑

z

A(x, z)Πr(z, y) =
∑

z

α(z)Πr(z, y) = α(y) = A(x, y).

Next, we observe that MA = A holds for any stochastic matrix M , (we
want to use this with M := Qk):

(MA)(x, y) =
∑

z

M(x, z)A(z, y) =
∑

z

M(x, z)α(y) = α(y).

Plugging the latter two facts into (2), we obtain

Πr(k+1) = (1− ξk)A+ ξk(1− ξ)A+ ξk+1Qk+1,

which completes the induction step.

To conclude, consider n = kr + j with j ∈ {0, 1, . . . , r − 1}. Using again
that AΠj = A, we get Πrk+j − A = ξk(QkΠj − A) and thus

1

2

∑

y

|Πrk+j(x, y)− α(y)| ≤ 1

2
ξk2,

where the factor 2 represents the bound∑
y |µ(y)− α(y)| ≤∑y(µ(y) + α(y)) = 2 with µ(y) = (QkΠj)(x, y).

Choosing ζ = ξ1/r and C = ξ−(r−1)/r, we get

ξk = ζn−j ≤ ζnζ−(r−1) = Cζn.
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2.6 Strong Markov Property

Let X0, X1, . . . be a Markov chain on a probability space (Ω,F ,P).
A random variable T : Ω→ N∪{∞} is called a stopping time if the event

{T = n} depends only on X0, . . . , Xn for every n ∈ N.

Theorem 2.11 (Strong Markov Property). Let X0, X1, . . . be a Markov
chain with transition matrix Π and state space S, and let T be a stopping
time. Then conditional on T < ∞ and XT = s, the sequence (XT+n)n∈N is
a Markov chain with transition matrix Π, initial state s, and independent of
X0, . . . , XT .

2.7 Reversibility

Definition 2.7. We say that a probability distribution α satisfies the
detailed balance condition with respect to the transition matrix Π if

α(x)Π(x, y) = α(y)Π(y, x) for all x, y ∈ S. (3)

A Markov chain is reversible if it admits a distribution α satisfying the de-
tailed balance condition.

Thinking about the Markov chain in terms of a big number of particles
distributed over the states in S with density α and each moving indepen-
dently according to the probabilities given by Π, reversibility means that, at
any moment, the number α(x)Π(x, y) of particles moving from x to y equals
the number α(y)Π(y, x) of particles moving from y to x. We have a very
useful simple claim:

Proposition 2.12. A probability distribution α satisfying (3) is stationary.

Proof.
∑

y α(y)Π(y, x) = α(x)
∑

y Π(x, y) = α(x).

Example 1: Random walk on a graph G.
This is defined by letting Π(x, y) = 1x∼y. Consider the probability distribu-
tion α(x) := deg(x)/2|E|, where the degree deg(x) is the number of edges
of G incident with x (notice that

∑
x deg(x) = 2|E|). Then α satisfies the

detailed balance condition (exercise) and is thus stationary.
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Example 2: Biased random walk on a cycle. The states in S form a cycle,
along which we move clockwise with some probability p and anticlockwise
with probability 1− p; to make this more precise, we define

S = {1, 2, . . . , n},Π(x, y) =





p if y = x+ 1 (mod n)

1− p if y = x− 1 (mod n)

0 otherwise

Clearly, α(n) = 1
n

is stationary but, for p 6= 1
2
, it does not satisfy the

detailed balance condition (3).

We will study reversible Markov chains closely in the next chapter

25



3 Random Walks on Graphs

Let G = (V,E) be a countable connected graph, in which every vertex has
at least one and at most finitely many incident edges. (See e.g. Diestel’s
textbook
http://diestel-graph-theory.com/index.html for graph-theoretic definitions.)

The Simple Random Walk on G starts at some X0 = o ∈ V , and at step
i, moves to a uniformly random neighbour Xi of the previous position Xi−1,
chosen independently from all previous choices.

Formally, our probability space (Ω,F ,Po) is defined as follows.
• Ω = V N consists of all sequences of vertices of G.
We could alternatively define Ω as the set of all 1-way infinite walks in G,
i.e. the set

{v0, v1, . . . | vivi+1 ∈ E for every i ≥ 0}.
You can choose your favourite of these two definitions of Ω.
• F is generated by the sets Fi,v := {x0, x1, . . . ∈ Ω | xi = v} for all i ∈ N
and v ∈ V .
Thus F consists of all the subsets of Ω that can be made from the Fi,v by a
countable number of complement, union and intersection operations.
• P = Po is defined by

P(X0 = v0, X1 = v1, . . . , Xn = vn) =
1

d(v0)
· 1

d(v1)
· · · 1

d(vn−1)
(4)

whenever v0 = o and v0v1 . . . vn is a path in G, and

P(X0 = v0, X1 = v1, . . . , Xn = vn) = 0

otherwise.

Exercise 3.1. For every {v0, v1, . . . , vn}, we have

{X0, X1, . . . ∈ Ω | X0 = v0, X1 = v1, . . . , Xn = vn} ∈ F .

Exercise 3.2. The following events are measurable (i.e. in F) for every
v ∈ V :

• Xi = v for at least 3 distinct i.

• Xi = v for at most 17 distinct i.
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• Xi = v for infinitely many i.

It is intuitively clear, and easy to check, that

P(Xn = vn | X0 = v0, . . . , Xn−1 = vn−1) = P(Xn = vn | Xn−1 = vn−1) (MP)

This is the Markov property. Thus random walk on a graph is an example of
a Markov chain.

Example: Let G be a path on n edges, and q, p its end-vertices. Let
vi, 0 ≤ i ≤ n denote the ith vertex as we move from q to p. Then

Pvi(hit p before hitting q) = i/n.

The following theorem is a bit surprising, as it relates random walks with
electrical networks, which we will define and study below. But it generalises
the above example

Theorem 3.1. For every finite connected graph G = (V,E), and every
p, q, o ∈ V ,

Po(hit p before hitting q) = u(o),

where u(x) denotes the voltage at x ∈ V in the electrical network obtained
from G by replacing each edge by an 1 Ohm resistor and imposing a potential
of 1 Volt at p and 0 Volt at q.

Proof sketch. Both functions f(o) := Po(hit p before hitting q) and u(o) are
harmonic at every o except p, q, where they coincide. Only one such function
can exist.

We will now introduce the necessary terminology and lemmas in order to
give a complete proof of Theorem 3.1.

Definition 3.1. A function u : V → R is harmonic on U ⊂ V , if for every
x ∈ U

u(x) =
∑

yx∈E
u(y)/d(x).

Here d(x) is the degree of x, i.e. the number of edges of x.
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Lemma 3.2 (Maximum Principle). Let G = (V,E) be a finite connected
graph. If u : V → R is harmonic on a set of vertices U ( V , then it attains
its maximum value at some z 6∈ U .

Proof. Notice that the average of real numbers x1, x2, . . . , xn equals their
maximum only if they are all equal. Now start from any x ∈ U attaining
the maximum if such x exists (if it doesn’t we are done). Apply the previous
remark to prove that u(y) = u(x) for every yx ∈ E. Repeat the whole argu-
ment on all neighbours y of x (for which we now know that they attain the
maximum of u) and then on their neighbours, their neighbours’ neighbours
and so on, until reaching a vertex z 6∈ U . Then u attains its maximum value
(i.e. u(x)) at z as desired.

Applying the Maximum Principle to −u we obtain the Minimum Principle:

Corollary 3.3 (Minimum Principle). If u : V → R is harmonic on a set of
vertices U ( V , then it attains its minimum value at some z 6∈ U .

As in the above sketch, we let f(o) := Po(hit p before hitting q). It is trivial
that f(p) = 1 and f(q) = 0, because we count step 0 as a ‘hit’ by definition.
We will prove that f is harmonic elsewhere.

Lemma 3.4. f(x) =
∑

yx∈E f(v)/d(x) for every x ∈ V \ {p, q}.
Proof. Let x ∈ V \{p, q}. The Simple Random Walk moves to each neighbour
of x with probability 1/d(x). From there on, the probability of any event
does not depend on the past by (MP). It follows that

Px(hit p before hitting q) =
∑

yx∈E

1

d(x)
· Py(hit p before hitting q).

Let u be as in the statement of Theorem 3.1. In the next section (Propo-
sition 3.6) we will establish

Lemma 3.5. u is harmonic on V \ {p, q} by the electrical network theory
(Kirchhoff’s node law and Ohm’s law).

