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Week 2 - Modular Curves and Elliptic Curves over C
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We will first recall how to understand elliptic curves as complex lattices and the action of mod-
ular group on the upper half plane, then proceed to explore how the theory of elliptic curves
can help us to interpret the quotient SL2(Z) \ H. Finally, we will construct modular curves as
quotients of the extended upper half plane.

(The materials from this document are mainly adapted from Siksek’s notes on ‘Explicit Arith-
metic of Modular Curves’ [2] and the book ’A First Course in Modular Forms’ by Diamond and
Shurman. [1])

1. Two quotients sets

A complex elliptic curve is a quotient of the complex plane by a lattice. Recall the Weierstrass
℘-function (relative to a complex lattice Λ), which is defined by the series

℘(z) = ℘Λ(z) =
1

z2
+

∑
λ∈Λ
λ̸=0

(
1

(z − λ)2
− 1

λ2

)
.

The functions ℘ and ℘′ satisfy Weierstrass’s differential equation

℘′(z)2 = 4℘3 − g2℘(z)− g3,

where g2 and g3 are constants depending on the lattice Λ.

The discriminant of the cubic polynomial on the right is non-zero, so we can use it to identify
an elliptic curve E/C with y2 = 4x3 − g2x− g3. In particular, consider C/Λ as a quotient group
and we know that points on an elliptic curve form a group structure, we have an isomorphism
of abelian groups:

Φ: C/Λ→ EΛ(C)
0→ O

z 7→
(
℘(z),

1

2
℘′(z)

)
Now moving on to examine the upper half plane

H := {x+ iy : x, y ∈ R, y > 0}.

We know that SL2(Z) acts on the upper half (complex) plane by fractional linear (Mobius)
transformations:

SL2(Z)×H→ H;

(γ, τ) 7→ aτ + b

cτ + d
, where γ =

(
a b
c d

)
To study the action of SL2(Z) on H, it suffices to consider its behaviour on the orbits of H
under the action of SL2(Z). Roughly speaking, the fundamental domain of SL2(Z) serves as
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a represnetative region in the upper half plane H. More precisely, it gives you a one-to-one
correspondence between the orbits and points on H (i.e. any two points τ and τ ′ of the upper
half plane are SL2(Z) – equivalent if and only if γ(τ) = τ ′ for some γ ∈ SL2(Z).).

2. Connection between the two quotients

We now want to show that there is a bijection between the two quotient sets C/Λ and SL2(Z)\H.
That is, describing the equivalence classes of points in H under the action of SL2(C) by the
isomorphism classes of complex elliptic curves.

From the previous section, for any given τ ∈ H, there is an elliptic curve Eτ/C such that Eτ (C) ∼=
C/(Z + Zτ). Recall that any two complex elliptic curves C/Λτ and C/Λτ ′ are holomorphically
group-isomorphic if and only if mΛτ = Λτ ′ for some m ∈ C. Therefore, Eτ/C ∼= Eτ ′/C if and
only if τ = γ(τ ′) for some γ ∈ SL2(Z). Therefore, we have a bijection (between upper half plane
quotient and elliptic curves isomorphism classes):

SL2(Z) \H←→ {isomorphism classes of elliptic curves E/C},

SL2(Z) · τ 7→ [C/(Z+ Zτ)].

In the bijection above, we are identifying Eτ with C/(Z+ Zτ), with the square brackets denot-
ing isomorphism classes. This has shown a correspondence between the points in the quotient
SL2(Z) \H and the isomorphism classes of complex elliptic curves.

More generally, we can consider the quotients of the upper half plane by various congruence
subgroups, a certain type of subgroup of SL2(Z). Similar to how we constructed the bijection
previously, they can be described by the sets of equivalence classes of elliptic cures with the
addition of corresponding torsion data.

Definition 2.1 (Congruence subgroup). Let N be a positive integer, define

Γ(N) = {A ∈ SL2(Z) : A ≡ I (modN)},

We say a subgroup Γ ⊆ SL2(Z) is a congruence subgroup if there is some positive integer N such
that

Γ(N) ⊆ Γ ⊆ SL2(Z).

The least such N is called the level of Γ.

Γ(N) is also called the principal congruence subgroup of level N . In particular, there are two
families of congruence subgroups of particular interest:

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (modN)};

Γ1(N) = {
(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (modN), c ≡ 0 (modN)}.

Note that the action of these congruence subgroups on the upper half plane H is nothing more
than restricting the action of SL2(Z) only.
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Proposition 2.2. Let N be a positive integer, E be an elliptic curve over C.

1. Let P be a point of order N on E/C (that is, NQ = 0 but nQ ̸= 0 for 0 < n < N). Then

(a) There is an isomorphism E/C ∼= C/(Z + Zτ) (which depends on the choice of τ ∈ H)
maps the point P to the coset 1

N + (Z+ Zτ) ∈ C/(Z+ Zτ).

(b) There is a bijection

Γ1(N) \H←→ {isomorphism classes of pairs (E/C, P )},

Γ1(N) · τ 7→
[
C/(Z+ Zτ),

1

N

]
,

where 1
N denote the coset C/(Z+ Zτ) + 1

N .

