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Introduction

Small recap

Let f(x, y,a) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

Given some ai ∈ Q, we have a cubic curve E : f = 0.

E(Q) is the set of solutions (x, y) ∈ Q2 together with a point at infinity O.

Nonsingular points E(Q)ns form a commutative group in a natural way.

O is the identity in this group: P +E O = P for all P ∈ E(Q).
We let [n] : E → E be multiplication by n in this group.

There are polynomials ψn, ωn ∈ Z[x, y,a]/⟨f(x, y,a)⟩ for n ∈ N with

[n](x, y) =

(
x− ψn−1ψn+1

ψ2
n

,
ωn

ψ3
n

)
(n ≥ 2, (x, y) ∈ E(Q)ns),

ψm+nψm−nψ
2
r = ψm+rψm−rψ

2
n − ψn+rψn−rψ

2
m (r < n < m).

ψ1 = 1, ψ2 = 2y + a1x+ a3, ψ3, ψ4 = some nastier polynomials.
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Introduction

Two definitions

Definition (EDS(A))

A sequence of integers {hn}n∈N is an EDS(A) if it satisfies h0 = 0, h1 = 1, h2
divides h4 and the recurrence relation below: for any integer m ≥ n ≥ r, {hn}n∈N
satisfies

hm+nhm−nh
2
r = hm+rhm−rh

2
n − hn−rhn+rh

2
m.

Definition (EDS(B))

Let E/Q be an elliptic curve over the rationals defined by a Weierstrass equation
with integer coefficients. For every n ∈ N and P ∈ E(Q), we write the
x-coordinate of nP

x(nP ) =
An(E,P )

B2
n(E,P )

with An(E,P ) and Bn(E,P ) two coprime integers and Bn(E,P ) ≥ 0.
Then we call the sequence {Bn(E,P )}n∈N an EDS(B).

In general, EDS(A) ̸= EDS(B).
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Introduction

Complex multiplication

Let E/C be an elliptic curve over the rationals defined by a Weierstrass
equation with integer coefficients, then End(E) is always isomorphic to Z or
Z[ω], an order in an imaginary quadratic field F .

When E/K has complex multiplicaton, it then makes sense for us to consider
[α] : E → E, multiplication by α ∈ Z[ω] in the group E(K)ns.

Are the following sensible things to write down?

1 Define EDS(A) to be a sequence of elements in End(E) = Z[ω] that satisfies
the recurrence relation

hα+βhα−βh
2
γ = hα+βhα−γh

2
β − hβ−γhβ+γh

2
α, α, β, γ ∈ Z[ω].

2 Let E/K be an elliptic curve defined by a Weierstrass equation with
coefficients in OK and has complex multiplication by Z[ω] ⊂ K. For every
α ∈ Z[ω] and P ∈ E(K), we write the x-coordinate of αP

x(αP ) =
Aα(E,P )

B2
α(E,P )

.

We call the sequence of elements {Bα(E,P )}α∈Z[ω] an EDS(B).
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CM EDS(B)

CM EDS(B)

Let E/K be an elliptic curve defined by a Weierstrass equation with coefficients
in OK and having complex multiplication by Z[ω] ⊂ F . For every α ∈ Z[ω] and
P ∈ E(K), we write the x-coordinate of αP

x(αP ) =
Aα(E,P )

B2
α(E,P )

.

We call the sequence of elements {Bα(E,P )}α∈Z[ω] an EDS(B)(?)

An order of an imaginary quadratic field K need not be a unique factorisation
domain. However, we always have unique factorisation of ideals, so
{Bα(E,P )}α∈Z[ω] should be a sequence of ideals instead.

A sequence {hn}n∈N is a divisibility sequence if hm | hn whenever m | n.
Hence, we should also index our CM EDS(B) by ideals of End(E).