Proof of Theorem 3.1. Consider the function g : V → R, g(x) := f(x)−u(x).
Then g(p) = g(q) = 0, and g is harmonic elsewhere. By the Maximum and
Minimum Principles both its maximum and minimum are attained outside
U = V \ {p, q}, i.e. at {p, q}. That is, both the maximum and minimum of
g is 0. Hence g is identically 0, implying that f coincides with u.
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3.1 Electrical networks

Let G = (V,E) be a (finite or infinite) graph, with two specified vertices

p 6= q ∈ V called the terminals. Let
−→
E denote the set of ordered pairs (x, y)

with xy ∈ E. We write −→xy to denote (x, y). Note that for every xy ∈ E,

both −→xy, −→yx(:=←−xy) lie in
−→
E .

We say that a function f :
−→
E → R is antisymmetric, and write f :

−→
E ↪→ R,

if f(−→xy) = −f(←−xy) for every xy ∈ E. All functions we consider from now on
are antisymmetric.

Definition 3.2. A flow in G = (V,E) is a function f :
−→
E ↪→ R such that

f ∗(x) = 0 for every x ∈ V (KNL), where f ∗(x) :=
∑

y∼x f(−→xy).

Here KNL stands for Kirchhoff’s Node Law. Intuitively it says that current
is preserved at x.

We say that f :
−→
E ↪→ R is a p − q flow, or a flow from p to q, if (KNL)

holds for every x 6∈ {p, q}. Typically we have f ∗(p) 6= 0. The intensity of f
is f ∗(p). Moreover, we say that f is a flow from p if (KNL) holds for every
x 6= p.

Exercise 3.3. 1. If f is a p− q flow on a finite graph G, then
f ∗(p) = −f ∗(q).

2. If f is a flow from p and f ∗(p) 6= 0, then G is infinite.

Definition 3.3. We say that f :
−→
E ↪→ R satisfies Kirchhoff’s Cycle Law

(KCL), if for every closed walk (equivalently for every cycle) x0, x1, . . . , xn(=
x0) we have

∑n−1
i=0 f(−−−→xixi+1) = 0.

Definition 3.4. An (electrical) current (of intensity I ∈ R from p to q in G,

is a p-q flow i :
−→
E ↪→ R (of intensity I) satisfying Kirchhoff’s Cycle Law. If

i has intensity 1, then it is called a unit current.

Definition 3.5. We say that a pair of functions i :
−→
E ↪→ R, u : V → R

satisfies Ohm’s Law (OL) if i(−→xy) = u(x)− u(y).

Note that if i, u satisfies (OL), then so does i, u+ a for every a ∈ R. We
say that i the Ohm dual of u and u is an Ohm dual of i, if (OL) holds.
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Proposition 3.6. If i, u satisfy (OL), then u is harmonic at x ∈ V if and
only if i satisfies (KNL) at x, i.e. if i∗(x) = 0.

Proof. Since i, u satisfy (OL), we have

∑

y∼x
u(y) =

∑

y∼x

(
u(x)− i(−→xy)

)
= d(x)u(x)−

∑

y∼x
i(−→xy),

which is by definition equal to d(x)u(x)− i∗(x). Thus i∗(x) = 0 if and only
if
∑

y∼x u(y)/d(x) = u(x), which is the definition of being harmonic.

Proposition 3.7. Let G be a connected graph, and i :
−→
E ↪→ R. Then, there

is u : V → R such that the pair i, u satisfies (OL) if and only if i satisfies
(KCL). This u is unique up to an additive constant.

Proof. Suppose i :
−→
E ↪→ R satisfies (KCL). To construct u, pick any vertex

o ∈ V , and for any other vertex x an x-o walk Px. Set u(o) = 0. Then, for

any x 6= o, let u(x) =
∑
−→e ∈−→E (Px)

i(−→e ), where
−→
E (Px) is the set of edges of Px

directed from x to o.
It follows from the fact that i satisfies (KCL) that u(x) does not depend

on our choice of Px; indeed, if P ′x is another x-o walk, then traversing Px from
x to o and then P ′x back from o to x we obtain a closed walk, and applying
(KCL) to this walk yields

∑
−→e ∈−→E (Px)

i(−→e ) =
∑
−→e ∈−→E (P ′x)

i(−→e ).

We now claim that the pair i, u satisfies (OL). To see this, let xy be any
edge. Since u(x) does not depend on the choice of Px, we may assume that
Px is obtained from Py by prefixing the edge xy. Thus, by the definition of
u, we have u(x)− u(y) = i(−→xy), in agreement with (OL).

Conversely, if a function u : V → R exists such that the pair i, u satisfies
(OL), then i satisfies (KCL): for given a closed walk x0x1 . . . xk we can write∑

0≤n<k i(
−−−−→xnxn+1) =

∑
0≤n<k(u(xn) − u(xn+1)), and the latter expression

equals 0 as each u(xn) appears once with a positive and once with a negative
sign in the sum.

Finally, consider the family of functions ur := u+ r, r ∈ R. It is straight-
forward to check that all pairs i, ur satisfy (OL). We claim that no other pair
i, v does. For if it does, then the value v(o) combined with (OL) uniquely
determines the values v(y) of all neighbours y of o. These in turn uniquely de-
termine the values at the neighbours’ neighbours, and continuing inductively
like this we can prove that v(x) = u(x) + v(o) for every x ∈ V .
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3.2 Existence of currents

Let G = (V,E) be a finite connected graph, and consider p, q ∈ V . We will
construct the unit p− q current using the Simple Random Walk!

Start a Simple Random Walk at p, and stop when it first reaches q. Let
f(−→xy) be the net amount of traversals of −→xy by this Simple Random Walk,
i.e.

f(−→xy) = (# of traversals from x to y)− (# of traversals from y to x).

Let i(−→xy) := Ef(−→xy). To see that this is well-defined (and finite), note that
(# of traversals from x to y)+(# of traversals from y to x) ≤ τq because all
these traversals occur before reaching q, and that E(τq) <∞ by Lemma 2.9.
Note that f is random, but i is not.

Moreover, i is antisymmetric, and it satisfies (KNL) at all x 6∈ {p, q},
while i∗(p) = 1. We now show that it also satisfies (KCL). For this, let
C = x0x1 . . . xk be a cycle. Then

k−1∑

i=1

f(−−−→xixi+1) =
+∞∑

n=1

Xn,

where

Xn :=





1, if after the nth visit to a vertex of C, we tra-
verse an edge of C in the forward direction,

−1, if after the nth visit to a vertex of C, we tra-
verse an edge of C in the backward direction,

0, if after the nth visit to a vertex of C, we do
not traverse an edge of C, or there is no nth
visit to a vertex of C (because we reached q
before that visit).

Note that
∑+∞

n=1 |Xn| ≤ τq, and therefore E(
∑+∞

n=1 |Xn|) ≤ E(τq) < ∞ where
we used Lemma 2.9 again. Thus by linearity of expectation (§ 1.4.1) we have

k−1∑

i=1

i(−−−→xixi+1) = E(
+∞∑

n=1

Xn) =
+∞∑

n=1

E(Xn).

But each Xn has E(Xn) = 0. Hence
∑k−1

i=1 i(
−−−→xixi+1) = 0, i.e. i satisfies (KCL).

31



3.3 Energy

The energy of a flow f :
−→
E ↪→ R is defined by

E(f) :=
1

2

∑

e∈−→E

f(e)2.

Similarly, the energy of a function u : V → R is defined by

E(u) :=
∑

xy∈E
(u(x)− u(y))2.

3.4 Effective Resistance

Theorem 3.8. (Without proof) Let G = (V,E) be a finite connected graph,
and let a, b ∈ V . Then the following values are equal.

1. R1 := u(a)−u(b), for any Ohm dual u of the a-b current of intensity 1;

2. R2 := 1/i∗(a) = −1/i∗(b), where i is the Ohm dual of the unique
v : V → R which satisfies v(a) = 1, v(b) = 0 and is harmonic on
V − {a, b};

3. R3 := inf{E(j) | j is an a-b flow of intensity 1};

4. R4 := sup{1/E(u) | u : V → R with u(a)− u(b) = 1};

5. R5 := sup{(v(a)− v(b))2 | v : V → R with E(v) = 1}.

We define the effective resistance Rab between a and b in N to be equal
to the values Ri of Theorem 3.8. The effective conductance Cab between a
and b is defined by Cab = 1/Rab.