2. Let C be a cyclic subgroup of order N on E/C. Then

(a) There is an isomorphism E/C ∼= C/(Z + Zτ) (which depends on the choice of τ ∈ H)
maps the cyclic group C to

〈
1
N + (Z+ Zτ)

〉
∈ C/(Z+ Zτ).

(b) There is a bijection

Γ0(N) \H←→ {isomorphism classes of pairs (E/C, C)},

Γ0(N) · τ 7→ [C/(Z+ Zτ),
〈

1

N

〉
].

Remark 2.3. In the proposition above, we say two pairs (E1, P1), (E2, P2) (resp. (E1, C1), (E2, C2))
are isomorphic if and only if there is an isomorphism ϕ : E1 → E2 such that ϕ(P1) = P2 (resp.
ϕ(C1) = C2).
Alternatively, if we accept the isomorphism in (a), this can also be written as ‘any two pairs
(Eτ ,

1
N + (Z+ Zτ)), (Eτ ′ , 1

N + (Z+ Zτ ′)) are isomorphic if and only Γ1(N)τ = Γ1(N)τ ′’.

Proof. For full proof of the above proposition, one can refer to Chapter 1.5 of ‘A First Course
in Modular Forms’ by Diamond and Shurman. [1] Here we will outline the proof for 1(a).

The goal here is to find a lattice Λτ such that mΛτ = Λτ ′ for some m ∈ C to be determined,
where we view E/C ∼= C/Λτ ′ .

1. Interpret the point P as an element of C/Λτ ′ and write P = cτ ′+d
N + Λτ ′ .

2. Since the order of P is precisely N , gcd(c, d,N) = 1 and therefore we can use the fact that
the map SL2(Z) 7→ SL2(ZN ) is surjective to claim that there exists γ ∈ SL2(Z) such that
γ · τ ′ = τ .

3. With some algebraic manipulation and let m = cτ ′ + d, we can deduce that mΛτ = Λτ ′ and
therefore yielding

m

(
1

N
+ Λτ

)
= P.

The proof of 1(b) is some algebraic manipulations that mainly follow from (a), while 2 is similar
to 1 and therefore omitted here.
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3. Modular curves

Definition 3.1 (Modular curve). For any congruence subgroup Γ of SL2(Z), acting on the upper
half plane H from the left, the corresponding modular curve Y (Γ) is defined as the quotient space
of orbits under Γ,

Y (Γ) = Γ \H = {Γτ : τ ∈ H}.

The modular curves for SL2(Z) = Γ(1),Γ0(N) and Γ1(N) are denoted

Y (1) = SL2(Z) \H, Y1(N) = Γ(1) \H, Y0(N) = Γ(0) \H.

In such way, we have constructed some Riemann surfaces. Notice that the fundamental domain
of SL2(Z) \ H is unbounded along the positive imaginary axis, therefore none of the above is a
compact set. If they were compact, we could have identified them as the set of complex points on
an algebraic curve. To remedy this deficiency, we compactify Y (Γ) by considering the extended
upper half plane instead, defined by

H∗ : = H ∪ P1(Q) = H ∪Q ∪ {∞}.

The points in H∗ \H = P1(Q) are called cusps.

Given that

lim
im(τ)→∞

aτ + b

cτ + d
=

a

c
,

it should be no surprise that we can extend the group action of SL2(Z) to H∗.

Definition 3.2. Let γ =
(
a b
c d

)
∈ SL2(Z). The group action of SL2(Z) can be extended to H∗

by defining as follows:
SL2(Z)×H∗ → H∗;

γ · τ =


aτ+b
cτ+d , τ ∈ H∗ \ {−d

c ,∞},
a
c , τ =∞,

∞, τ = −d
c

Proposition 3.3. The modular curve SL2(Z) \H∗ has one cusp.

Proof. For τ ∈ Q, write τ = a
c
for coprime integers a, c. Then there exists integers b and d such

that ad− bc = gcd(a, c) = 1. The matrix

γ =

(
a b
c d

)
∈ SL2(Z)

is such that γ ·∞ = τ . Thus, the points in P1(Q) form one orbit only under the action of SL2(Z)
and the cusp point is then SL2(Z) \ P1(Q) = {∞}.
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Proposition 3.4. For any congruence subgroup Γ of SL2(Z), the modular curve Γ \ H∗ has
finitely many cusps.

Proof. We will use, without proof, the fact that for a congruence subgroup Γ, the index [SL2(Z) : Γ]
is finite. From the previous proposition, we have shown that all the cusp points are SL2(Z)–
equivalent to the point {∞}. Therefore, take τ ∈ P1(Q) = Q ∪∞, then there exists γ ∈ SL2(Z)
such that τ = γ · ∞.

For the modular curve X(Γ), consider the set of cusps

Γ \ P1(Q) = {Γ · τ : τ ∈ P1(Q)}

But as discussed above, we have

Γ · τ = Γ · (γ · ∞) = (Γγ) · ∞.

Therefore, #
(
Γ \ P1(Q)

)
= [SL2(Z) : Γ] <∞.

This proposition tells us that to compactify the modular curves, we just need to add finite
number of points to them (namely the cusp points). We denote the compactified modular curves
for SL2(Z) = Γ(1),Γ0(N) and Γ1(N) by

X(1) = SL2(Z) \H∗, X1(N) = Γ(1) \H∗, X0(N) = Γ(0) \H∗.
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