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(This document follows Chapter 3 and Section 4.3 of Heights in Diophantine Geometry by

Bombieri and Gubler, mostly consists of annotations or elaborations of the original text.)

1. Introduction and notation

Bogomolov’s conjecture is a statement that about the height of algebraic points on curves,

claiming that the number of points of small height on a curve should be finite. In 1992, Zhang

proved the case for curves in Gn
m:

Theorem 1.1. Let X be a closed subvariety of Gn
m defined over a number field K and let X∗

be the complement in X of the union of all torsion cosets εH ⊆ X. Let fi ∈ K[x] be a set of

polynomials of degree at most d defining X. Then the height of points P ∈ X∗ has a positive

lower bound, depending on n, d, [K : Q], and maxh(fi).

The original proof of the above statement is effective, meaning the finite set of points can be

effectively determined for every P ∈ Gn
m. On the other hand, there is an alternative proof, which

relies on the idea that points of small height under the action of Galois conjugation tend to

become equidistributed with respect to a suitable measure. Although this proof is ineffective,

we shall follow this approach and use Bilu’s Theorem to establish the result.

Throughout the study group, we will use the following notations:

1. The standard height of x = (x1, x2, · · · , xn) ∈ Gn
m: ĥ(x) =

∑n
i=1 h(xi).

2. Space of complex valued continuous functions on X with compact support: CC(X).

3. The unit circle in C: T = {eiθ|0 ≤ θ ≤ 2π}.

4. log+(·) = max{0, log(·)}.

2. Notations and facts about Gn
m

In this section, we will cover some basic facts about Gn
m, mainly for unravelling the terms in the

theorem which might look unfamiliar to certain readers. Let K be a field of characteristic 0. We

identify G := Gn
m over a field K as an affine variety with the Zariski open subset

{(x1, ..., xn) ∈ Kn : x1...xn ̸= 0}

of affine space An
K , with multiplication

(x1, x2, ..., xn) · (y1, y2, ..., yn) = (x1y1, x2y2, ..., xnyn).
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The identity element of this group structure is of course, 1n = (1, 1, ..., 1).

Below are some definitions about the subgroups of G:

� Algebraic subgroup: an algebraic subgroup of G is a Zariski closed subgroup.

� Linear torus: a linear torus H is an algebraic subgroup which is geometrically irreducible.

� Torsion coset: it is a coset gH of a linear torus H of positive dimension. In addition, we

call gH a torsion coset if g is a torsion point in G (i.e. g is a point of finite order in G).

There is a particular algebraic subgroup of G that we will use in the proof of Theorem 1.1: let

λ = (λ1, λ2, . . . , λn) ∈ Zn, and for x = (x1, x2, . . . , xn) ∈ G, we write xλ = xλ1
1 xλ2

2 . . . xλn
n .

Recall that a subgroup Λ of Zn is called a lattice if it is a subgroup of rank n – this determines

an algebraic subgroup.

HΛ := {x ∈ G : xλ = 1 ∀λ ∈ Λ}.

Proposition 2.1. For a subgroup Λ of Zn of rank n− r, the following properties are equivalent:

(a) HΛ is a linear torus;

(b) HΛ is isomorphic to Gr
m;

(c) HΛ is irreducible.

3. Proof of Bogomolov conjecture – setup

We would like to use Bilu’s theorem on equidistribution:

Theorem 3.1. Let (ξi)i∈N be an infinite sequence of distinct non-zero algebraic numbers such

that h(ξi) → 0 as i → ∞. Then the sequence (δξi)i∈N converges in the weak-* topology to the

uniform probability measure µT := dθ
2π on the unit circle T := {eiθ | 0 ≤ θ < 2π} in C.

Before we proceed, we should note that to apply Bilu’s theorem, we require all the algebraic

numbers in the sequence (ξi)i∈N to be distinct. However, this is actually unecessary and can be

relaxed to two conditions:

1. h(ξ) → 0.

2. No root of unity in the sequence (ξi)i∈N is repeated infinitely often.

This is because the most important fact in the proof of Bilu’s theorem is the degree of the

minimal polynomial of ξi, di, tends to infinity as i → ∞. By Kronecker’s theorem, we know that

the second condition has to hold.

Theorem 3.2 (Kronecker’s theorem). The height of ζ ∈ Q×
is 0 if and only if ζ is a root of

unity.

We also note that we need a sequence of algebraic numbers in order to apply Bilu’s theorem,

instead of a sequence of points in variety. To do so, we can consider the associated sequence

2



(χ(ξi))i∈N, where χ(x) = xm1
1 xm2

2 ...xmn
n is a non-trivial character χ : Gn

m → C. This is because

when a character is defined over C, every such character value is an algebraic integer.

4. Proof of Bogomolov conjecture

This approach proves the theorem by contradiction: suppose we have an infinite sequence of

distinct points ξi ∈ X∗ with ĥ(ξi) → 0.

Strategy: Mimick the construction in the proof of Bilu’s theorem by defining the probability

measure

δξ =
1

[Q(ξ) : Q]

∑
σ:Q(ξ)→C

δσξ

associated to the Galois orbit of ξ. As in the proof of Bilu’s theorem, consider a weak-* limit

measure µ of the sequence (δξi)i∈N and the same argument should show that µ is supported in

Tn. This will then lead to a contradiction related to the density of torsion points in Gn
m.

Now for any non-trivial character χ(x) = xm1
1 · · ·xmn

n of (C∗)n, consider the associated sequence

(χ(ξi))i∈N. As a sanity check, we verify that Bilu’s theorem is really applicable to the sequence

{χ(ξi)}i∈N:

h(χ(ξi)) = h(xm1
1 · · ·xmn

n )

≤ (max
j

|mj |)ĥ(ξi) → 0.