Exercise 3.4. Check that if G consists of just one edge xy, then Cxy = 1.

3.5 Series Law

Theorem 3.9. Let G,H be two finite connected graphs intersecting only
in a single vertex s, and p, q be two vertices in G,H, respectively. Then
RG∪H
pq = RG

ps +RH
sq.
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Proof. If iG is the p− s unit current in G and iH is the s− q unit current in
H, then their superposition i := iG∪ iH is a unit p−q flow in G∪H. Indeed,
i∗(s) = −1 + 1 = 0. It is easy to see that i still satisfies (KCL), hence i is the
p− q unit current in G ∪H. Letting ui, uiG , uiH be the corresponding Ohm
duals taking value 0 at s, we easily have

RG∪H
pq = ui(p)− ui(q) = ui(p)− ui(s) + ui(s)− ui(q),

RG
ps = uiG(p)− uiG(s) = ui(p)− ui(s),

and
RH
sq = uiH (s)− uiH (q) = ui(s)− ui(q),

which gives RG∪H
pq = RG

ps +RH
sq, as desired.

Corollary 3.10. Let G,H be two graphs intersecting only in a single vertex
s, and p, q be two vertices in G,H, respectively. Then Ps( hit p before q) =
RH

sq

RG∪H
pq

.

Proof. Let f(o) := Po( hit p before q). Clearly f(p) = 1 and f(q) = 0, and
by Lemma 2 f is harmonic everywhere except p, q. Consider the Ohm dual
u of the unit p − q flow that satisfies u(q) = 0. Notice that u(s) = RH

sq

and f(p) = u(p)/RG∪H
pq . By Theorem 1 f coincides with u/RG∪H

pq . Hence

f(s) =
RH

sq

RG∪H
pq

=
RH

sq

RG∪H
ps +RG∪H

sq
.

3.6 Parallel Law

Theorem 3.11. Let G,H be two finite connected graphs intersecting in two
vertices p, q and sharing no edges. Then CG∪H = CG + CH .

Proof. Let iG be the Ohm dual of the unique harmonic function uG in G \
{p, q} with uG(p) = 1 and uG(p) = 0. We define iH similarly. Then the
superposition i := iG ∪ iH is the Ohm dual of uG ∪ uH . We have

CG∪H = i∗(p) = i∗G(p) + i∗H(p) = CG + CH .

The Series and Parallel Law can be used to compute the effective resis-
tance of complex graphs, by decomposing them into simpler ones.
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Examples 3.1. 1. If G is a single edge {p, q}, then Rpq = 1.

2. If G is the path on n edges and p, q are its endpoints, then Rpq = n.

3. If G is the graph with n parallel edges, then Rpq = 1/n.

4. If G is a path on n + m edges, p, q are its endpoints, and o is the
(m+ 1)th vertex of the path, then Po( hit p before q) = n

n+m
.

3.7 Rayleigh’s monotonicity law

Theorem 3.12 (Rayleigh’s monotonicity law). Let G = (V,E) be a finite
connected graph and let H be obtained from G by contracting an edge or
adding an edge. Then RH

pq ≤ RG
pq for every p, q ∈ V .

Proof. Any p − q flow f in G gives rise to a p − q flow f ′ in H where
f(e) = f ′(e) for every common edge e. The result follows by using item (3)
of Theorem 3.8.

3.8 Recurrence and transience

Definition 3.6. Let G = (V,E), and x ∈ V . We define the first hitting time
τx = min{n ≥ 0 | Xn = x}, where Xn denotes the position of the Simple
Random Walk at time n. We define the first return time τ+

x = min{n ≥ 1 |
Xn = x}.

Notice that τx = τ+
x , unless the Simple Random Walk starts at x.

Definition 3.7. A graph G = (V,E) is called recurrent, if Px(τ+
x <∞) = 1

for some x ∈ V . If G is not recurrent, then it is said to be transient.

Proposition 3.13. Let G = (V,E) be connected, and let Nx, x ∈ V denote
the number of visits to x after time 1. Then the following are equivalent:

1. Px(τ+
x <∞) = 1 for some x ∈ V ,

2. Px(τ+
y <∞) = 1 for every x, y ∈ V ,

3. Px(Nx =∞) = 1 for some x ∈ V ,
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4. Px(Ny =∞) = 1 for every x, y ∈ V .

Proof. The implications 4 → 3 → 1 and 2 → 1 are obvious.

1 → 3: Let σ := sup{n ≥ 0 | Xn = x}; this is the time of the last visit to
x if such a time exists, and ∞ otherwise.

For every n we have

Px(σ = n) = Px(Xn = x)Px(Xi 6= x∀i > n) = Πn(x, x)(1− Px(τ+
x <∞)),

where we used the Markov property. Since Px(τ+
x < ∞) = 1, this implies

Px(σ = n) = 0 for all n, and so Px(σ < ∞) = 0 which is tantamount to
Px(Nx =∞) = 1.

1→ 2: Let σn be the (random) time of the nth visit to x by random walk
starting at x (thus σ0 = 0). Since we have proved 1 → 3, we know that σn
is finite for every n ∈ N. Consider the random variables
Yn := 1y is visited before x after time σn . Note that σn is a stopping time, and so the
strong Markov property yields that each Yn has the same distribution as Y0,
and that the Yn are mutually independent (§ 2.6). Note that the distribution
of Y0 is Bernoulli(q) for some q > 0, because there is a path P from x to
y in G and with positive probability our random walk follows P in its first
|P | steps. Thus Exercise 1.3 yields that some Yi is 1 almost surely, and so
Px(τ+

y <∞) = 1 for every y ∈ V .
Next, we want to show that Py(τ+

x < ∞) = 1 for every y ∈ V . Suppose
to the contrary that Py(τ+

x = ∞) = p > 0. As noted above, with positive
probability q′ our random walk started at x follows P in its first |P | steps
to reach y. From there on it moves independently of its past by the Markov
property, and so with probability q′p > 0 both these events occur, i.e. we
follow P in the first |P | steps and then never return to x. But this contradicts
our assumption Px(τ+

x <∞) = 1, hence proving that Py(τ+
x <∞) = 1.

Combining the last statement with Px(τ+
y < ∞) = 1 and the strong

Markov property we deduce Py(τ+
y < ∞) = 1 for every y: from y we will

almost surely visit x, and from there we will almost surely re-visit y.
Thus we have proved that the assumption on x we started with holds

for any y ∈ V . Repeating the first part of the above proof now yields
Px(τ+

y <∞) = 1 for every x, y ∈ V .

2→ 4: Using the implication 1→ 3 replacing x by y, we deduce Py(Ny =
∞) = 1. Combining this with Px(τ+

y < ∞) = 1 and the Markov property
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we deduce Px(Ny =∞) = 1: starting at x we will almost surely visit y, and
from then on we will almost surely return to y infinitely many times.

Exercise 3.5. Suppose Px(τy < ∞) = 1 for some x 6= y ∈ V . Does this
imply that G is recurrent?

Proposition 3.14. Let G = (V,E) be connected. Then the following are
equivalent:

1. G is transient

2. Px(Ny <∞) = 1 for every x, y ∈ V .

Exercise 3.6. Let G be a finite graph. Then G is recurrent. (Hint: Use the
above characterization of transience).

Let G = (V,E) be an infinite graph, and p ∈ V . Consider a sequence
Gn = (Vn, En) of finite graphs containing p such that

• Vn ⊂ Vn+1 for every n, and ∪∞n=1Vn = V ,

• En comprises those edges in E with both endpoints in Vn.

For each n, construct an auxiliary graph G∗n in which all vertices in V \ Vn
are replaced by a new vertex zn which is adjacent to every vertex of Vn which
is adjacent to V \ Vn. Define

RG
p∞ := lim

n→∞
RG∗n
pzn .

Exercise 3.7. The limit exists and does not depend on the choice of Gn.

Theorem 3.15. Z2 is recurrent, while Z3 is transient. More generally Zd is
transient for d > 2.

Recall that for two graphs connected in series we have Ps( hit p before q) =
RH

sq

RG∪H
pq

. We will use this below to prove the recurrence of Z2: we will apply

this fact to auxiliary graphs obtained from Z2 by contracting a certain vertex
set into a single vertex that will play the role of s.