But when we write [α]P , we do not mean a ‘ideal–multiple’ of a point
(e.g. x([⟨2, 1 +

√
−5⟩]P ) does not make sense)!!
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CM EDS(B)

CM EDS(B)

Definition (Streng, 2008)

Let E/K be an elliptic curve with complex multiplication (i.e. End(E) is
congruent to an order in an imaginary quadratic field F ). For a point P ∈ E(K),
we define the coprime OF ideals Aα and Bα by

x(αP ) = AαB
−2
α .

The CM elliptic divisibility sequence associated to P is the sequence (Ba)a∈OF
,

indexed by ideals a of OF , given by

Ba =
∑
α∈a

Bα.
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CM EDS(B)

CM EDS(B)

For x(αP ) = AαB
−2
α , the CM elliptic divisibility sequence associated to P is the

sequence (Ba)a∈OF
, indexed by ideals a of OF , given by

Ba =
∑
α∈a

Bα.

Lemma

Let α, β be elements in End(E), if α | β, then Bα | Bβ (i.e. Bβ ⊂ Bα as ideals).

For every discrete valuation ν of K, we have ν(Ba) = minα∈a ν(Bα).

Weak divisibility: if a | b, then Ba | Bb.

Strong divisibility: Ba+b = Ba +Bb.

If a = αOF is a principal ideal, then we have BαOF
= Bα.
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CM EDS(B)

Issues with CM EDS(B)

Choice of generator: In Q, there are only two units (±1), so we can always by
default choose Bn > 0. But this is not always the case for quadratic imaginary
fields (consider Q(i),Q(

√
−3)) and sign does not make sense for complex

numbers.

Example: elliptic curve E/Q(i) : y2 = x3 − 2x with complex multiplication by
Z[i]. EDS(B) generated by the point P = (−1, 1) ∈ E(Q(i)).

x([1 + i]P ) =
(
− i

2 ,−
3i+3
4

)
, so B1+i = (1 + i) = (1− i).

x([2 + i]P ) =
(
− (4+i)2

(1+2i)2 ,
(4+i)(16+9i)

i(1+2i)3

)
, so B2+i = (2− i) = (1 + 2i).

This makes it difficult to relate it to CM EDS(A).
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CM EDS(A)

CM EDS(A)

Define EDS(A) to be a sequence of elements in End(E) = Z[ω] that satisfies the
recurrence relation

hα+βhα−βh
2
γ = hα+βhα−γh

2
β − hβ−γhβ+γh

2
α, α, β, γ ∈ Z[ω](?)

Remember this recurrence relation comes from elliptic curve over Q: There
are polynomials ψn, ωn ∈ Z[x, y,a]/⟨f(x, y,a)⟩ for n ∈ N with

[n](x, y) =

(
x− ψn−1ψn+1

ψ2
n

,
ωn

ψ3
n

)
(n ≥ 2, (x, y) ∈ E(Q)ns),

ψm+nψm−nψ
2
r = ψm+rψm−rψ

2
n − ψn+rψn−rψ

2
m (r < n < m).

When the elliptic curve has complex multiplication, do we still have the idea
of division polynomial and ‘a recurrence relation’?
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CM EDS(A)

CM EDS(A)

Define EDS(A) to be a sequence of elements in End(E) = Z[ω] that satisfies the
recurrence relation

hα+βhα−βh
2
γ = hα+βhα−γh

2
β − hβ−γhβ+γh

2
α, α, β, γ ∈ Z[ω].

Recall an order of a quadratic imaginary field Z[ω] is a rank 2 Z–module:
Z
⊕
ωZ.

For P ∈ E(K)ns, [α] : E → E where α ∈ Z[ω], we interpret [α]P as a sum of
two points of integral multiple:

[α]P = [a+ bω]P = [a]P + [b](ωP ).

1 We want a ‘higher rank’ elliptic divisibility sequence via a recurrence relation.

2 Ideally, this recurrence relation is satisfied by a collection of rational functions
on elliptic curves.
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CM EDS(A)

CM EDS(A) – Elliptic Net

Definition (Elliptic Net; Stange, 2007)

Let A be a free finitely-generated abelian group and R be an integral domain.
An elliptic net is any map W : A→ R with W (0) = 0 and for any p, q, r, s ∈ A,

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0.