As discussed in Section 2, we have two cases due to the hypothesis of Bilu’s theorem.

Case I: For every non-trivial character χ, the sequence (χ(ξi))i∈N ultimately consists of distinct

elements.

In this case, we want to show that ∫
Tn

χ(x)dµ = 0

since this tells us that µ is a probability measure (again, the limit of a sequence of probability

measure need not to be a probability measure).

We prove this as follows. Fix c > 0 and let f ∈ Cc(C∗) be the identity f(x) = x in the

neighborhood | log |x|| < c of T. Then we construct a function

fχ(x) = f(xm1
1 ) · · · f(xmn

n )

which has compact support in (C∗)n and coincides with χ(x) in a neighborhood of Tn. Therefore,
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we have ∫
Tn

χ(x)dµ =

∫
(C∗)n

fχ(x)dµ

= lim
i→∞

1

[Q(ξi) : Q]

∑
σ:Q(ξi)→C

fχ(σξi). (by weak-*convergence)

We would like to replace fχ(x) by χ(x) in the last sum. This is because by Bilu’s theorem,

the measure µχ determined by the sequence (χ(ξi))i∈N (i.e. we are considering the sequence of

measures {δχ(ξ)}i∈N) is the uniform measure on T = χ(Tn). but this step requires justification,

because f(χ(x)) is not compactly supported in (C∗)n (f(χ(x)) is a monomial). To deal with

this problem, we will break up the sum by

1

[Q(ξi) : Q]

∑
σ:Q(ξi)→C

fχ(σξi) =
1

[Q(χ(ξi)) : Q]

∑
τ :Q(χ(ξi))→C

f(τχ(ξi))

+
1

[Q(ξi) : Q]

∑
σ:Q(ξi)→C

(fχ(σξi)− f(χ(σξi))) .

Remark 4.1. A trivial remark: if we expand the terms a little bit, we would see why the above

is an equality.

� f (χ(σξi)) = f ((σξi1)
m1 · · · (σξin)mn) = f (σ(ξm1

i1 ) · · ·σ(ξmn
in )).

� f (τχ(ξi)) = f(τ(ξm1
i1 · · · ξmn

in )) = f (τ(ξm1
i1 ) · · · τ(ξmn

in )).

Let m = max |mj | and M = max |f |. For the second sum, note that the summand fχ(σξi) −
f(χ(σξi)):

� can be bounded above by M +Mn since

|fχ(σξi)− f(χ(σξi))| ≤ |fχ(σξi)|+ |f(χ(σξi))|

≤
∣∣f(σxm1

1 )f(σxm2
2 ) · · · f(σxmn

n )
∣∣+M

≤ Mn +M

� fχ(σξi) = f(χ(σξi)) unless | log |xj |m| > c =⇒ | log |xj || > c/m for some j, since f(x) = x

in the neighbourhood if | log |xj || ≤ c/m for every j by definition.

Thus the second sum can be bounded above by

n∑
j=1

1

[Q(ξi) : Q]

∑
σ:Q(ξi)→C

|log |σξij |>c/m|

(M +Mn) ≤
n∑

j=1

1

[Q(ξij) : Q]

∑
σ:Q(ξij)→C

|log |σξij |>c/m|

(M +Mn).
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We have assumed ĥ(ξi) → 0. As in the proof of Bilu’s theorem, this assumption implies that∑
σ:Q(ξij)→C

|log |σξij |>c/m|

(M +Mn) = o(dij),

where dij = [Q(ξij) : Q]. Therefore, the term above tends to 0 as i → ∞, proving∫
Tn

χ(x)dµ = lim
i→∞

1

[Q(ξi) : Q]

∑
σ:Q(ξi)→C

fχ(σξi)

= lim
i→∞

1

[Q(χ(ξi)) : Q]

∑
τ :Q(χ(ξi))→C

f(τχ(ξi))

=

∫
T
xdµχ(x) (by weak-* convergence)

= 0. (by Bilu’s theorem)

As in the proof of Bilu’s theorem, it is clear that µ is a probability measure. It is a standard fact

from functional analysis that the characters χ(x) restricted to Tn form an orthonormal basis of

L2(Tn), whence
∫
Tn χ(x)dµ = 0 shows that the restriction of µ to Tn is the uniform measure on

Tn.

Recall that µ is supported on X, but since it has to be the uniform measure on Tn, it turns out

that Tn is contained in the union of the conjugates of X over Q. Since torsion points are Zariski

dense in Gn
m, this contradicts the assumption that X is a proper algebraic subvariety of Gn

m.

Case II: There is a non-trivial character χ such that the sequence (χ(ξi))i∈N has an element ε0

occurring infinitely many times.

In this case, we proceed by induction on n, the claim being trivial for n = 0. Since h(χ(ξi)) → 0,

we have h(ε0) = 0 and ε0 is a root of unity by Kronecker’s theorem. Let ε be a torsion point

such that χ(ε) = ε0 and replace X by ε−1X and {ξi} by {ε−1ξi}. Now (ε−1X)∗ = ε−1(X∗)

and multiplication by a torsion point does not change the height; therefore, there is no loss

of generality in assuming that ε0 = 1. Furthermore, going to an infinite subsequence of the

sequence (ξi)i∈N if needed, we may also assume that there is a torsion point ε′ such that {ε′ξi}
is contained in the connected component of the identity of the kernel of χ, say H. Now H is a

proper subtorus of Gn
m and we may replace X, Gn

m by ε′X ∩H and H, and then use induction

since H is isomorphic to Gr
m for r < n.
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