For our proof we will need the following lemma
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Lemma 3.16. Let H be a connected graph and suppose G is obtained from
H by contracting a finite set of vertices U ⊂ V (H). If H is transient then so
is G.

Proof sketch of recurrence of Z2. Let Cn be the boundary of the box [−n, n]2.
Let G be the graph obtained from Z2 by contracting C1 into a vertex s. By
Lemma 3.16, it suffices to prove that G is recurrent.

Using Corollary 3.10 we can reduce recurrence to proving that RG
s∞ =∞

(see lecture). We define Gn to be the subgraph of Z2 that is surrounded
by Cn. Recall the definition of G∗n. Consider the graph Hn obtained by
contracting each Ci,i ≤ n in G∗n into a vertex. By Rayleigh’s monotonicity

law RG∗n
0zn ≥ RHn

0zn . The series and parallel laws give RHn
ozn =

∑n
k=1 1/nk,

where nk is the number of edges between Ck−1 and Ck. Notice that there is
a constant c > 0 such that nk ≤ ck. Hence RG∗n

ozn ≥ c
∑n

k=1 1/k. Since the
harmonic series diverges, we obtain that RG

s∞ =∞.

We will not prove the transience of Z3 here, and it will not be part of the
final exam. The proof is based on similar ideas, and now one has RZ3

0∞ <∞.
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4 Galton-Watson trees

A Galton-Watson tree is a Markov Chain Zn, n ∈ N with state space S = N,
and

• Z0 := 1,

• Zn+1 :=
∑Zn

i=1 L
n+1
i ,

where the Lji are independent, identically distributed N-valued random vari-
ables.

We write pk := P(Z1 = k) = P(L1
1 = k). Let L be a random variable with

the distribution of Lji . That is, P(L = k) = pk.

Examples 4.1. 1. If p0 = 1 and pk = 0 for every k > 0, then Zn = 0 for
every n > 0.

2. If p1 = 1 and pk = 0 for every k 6= 1, then Zn = 1 for every n > 0.

Exercise 4.1. 1. Alice keeps having children until the first son arrives,
and all her offspring repeat this strategy. Calculate pk.

2. Delete each edge of the rooted infinite binary tree with probability p
independently. Calculate pk.

In example 2 we saw that Zn = 1 for every n > 0 whenever p1 = 1. We
will show that this is the only case where a state l > 0 is visited infinitely
many times with positive probability.

Recall that an event A occurs almost surely , if P(A) = 1.

Proposition 4.1. If p1 6= 1, then almost surely, either Zn → 0 or Zn →∞.

Proof. We first assume that p0 = 0. Then every individual has almost surely
at least 1 offspring, which shows that Zn ≥ Zn−1 for every n > 0. We will
show that Zn →∞ almost surely.

Consider the event A = {Zn 6→ ∞}. Notice that when A occurs, Zn is
eventually a constant sequence. Hence we have

P(A) = P(∪∞n=0{Zk = Zn for every k > n}).

38



Moreover, for every m,n ∈ N with m > n we have

P(Zk = Zn for every m ≥ k > n) ≤ pm−n1 ,

because on that event, all individuals in the kth generation have exactly 1
offspring, and Zk ≥ 1. We immediately obtain that

P(Zk = Zn for every k > n) = lim
m→∞

P(Zk = Zn for every m ≥ k > n) = 0.

Hence P(A) = 0 as well, which shows that Zn →∞ almost surely.
We now assume that p0 > 0. We will show that Zn = l occurs finitely

often for every l > 0 almost surely. Indeed, if Zn = l > 0, we have
P(Zn+1 = 0) = pl0. This implies that the probability of returning to state
l is at most 1 − pl0. Thus returning or not to state l is a Bernoulli random
variable with parameter at most 1− pl0. It is now easy to see that

E(# returns to l) ≤ E(X) = E(Geometric(1− pl0)) <∞,

where X is the number of successes in a sequence of Bernoulli(1 − pl0) until
the first failure. On the other hand, if P(Zn = l for infinitely many n) > 0,
then E(# returns to l) =∞, which is a contradiction (for l = 0 this does not
apply). Since each l > 0 is visited finitely often almost surely, either Zn = 0
eventually or Zn →∞.

How do we decide which of the two (Zn → 0 or Zn → ∞) will happen with
what probability?

Definition 4.1. The probability generating function (pdf) of L is defined
by

f(s) :=
∑

k≥0

pks
k

for s ∈ [0, 1].

Notice that f(s) = E(sL) and f(0) = p0. The following proposition
generalises the latter fact.

Proposition 4.2. E(sZn) = f (n)(s) := (f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

)(s) for every s ∈ [0, 1].
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Proof. Let gn(s) := E(sZn). We will prove the assertion inductively. Assume
that gn−1(s) = f (n−1)(s) for some n. Conditioning on Zn−1 we have

gn(s) =
∞∑

l=1

P(Zn−1 = l)E(s
∑l

i=1 L
n
i ) =

∞∑

l=1

P(Zn−1 = l)E(
l∏

i=1

sL
n
i ).

Recall that E(A · B) = E(A) · E(B) when A,B are independent random
variables. Hence we have

E(
l∏

i=1

sL
n
i ) =

l∏

i=1

E(sL
n
i ) =

l∏

i=1

E(sL) = f(s)l,

which gives

gn(s) =
∞∑

l=1

P(Zn−1 = l)f(s)l = E(f(s)Zn−1) = gn−1(f(s)).

By our inductive hypothesis we have

gn(s) = gn−1(f(s)) = f (n−1)(f(s)) = f (n)(s),

as desired.

The above proposition is important because f (n)(0) = P(Zn = 0).

Definition 4.2. Let q := P(Zn → 0) = P( there is n such that Zn = 0) be
the extinction probability.

Proposition 4.3. q = limn→∞ f (n)(0).

Proof. Let An be the event {Zn = 0}. Notice that

{there is n such that Zn = 0} = ∪n∈NAn,

and An ⊂ An+1. This implies that q = P(∪n∈NAn) = limn→∞ P(An) =
limn→∞ f (n)(0).

Theorem 4.4. Suppose that p1 < 1. Then

1. q is the smallest root of the equation f(s) = s,

2. q = 1 if and only if f ′(1) ≤ 1.
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Proof. Notice that f satisfies the following properties:

1. f(1) = 1,

2. 0 ≤ f(s) ≤ 1 for every s ∈ [0, 1],

3. f and f ′ are continuous functions on [0, 1],

4. f ′(s) =
∑

k≥1 kpks
k−1 ≥ 0 for every s ∈ [0, 1] (f is increasing).

Let r be the smallest root of the equation f(s) = s. Let s0 = 0 and sn =
f (n)(0). By the previous proposition, sn converges to q, and by the continuity
of f , f(sn) converges to f(q). We have sn+1 = f(sn), hence f(q) = q, i.e. q is
a root of the equation f(s) = s. To prove that q is the smallest root, observe
that f (n) is an increasing function as a composition of increasing functions.
Hence f (n)(0) ≤ f (n)(r) = r, and taking the limit as n goes to infinity we
obtain that q ≤ r, implying that q = r.

For the second item of the theorem, let us assume that f ′(1) > 1. Then
there is some δ < 1 such that f ′(s) > 1 for every s ∈ [δ, 1]. If f(x) ≥ x
for some x ∈ [δ, 1), then f(s) > s for every s ∈ (x, 1], which contradicts the
fact that f(1) = 1. Therefore, f(s) < s for every s ∈ [δ, 1), and using the
intermediate value theorem we obtain that q < 1− δ < 1.

Assume now that f ′(1) ≤ 1. If p0 + p1 < 1, then

f ′′(s) =
∑

k≥1

k(k − 1)pks
k−2 > 0

for every s > 0, hence f ′ is strictly increasing for every s > 0. This shows
that f ′(s) < f ′(1) ≤ 1 for every s ∈ [0, 1). If p0 +p1 = 1, then f(s) = p0 +p1s
and f ′(s) = p1 < 1 for every s. In both cases, f(s)−s is a strictly decreasing
function on the interval [0, 1]. If there is some x ∈ [0, 1) such that f(x) = x,
then f(s) < s for every s ∈ [x, 1], contradicting that f(1) = 1. Hence no
such x exists, which gives that q = 1.