We identify the rank of W as the rank of the elliptic net.

This is indeed a generalisation of EDS(A):
take A = Z, p = m, q = n, r = r, s = 0, then W is an EDS(A) by definition
(note that W (−v) = −W (v)).

W (m+n)W (m−n)W (r)2+W (n+r)W (n−r)W (m)2 =W (m+r)W (m− r)W (n)2

Pick A = Z2. For α = α1 + α2ω, β = β1 + β2ω, γ = γ1 + γ2ω ∈ Z[ω], take
p = (β1, β2), q = (α1, α2), r = (γ1, γ2) and s = (0, 0) in the definition, then we
have

hα+βhα−βh
2
γ = hα+γhα−γh

2
β − hβ+γhβ−γh

2
α.
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CM EDS(A)

CM EDS(A) – Elliptic net and elliptic curves

Definition (Net polynomial and elliptic denominator net)

For an arbitrary field K, consider the polynomial ring

Rr = K[xi, yi]1≤i≤r[(xi − xj)
−1]/⟨f(xi, yi)⟩1≤i≤r,

where f(x, y,a) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6, ai ∈ K. Let

P = (P1, ..., Pr) ∈ E(K)r and v = (v1, ..., vr) ∈ Zr. Then there exists rational
functions Ψv(P ), Φv(P ), Ω̄v(P ) ∈ Rr such that

v · P = v1P1 + ...+ vrPr =

(
Φv(P )

Ψ2
v(P )

,
Ω̄v(P )

Ψ3
v(P )

)
. (1)

The polynomial Ψv is defined to be the v-th net polynomial, which is an elliptic
net.

In our case, r = 2,P = (P, ωP ) ∈ E(K)2 and v is the vector notation of our
element in Z[ω].
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CM EDS(A)

Properties of elliptic nets

Question: if we express an element of End(E), α = a+ bω in a vector/coordinate
form (a, b), can we define a sequence of polynomials ψα(P ), indexed by OF , as

ψa+bω(P ) := Ψv(P )?

The net polynomials satisfy the following properties:

a All the terms in the net polynomial are defined by the following initial
conditions:

Ψei = 1; Ψ2ei = 2yi + a1xi + a3 = ψ2(Pi);

Ψei+ej
= 1, i ̸= j;

Ψ2ei+ej
= 2xi + xj −

(
yj−yi
xj−xi

)2

− a1
(

yj−yi
xj−xi

)
+ a2, i ̸= j.

b Recall x(v · P ) = Φv(P )
Ψ2

v(P ) ; for 1 ≤ i ≤ r we have

Φv(P ) = Ψ2
v(P )x(Pi)−Ψv+ei

(P )Ψv−ei
(P ) (2)
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CM EDS(A)

Issues with elliptic net

‘Net polynomial’ Ψv are elements of the polynomial ring
Rr = K[xi, yi]1≤i≤r[(xi − xj)

−1]/⟨f(xi, yi)⟩1≤i≤r, which makes them not
necessarily integral.

Ψ2ei+ej
= 2xi + xj −

(
yj−yi

xj−xi

)2

− a1

(
yj−yi

xj−xi

)
+ a2, i ̸= j.

Example: elliptic curve E/Q(i) : y2 = x3 − 2x with complex multiplication by
Z[i]; elliptic net associated to E and the point P = (−1, 1) and iP = (1, i).

[2]P + [2]iP =
(
− 72

32(1+i)6 ,
(8−7i)(8+7i)

33(1+i)9

)
; Ψ(2,2)(P ) = − 3

1−i .

It does not have as many useful properties as the the ordinary division
polynomials: for ψn ∈ Z[x, y,a]/⟨f(x, y,a)⟩,

ψ2
n(x) only depends on x for every n ∈ Z.

The polynomial ψ2
n has degree n2 − 1 and leading coefficient n2.

ψmn(P ) = ψn(P )m
2

ψm(nP ).
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