We remark that f ′(1) =
∑∞

k=1 kpk = E(L). We will denote E(L) by µ.
As a corollary of the previous theorem we obtain

Corollary 4.5. Assume that p1 < 1. Then q = 1 if and only if µ ≤ 1.

Examples 4.2. 1. Flip a fair coin to decide whether to ever have another
baby, and suppose all your offspring follow that strategy. Then µ = 1,
hence your genealogical tree eventually dies out almost surely.
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2. If p1 = 1, then µ = 1 but q = 0. This shows that the condition of the
theorem is important.

3. Consider percolation on a d-ary tree with parameter p. Then µ = d · p,
hence pc = 1/d.

Exercises

1. The Poisson branching process with intensity λ is defined as the
Galton-Watson tree with the offspring distribution L defined by

pk =
λke−λ

k!
.

Find the generating function of L and the equation determining the
extinction probability of the process.
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5 Percolation

5.1 Definitions

Let G = (V,E) be an infinite graph, and p ∈ [0, 1]. Let {ω(e), e ∈ E} be
a family of i.i.d. Bernoulli(p) random variables. Intuitively, we construct a
random subgraph of G by keeping an edge e if ω(e) = 1 and deleting e if
ω(e) = 0.

For each p, this defines a probability space: Ω := {0, 1}E, F is generated
by the sets Ωe=i := {ω ∈ Ω, ω(e) = i}, where i ∈ {0, 1}. We have Pp(Ωe=1) =
p.

We will mostly concentrate on the case where G = (Zd, {(x, x ± ei)}) is
the standard lattice in Rd; that is, V (G) := {(x1, . . . , xd)} is the set of d-
dimensional vectors with integer coordinates, and E(G) contains an edge xy
whenever x and y differ in at most one coordinate and the differ by exactly
1 in that coordinate.

Theorem 5.1. For every p ∈ [0, 1], there is a unique probability measure Pp
on (Ω,F) such that for every two finite disjoint subsets O,C ⊂ E,

Pp({ω(e) = 1 for every e ∈ O} and {ω(f) = 0 for every f ∈ C}) = p|O|(1−p)|C|.

Proof. Exercise using Caratheodory’s Extension Theorem and Dynkin’s Lemma.

We call (Ω,F ,Pp) the Bernoulli bond percolation model on G, with pa-
rameter p.

Site percolation: similar, except we delete vertices (and their incident
edges) instead of edges.

Definition 5.1. Any ω ∈ Ω is called a percolation instance, or configuration.

We say that e is open in ω if ω(e) = 1, and closed if ω(e) = 0.

The clusters of ω are the connected components spanned by its open edges.
The cluster containing a vertex o is denoted by Co = Co(ω).

Theorem 5.2. For every graphG = (V,E), and any o ∈ V , Pp({Co is infinite})
is monotone increasing in p.
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Proof. We consider the following ‘realisation’ of Pp. Let {u(e), e ∈ E} be
i.i.d. uniform random variables in [0, 1]. Set ω(e) = ωp(e) = 1 whenever
u(e) ≤ p. Note that ω(e) = Bernoulli(p). The resulting random element
ω of Ω has distribution Pp by Theorem 5.1. So we may as well consider
it as the definition of Pp. Let p1 < p2 in [0, 1]. Then ωp1(e) = 1 implies
that ωp2(e) = 1 because u(e) ≤ p1 implies that u(e) ≤ p2. Thus whenever
{Co(ωp1) is infinite} happens, {Co(ωp2) is infinite} happens as well, hence
Pp1({Co is infinite}) ≤ Pp2({Co is infinite}).

Proposition 5.3. Let G be a graph, and p ∈ [0, 1]. The following are
equivalent:

1. Pp({Co is infinite}) = 0 for every v ∈ V ,

2. Pp({there is an infinite cluster}) = 0.

Proof. The backward direction is obvious. For the forward direction, notice
that

Pp({there is an infinite cluster}) = Pp(∪v∈V {Cv is infinite})
≤
∑

v∈V
Pp({Cv is infinite}) = 0

by the union bound.

5.2 The percolation threshold

Definition 5.2. We define the percolation threshold

pc := inf
p∈[0,1]

{Pp(∃ an infinite cluster) > 0} = { sup
p∈[0,1]

Pp(∃ an infinite cluster) = 0}.

As we will see, Pp(∃ an infinite cluster) is either 0 or 1.

Definition 5.3. Let X1, X2, . . . be a sequence of independent random vari-
ables, and let Gk be the σ-algebra generated by the subsequence Xk, Xk+1, . . .
If A ∈ ∩∞k=1Gk, then we say that A is a tail event.

Theorem 5.4. (Kolmogorov’s 0-1 law) Let X1, X2, . . . be a sequence of in-
dependent random variables, and let A be a tail event. Then either P(A) = 0
or P(A) = 1.
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Lemma 5.5. (Konig’s lemma) Let G be an infinite, connected, locally finite
graph. Then G contains an infinite path.

Proposition 5.6. Pp(∃ an infinite cluster) is either 0 or 1.

Proof. We claim that {∃ an infinite cluster} is a tail event with respect to
the sequence {ω(e), e ∈ E}. Indeed, we can use Konig’s lemma to deduce
that the event {∃ an infinite cluster} happens in ω if and only if there is an
infinite open path in ω. The existence of an infinite open path is independent
of the state of any finite collection of edges (exercise), which shows that
{∃ an infinite cluster} is a tail event. Applying Kolmogorov’s 0-1 law we
conclude that Pp(∃ an infinite cluster) is either 0 or 1.

Remark: We assumed G to be locally finite here but it is not really
needed.

Another important concept is the percolation density

θ(p) := Pp(Co is infinite).

From the monotonicity of Pp(∃ an infinite cluster) we have that θ(p) = 0 for
every p < pc, and θ(p) > 0 for every p > pc. Understanding the behaviour of
θ at pc is a notoriously hard problem. The following is still open despite the
efforts of many experts:

Conjecture. θ is continuous at pc on Z3.

5.3 Bounding pc

We will now focus on Z2, and prove that pc ∈ (0, 1), i.e. a phase transition
occurs.

Definition 5.4. A self-avoiding walk (SAW) is a path, i.e. a walk where no
vertex is visited twice. (Which of the two words is used is a cultural matter;
in statistical mechanics people prefer SAW, in graph theory path is standard.)

Proposition 5.7. pc(Z2) ≥ 1/3.

Proof. LetNn denote the number of open SAWs with n edges in Z2 containing
o. The number of SAWs of size n in Z2 containing o is at most 4·3n−1 because
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there are four choices for the first step and at most three choices for every
other step. Hence

Ep(Nn) ≤ 4 · 3n−1pn.

On the event {Co is infinite} there is an infinite SAW starting from o, and
so for every n, there is a SAW of size n starting from o. Hence

Pp(Co is infinite) ≤ Pp(∃ an open SAW of size n) ≤ E(Nn)

for every positive integer n. If p < 1/3, then E(Nn) converges to 0, implying
that Pp(Co is infinite) = 0. Thus, pc(Z2) ≥ 1/3.

Our next aim is to prove an upper bound for pc(Z2) that is smaller than
1. First, we need to introduce some new notions.

A planar graph G is a graph that can be embedded in the plane R2, i.e.
it can be drawn in such a way that no edges cross each other. Such an
embedding is called a planar embedding of the graph. A plane graph is a
(planar) graph endowed with a fixed planar embedding.

A plane graph G ⊂ R2 divides the plane into regions called faces. More
precisely, the faces of G are the connected components (as defined in any
topology textbook) of R2\G; here the fixed embedding of G has allowed as
to think of G as a subset of the plane R2. Using the faces of G we define
its dual graph G∗ as follows. The vertices of G∗ are the faces of G, and we
connect two vertices of G∗ with an edge whenever the corresponding faces
of G share an edge. Thus there is a bijection e 7→ e∗ from E(G) to E(G∗).
Notice that G∗ can be embedded in the plane in such a way that an edge
f ∈ E(G∗) intersects an edge e ∈ E(G) if and only if f = e∗.

Consider a plane graph G and a finite subgraph H of G. Let ∂H be the
set of edges in E(G) \ E(H), at least one endvertex of which lies in V (H).
The minimal cut of H is the minimal set of edges in ∂H, the removal of
which disconnects H from infinity.

Lemma 5.8. For every finite minimal cut F of G, there is a cycle in G∗ the
edge set of which is F ∗.

Using the above lemma we can easily find an upper bound for pc(Z2).

Proposition 5.9. pc(Z2) ≤ 2/3.
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Proof. Let ω be a percolation configuration such that Co(ω) is finite. Then
there is a minimal cut F separating Co(ω) from infinity, i.e. Co(ω) is con-
tained in a finite component of Z2 \ F . The union bound implies that

Pp(Co finite) ≤
∑

Pp(F is closed),

where the sum ranges over all minimal edge cuts F of o. Notice that the
dual Z2∗ of Z2 can be identified with Z2 + (1/2, 1/2), the translation of
Z2 by the vector (1/2, 1/2). By the above lemma, the latter sum is equal
to
∑

Pp(C is closed), where now we are summing over all cycles in Z2∗

that contain o in their interior. We can now express
∑

Pp(C is closed) via∑∞
n=1 an(1− p)n, where an is the number of cycles in Z2∗ of size n that con-

tain o in their interior. Any such cycle contains some vertex of the form
(k + 1/2, 1/2) for some k satisfying 0 ≤ k < n. The number of cycles of size
n in Z2∗ containing a fixed vertex, is at most 4 · 3n−1, hence an ≤ 4n3n−1.
We can now conclude that

Pp(Co finite) ≤
∞∑

n=1

4n3n−1(1− p)n.

This implies that Pp(Co finite) < 1 when p is large enough, hence pc < 1.

The above argument is called Peierls’ argument. Next, we will refine it a
bit to obtain the desired pc ≤ 2/3.

Let p > 2/3 and consider some n0 such that

q :=
∞∑

n=n0

4n3n−1(1− p)n < 1.

Let Λ = Λ(n0) be the box o + {−n0, . . . , n0}2. Notice that any minimal cut
outside of Λ contains at least n0 edges. Define the events
A := {all edges in Λ are open} and
B := {no minimal cut outside Λ is closed}.

The event B is independent of the state of the edges in E(Λ), hence A
and B are independent. Moreover, Pp(B) ≥ 1− q > 0 by Peierls’ argument.
Thus

Pp(A ∩B) = Pp(A)Pp(B) > 0.

On the other hand, when both A and B occur in ω, then Co(ω) is infinite.
Therefore,

Pp(Co is infinite) ≥ Pp(A ∩B) > 0.
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Since this holds for every p > 2/3, we conclude that pc(Z2) ≤ 2/3.

The following propositions show that not every graph G undergoes a
genuine phase transition, i.e. pc(G) may equal 0 or 1.

Proposition 5.10. pc(Z) = 1.

Proof. Percolation on Z is identically distributed with the union of two
Galton-Watson trees with L = Bernoulli(p), which die out when p < 1.

We will now show that there are graphs with pc = 0.

Proposition 5.11. There is a graph G with pc(G) = 0.

Proof. Let G be a tree with root o such that every vertex at distance n from
o has n + 1 children. Then the d-ary tree Td is a subgraph of G for every
d. Since pc(Td) = 1

d−1
, we have pc(G) ≤ pc(Td) = 1

d−1
for every d. Thus,

pc(G) = 0.

5.4 The exponential decay threshold pD

In this section we consider percolation on Zd. Let o = (0, . . . , 0) denote
the origin. The box Λn is the subgraph of Zd spanned by the vertices all
coordinates of which lie in the interval [−n, n]. We let Bo(n) denote the
ball of radius n around o in Zd, i.e. the subgraph spanned by the vertices at
graph-distance at most n from o. For a subgraph X of Zd, the boundary ∂X
of X comprises the edges of Zd with exactly one end-vertex in X.

Definition 5.5. The susceptibility χ(p) is defined by

χ(p) := Ep(|C(o)|).

The susceptibility threshold is defined by

p∞ := sup
p
{χ(p) <∞} = inf

p
{χ(p) =∞}.

We write {o↔ Y } for the event that the cluster of o contains an element
of a set Y .
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Definition 5.6. The exponential decay threshold is defined by

pD := sup
p
{∃cp < 1 such that Pp(o↔ ∂Λn) < cnp} =

sup
p
{∃cp < 1 such that Pp(o↔ ∂Bo(n)) < cnp}.

Proposition 5.12. pD ≤ p∞ ≤ pc.

Proof. If p < pD then
χ(p) =

∑
n

∑
x∈V,d(x,o)=n Pp(x ∈ C(o)) ≤ ∑nCn

d−1cnp < ∞. Thus p ≤ p∞.

Here, we used the fact that χ(p) =
∑

x∈V Ep(1x∈C(o)) =
∑

x∈V Pp(x ∈ C(o))
(Exercise), and that ∂Bo(n) has at most Cnd−1 elements for some constant
C.

If p > pc then Pp(|C(o)| =∞) = ε > 0. Hence
Ep(|C(o)|) ≥ ε∞ =∞, and so pc ≥ p∞.

In fact, we will later prove that pD = p∞ = pc, but the proof is much
more involved. Using this statement, we now tighten our upper bound on
pc(Z2):

Theorem 5.13 (Kesten’s theorem). pc(Z2) ≤ 1/2.

Proof. Sample a percolation instance ω with p = 1/2. Let B denote the set
of open edges, and R the set of closed edges. Note that the dual R∗ of R has
the same law P1/2 as B.

Suppose that pc(Z2) > 1/2. Then both B,R∗ are subcritical, and for
every x ∈ Z2, P1/2(|C(x)| < ∞) = 1. Since the dual of the minimal cut
of the cluster of o is a cycle, there is a cycle D0 in R∗ surrounding o. But
the cluster in (Z2)∗ containing D0 is finite, hence there is a cycle D1 in B
surrounding D0, and thus o. Continuing in this manner, we find almost surely
a sequence of cycles (Di) surrounding o, such that D2i lies in R∗ and D2i+1

lies in B.
Let H be the infinite horizontal path o+{0, 1, . . .}×{0} in Z2, and let hn

denote the nth vertex ofH. LetX := |{n : hn lies in an open cycle surrounding o}|.
Every cycle D2i+1 intersects H and surrounds o, hence

E1/2(X) =∞.
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On the other hand, assuming pD = pc (which is proved below), there is a
constant 0 < c = c1/2 < 1 such that for every vertex x ∈ Z2, P1/2(x ↔
x+ Λn) ≤ cn. This implies that

P1/2(hn lies in an open cycle surrounding o) ≤ cn.

Therefore,
E1/2(X) <∞,

which leads to a contradiction.

5.5 An Ergodic Theorem

For z ∈ Zd, let τz(ω) := ω(e+ z) be the shift of ω by z.

Definition 5.7. An event A is shift-invariant, if ω ∈ A implies τz(ω) ∈ A
for every z ∈ Zd. In other words, τz(A) = A.

Examples 5.1. Both {there is an infinite cluster} and {# of infinite clusters is k}
are shift-invariant events. On the other hand, {C(o) is infinite} (or any event
talking about C(o)) is not shift-invariant.

Theorem 5.14. If A is shift-invariant then for every p ∈ [0, 1], Pp(A) is
either 0 or 1.

Corollary 5.15. For Bernoulli bond percolation on Zd and for every p ∈
[0, 1], there is k = k(p) ∈ N ∪ {∞} such that Pp(N = k) = 1, where
N = N(ω) := #{infinite clusters of ω}.

Proof. For every k ∈ N ∪ {∞}, the event {N = k} is a shift-invariant event.
By the above theorem Pp(N = k) ∈ {0, 1}. As

∑
k∈N∪{∞} Pp(N = k) = 1, we

have Pp(N = k) = 1 for a unique k = k(p).

Proof of Theorem. Let p ∈ [0, 1] and ε > 0. We claim that there is n ∈ N
and an event B depending on the edges in Λn only, such that Pp(A4B) < ε,
where A4B := (A ∩ Bc) ∪ (Ac ∩ B) denotes the symmetric difference of A
and B. This is because the events B of this form generate our σ-algebra.

Pick such an event B and z ∈ Zd \ Λ3n. Since A is shift invariant,
Pp
(
τz(A)

)
= Pp(A) = Pp

(
A∩τz(A)

)
. The boxes Λn(z) and Λn(o) are disjoint,
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which implies that B and τz(B) are independent events. We will estimate
the difference Pp(A)− Pp(A)2. We have

|Pp(A)− Pp(A)2| = |Pp
(
A ∩ τz(A)

)
− Pp(A)2|

≤ |Pp
(
A ∩ τz(A)

)
− Pp

(
B ∩ τz(A)

)
|+ |Pp

(
B ∩ τz(A)

)
− Pp

(
B ∩ τz(B)

)
|

+|Pp
(
B ∩ τz(B)

)
− Pp(B)2|+ |Pp(B)2 − Pp(A)2|

The independence of B and τz(B) gives that

|Pp
(
B ∩ τz(B)

)
− Pp(B)2| = 0.

Moreover,

|Pp(B)2 − Pp(A)2| = |
(
Pp(B)− Pp(A)

)(
Pp(B) + Pp(A)

)
< 2ε.

Notice that

|Pp
(
A ∩ τz(A)

)
− Pp

(
B ∩ τz(A)

)
| ≤ Pp(A4B) < ε

and
|Pp
(
B ∩ τz(A)

)
− Pp

(
B ∩ τz(B)

)
| ≤ Pp

(
τ(A)4τ(B)

)
< ε,

which follow from the fact that for every events C1, C2 and D

|Pp(C1 ∩D)− Pp(C2 ∩D)| ≤ Pp
(
(C1 ∩D)4(C2 ∩D)

)
≤ Pp(C14C2).

Therefore,
|Pp(A)− Pp(A)2| < 4ε.

Since ε was arbitrary, we get that Pp(A) = Pp(A)2, showing that Pp(A) is
either 0 or 1.

Recall that for every p ∈ [0, 1] there exists a unique k ∈ N ∪ {∞} such
that Pp(N = k) = 1.

Lemma 5.16. For percolation on Zd, if Pp(N = k) > 0 for some 2 ≤ k <∞,
then Pp(N = 1) > 0.

Proof. Let

An = {N > 0 and Λn intersects all infinite clusters}, and
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Bn = {all edges in Λn are open}.
(Exercise: Show that An is a measurable event.) There is n > 0 such that
Pp(An) > 0 because

{0 < N <∞} = ∪∞n=1An

and Pp(0 < N <∞) > 0. Notice that if An occurs and we open all edges of
Λn, then all infinite components are merged into one, hence

Pp(N = 1) ≥ Pp(An ∩Bn).

But An and Bn are independent events. Thus

Pp(N = 1) ≥ Pp(An)Pp(Bn) > 0.

The above lemma combined with Corollary 5.15 implies that

Corollary 5.17. For every p ∈ [0, 1], exactly one of

{N = 0}, {N = 1}, {N =∞}

occurs almost surely.

5.6 Finiteness of the number of infinite clusters

We will now exclude the possibility {N =∞} of Corollary 5.17.

Definition 5.8. We say that x ∈ Zd is a trifurcation point in ω, if |C(x)| =
∞, and C(x) \ {x} has at least 3 infinite clusters. Let T (ω) be the set of
trifurcation points in ω.

Theorem 5.18 (Burton-Keane). For percolation on Zd, Pp(N =∞) = 0 for
every p ∈ [0, 1].

Proof. Assume that p ∈ (0, 1) (otherwise trivial). We claim that if
Pp(N =∞) = 1, then Pp(o ∈ T (ω)) > 0. Indeed, choose n large enough that

Pp(∃ a,b,c ∈ ∂Λn belonging to distinct infinite clusters) > 1/2.
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This implies that

Pp(∃ a’,b’,c’ ∈ ∂Λn belonging to distinct infinite clusters in Zd \ Λn) > 1/2.

The size of ∂Λn is of order nd−1, hence the is a constant c > 0 such that the
number of triples (a′, b, c′) as above is at most cn3(d−1). The union bound
implies that there exist a′, b′, c′ ∈ ∂Λn such that

Pp(a′, b′, c′ belong to distinct infinite clusters in Zd \ Λn) >
1

2cn3(d−1)
.

(the estimate 1
2cn3(d−1) is more precise than we actually need; what matters is

that it is strictly positive, and that a′, b′, c′ are now fixed vertices of Λn.)
Fixing these a′, b′, c′ ∈ ∂Λn, it is not hard to see that there are 3 edge-

disjoint paths in Λn connecting o to each of a′, b′, c′. If we open the edges of
all these paths and close every other edge of Λn, then o becomes a trifurcation
point. But the state of the edges inside Λn is independent of the event

a′, b′, c′ belong to distinct infinite clusters in Zd \ Λn.

Hence Pp(o ∈ T (ω)) > ε for some ε = ε(p) > 0, which proves our claim.

Let from now on n ∈ N be arbitrary, and let Tn := |T (ω) ∩ Λn|. We
have Pp(x ∈ T (ω)) = Pp(o ∈ T (ω)) for every x ∈ Zd. By the linearity of
expectation,

Ep(Tn) = Pp(o ∈ T (ω))|Λn|. (5)

Our second claim is that

Tn ≤ |∂Λn|.

This will imply that
Ep(Tn) ≤ |∂Λn|,

hence Ep(Tn) is of order at most nd−1. But by (5), Ep(Tn) is of order nd.
Choosing n large enough we derive a contradiction. In order to prove our
claim we will use the following lemma, the proof of which is an easy exercise
in graph theory.

Lemma 5.19. Let T be a finite tree (or forest), let L = L(T ) be the number
of leaves of T , and let K = K(T ) be the number of vertices of degree at least
3. Then L ≥ K + 2.
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Let F be a forest comprising a spanning tree of each cluster of Λn. Let
L ⊂ F be maximal such that each leaf of L lies in ∂Λ. Let Y ⊂ L comprise
the components of L having at least 3 leaves in ∂Λn. Note that all trifurcation
points T (ω) remain trifurcation points when we change ω inside Λn into Y ,
i.e. letting

ω′(e) :=





1 e ∈ E(Y )

0 e ∈ E(Λn) \ E(Y )

ω(e) e 6∈ E(Λn)

we have
T (ω′) ∩ Λn = T (ω) ∩ Λn.

Notice that every trifurcation point of T (ω′) ∩ Λn has degree at least 3 in
Y , hence K(Y ) ≥ Tn. Moreover, all the leaves of Y lie in ∂Λn. Using
Lemma 5.19 we obtain

K(Y ) < L(Y ) ≤ |∂Λn|.

Therefore
Tn < |∂Λn|,

as desired.

5.7 Harris’ theorem

In this section we will complete the proof that pc(Z2) = 1/2.
We start with a nice general lemma that we will use without proof (see

e.g. the book of Lyons & Peres if you are curious). A percolation event A is
said to be increasing, if ω ∈ A and ω ⊆ ω′ imply ω′ ∈ A. (Intuitively, adding
more open edges can only help A occur.)

Lemma 5.20 (Harris’ inequality). If A,B are increasing events of percola-
tion on a graph then, for every p ∈ [0, 1], we have

Pp(A ∩B) ≥ Pp(A)Pp(B).

Using this we can prove

Lemma 5.21 (The square root trick). Let A1 and A2 be increasing events.
If A = A1 ∪ A2 and Pp(A1) = Pp(A2), then Pp(A1) ≥ 1− (1− Pp(A))1/2.
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Proof. We have (1−Pp(A1))2 = Pp(Ac1)2 = Pp(Ac1)Pp(Ac2). By Harris’ inequal-
ity, this is at most Pp(Ac1∩Ac2) = Pp(Ac) = 1−Pp(A). Taking the square root
of both sides and rearranging we deduce Pp(A1) ≥ 1− (1− Pp(A))1/2.

Theorem 5.22 (Harris’ theorem). On Z2, P1/2(∃ an infinite cluster) = 0.

Proof. Suppose not. Then

P1/2(∃ an infinite cluster) = 1. (6)

Define the event

Aln := {the left side of ∂Λn meets an infinite cluster in Zd \ Λn}.

Similarly, we define Arn (for right), Atn (for top), Abn (for bottom). Then (6)
implies that Pp(Aln∪Arn∪Atn∪Abn) converges to 1 as n goes to∞. Note that
Pp(Aln) = Pp(Arn) = Pp(Atn) = Pp(Abn) by symmetry, and Aln is an increasing
event. Using the square root trick from above (adapted to 4 events), we can
deduce that Pp(Aun) converges to 1 as n goes to ∞ for every u = l, r, t, b.

Thus we can choose m large enough that P1/2(Aum) > 7/8. Define Aun
∗ like

Aun but in the dual Z2∗. Since Z2∗ is isomorphic to Z2, we have P1/2(Aum
∗) >

7/8 as well. We couple percolation on the primal and percolation on the dual
by defining ω∗(e∗) = 1− ω(e). Let A := Alm ∩ Arm ∩ Atm∗ ∩ Abm

∗
. The union

bound shows that
P1/2(Ac) < 1/2,

hence
P1/2(A) > 1/2.

If A occurs, then both the left and the right side of Λn meet infinite clusters
of ω, and the top and bottom side meet infinite clusters of ω∗. But the
Burton-Keane theorem tells us that both ω, ω∗ have a unique infinite cluster.
Thus there is an open path in ω from the left side of ∂Λn to the right, and
an open path in ω∗ from the top side of ∂Λn to the bottom. These two
paths must intersect at an edge e due to topological reasons. This leads to a
contradiction, as e must then be open in both ω, ω∗, which is impossible as
we have defined ω∗ := 1− ω.

Combining Theorems 5.13 and 5.22, we obtain

Theorem 5.23 (Harris–Kesten theorem). pc(Z2) = 1/2.
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Exercises

1. Let L denote the cubic lattice, i.e. the graph with vertex set Z3 in
which two vertices (x, y, z) and (x′, y′, z′) are joined with an edge when
|x − x′| + |y − y′| + |z − z′| = 1. Thus every vertex has degree 6.
Using a coupling with an appropriate Galton-Watson tree, prove that
pc(L) ≥ 1/5.

2. Prove that if the events A,B are both increasing, then so is A∩B. Use
this to extend Harris’ inequality to more than 2 increasing events.

3. Extend the square root trick to more than two events.

4. Let T be a Galton–Watson tree with offspring distribution given by a
random variable L with expectation µ := E(L). Colour each edge of T
blue with probability p, and red with probability 1− p, independently
of all other experiments. For which values of p do we have

P( the blue subtree of T containing the origin is infinite ) > 0?

THE END?
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The remainder of these lecture notes is op-
tional material, not examinable.

5.8 Proof of pD = pc

Our final goal is to show that pD = pc on Zd, completing the proof of
Kesten’s theorem. Let us start by fixing some notation.

Given a finite set of vertices on Zd, we denote its edge-boundary by ∆S,
defined by all the edges xy with x ∈ S and y /∈ S. Two vertices x and y are
connected in S ⊂ Zd if there exists an open path from x to y with vertices in

S. We denote this event by x
S↔ y.

For p ∈ [0, 1] and finite o ∈ S ⊂ Zd, define

ϕp(S) := p
∑

xy∈∆S

Pp[o
S↔ x]

and

p̃c := sup
{
p ∈ [0, 1] s.t. there exists a finite set o ⊂ S ⊂ Zd with ϕp(S) < 1

}
.

Theorem 5.24 (Duminil-Copin & Tassion). For any d ≥ 2, p̃c = pc. More-
over,

1. For p < p̃c, there exists 0 < c = c(p) < 1 such that for every n ≥ 1,

Pp[o↔ ∂Λn] ≤ cn.

2. For p > p̃c,

Pp[C(o) =∞] ≥ p− pc
p(1− pc)

> 0.

Proof. Note that (1) and (2) imply that p̃c = pc.
Let p < p̃c. Fix a finite set S containing o, such that ϕp(S) < 1. Let

L > 0 such that S ⊂ ΛL−1.
Since S ∩ ∂ΛkL = ∅, if the event o ↔ ∂ΛkL occurs for some k ≥ 1, then

there is an edge xy ∈ ∆S such that:
• o is connected to x in S,
• xy is open,
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• y is connected to ∂ΛkL in Cc.
Indeed, pick an open path from o to ∂ΛkL and let xy be the last edge in ∂S
it traverses.

We will bound the probability that such xy exists. Let

C = {z ∈ S : o
S↔ z}.

Using first the union bound, and then a decomposition with respect to pos-
sible values of C, we find

Pp(o↔ ∂ΛkL)

≤
∑

xy∈∆S

∑

C⊂S
Pp
(
{o S↔ x, C = C} ∩ {xy is open} ∩ {y Zd\C↔ ∂ΛkL}

)

Using the fact that the three events depend on different sets of edges and are
therefore independent we have that

Pp(o↔ ∂ΛkL) ≤ p
∑

xy∈∆S

∑

C⊂S
Pp
(
o

S↔ x, C = C
)
Pp
(
y

Zd\C↔ ∂ΛkL

)
.

Since y ∈ ΛL, we can bound Pp(y
Zd\C↔ ∂ΛkL) by Pp(o↔ ∂Λ(k−1)L) in the last

expression. Moreover,
∑

C⊂S
Pp
(
o

S↔ x, C = C
)

= Pp(o
S↔ x).

Hence, we get

Pp(o↔ ∂ΛkL) ≤ ϕp(S)Pp
(
y ↔ ∂Λ(k−1)L

)
.

which by induction gives

Pp(o↔ ∂ΛkL) ≤ ϕp(S)k−1.

This proves the desired exponential decay.
We will prove the second item of Theorem 5.24 by providing a differential

inequality valid for every p.

Lemma 5.25. Let p ∈ [0, 1] and n ≥ 1,

d

dp
Pp(o↔ ∂Λn) ≥ 1

p(1− p) · inf
S⊂Λn
o∈S

ϕp(S) ·
(
1− Pp(o↔ ∂Λn)

)
. (7)
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Remark. As Λn is finite, Pp(o↔ ∂Λn) is a polynomial in p, hence differen-
tiable.

Remark. The above lemma is reminiscent of

Lemma 5.26 (Russo’s formula). For every finite percolation model and for
every increasing event A,

d

dp
Pp(A) = Ep(# of pivotal edges for A) =

∑

e

Pp(e is pivotal for a),

where an edge xy is pivotal for the event A if ωxy /∈ A and ωxy ∈ A. (The
configuration ωxy, respectively ωxy, coincides with ω except that the edge xy
is closed, respectively open.)

Let us first see how (7) implies the second item of Theorem 5.24. Setting
g(p) = Pp(o ↔ ∂Λn) and using that infS⊂Λn

o∈S
ϕp(S) ≥ 1 for every p ≥ p̃c, we

get that
g′(p)

1− g(p)
≥ 1

p(1− p) .

Notice that
g′(p)

1− g(p)

is the derivative of

log
( 1

1− g(p)

)
,

while
1

p(1− p)
is the derivative of

log(
p

1− p).

Integrating the differential inequality between p̃c and p > p̃c implies that for
every n ≥ 1,

Pp(o↔ ∂Λn) ≥ p− p̃c
p(1− p̃c)

.

Letting n go to infinity, we obtain the desired lower bound on Pp(o↔∞) =
Pp(|C(o)| =∞).
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We now prove (7). By Russo’s formula and the fact that the state of a
pivotal edge for an event is independent of the event, we have

d

dp
Pp(o↔ ∂Λn) =

∑

e⊂Λn

Pp
(
e is pivotal

)

=
1

1− p
∑

e⊂Λn

Pp(e is pivotal, e is closed)

=
1

1− p
∑

e⊂Λn

Pp
(
e is pivotal, o 6↔ ∂Λn

)
.

Let
S := {x ∈ Λn such that x 6↔ ∂Λn}.

Summing over the possible values for S we obtain

d

dp
Pp(o↔ ∂Λn) =

1

1− p
∑

S⊂Λn
o∈S

∑

e⊂Λn

Pp
(
e is pivotal, S = S

)

Notice that on the event S = S, the pivotal edges are the edges xy ∈ ∆S
such that o is connected to x in S. This implies that

d

dp
Pp(o↔ ∂Λn) =

1

1− p
∑

S⊂Λn
o∈S

∑

xy∈∆S

Pp
(
o

S↔ x, S = S
)
.

The event {S = S} depends only on the state of the edges outside S and is

therefore independent of {o S↔ x}. We obtain

d

dp
Pp(o↔ ∂Λn) =

1

1− p
∑

S⊂Λn
o∈S

∑

xy∈∆S

Pp
(
o

S↔ x
)
Pp
(
S = S

)

=
1

p(1− p)
∑

S⊂Λn
o∈S

ϕp(S)Pp
(
S = S

)

≥ 1

p(1− p) inf
S⊂Λn
o∈S

ϕp(S) · Pp
(
o 6↔ ∂Λn),

as desired.

THE END
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