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1 INTRODUCTION

1 Introduction

It is well-known that Euclid has proved the existence of infinitely many prime numbers;

he proved it by contradiction, a very classical yet simple and beautiful argument. Sup-

pose there are only finitely many of them, then the number constructed by adding 1 to

the product of all the primes has to be divisible by a prime not in the finite list. The

contradiction therefore forces an infinitude of prime numbers. Many years later, Dirichlet

extended this statement and gave the following result.

Theorem 1.1 (Dirichlet’s Theorem on primes in progressions, 1837–40). For any coprime

natural numbers q, a, there are infinitely many primes p satisfying p ≡ amod q.

To prove the full result, Dirichlet adopted a lot of analytic methods such as the introduction

of the L-function. The proof is relatively complicated, but the tools developed can be used

to generalise Dirichlet’s Theorem to other algebraic number fields. Without any doubt,

the merit and contribution of these analytic methods to the modern study of analytic

number theory are significant. Yet, it is also known earlier that for some special choices

of a and q, ‘elementary tricks’ can be used instead. For example, using the properties

of the cyclotomic polynomial, it is possible to give a proof for an infinitude of primes

p ≡ 1mod q in a very similar manner to Euclid’s proof. If Dirichlet’s analytic proof for

Theorem 1.1 can be generalised to other number fields, can these ‘elementary tricks’ also

be generalised to number fields? This is the primary motivation behind the investigation

of this dissertation; we shall say that Dirichlet’s Theorem holds for a number field K if for

any coprime elements m,n ∈ OK , there exists infinitely many r ∈ OK such that m + nr

is a prime in OK (or equivalently, m+ nr is the generator a principal prime ideal in OK).

Remark 1.2. The above notion is not the usual way how Dirichlet’s Theorem is gener-

alised to other number fields, more terminology will be required for this. Nevertheless, the

current description is sufficient to clarify the objective of this dissertation.

To proceed, we must first give a precise definition for what we mean by ‘elementary tricks’.

A good starting point would be recalling how we use the cyclotomic polynomial to prove

the special case of Dirichlet’s Theorem.

Proposition 1.3. For any natural number n greater than 1, there are infinitely many

primes congruent to 1 modulo n.

Proof. We follow [1, Theorem 47]. Suppose p1, ..., pk are all the primes congruent to

1 modulo n. Choose l large enough and let a = lnp1...pk. Consider the cyclotomic

polynomial evaluated at a, write M = Φn(a). Since Φn is monic, if l is large enough, then

M will be greater than 1 and hence divisible by some prime p.

We claim p ̸= pi for all 1 ≤ i ≤ k. It is a fact that Φn has constant term 1. By construc-

tion, pi divides all terms of Φn(a) except the constant term. Therefore, pi must not divide
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1 INTRODUCTION

M for any 1 ≤ i ≤ k, implying p ̸= pi. By a similar argument, p cannot divide n and l (if

so, we would require p to divide 1). Hence, we also have gcd(a, p) = 1.

By definition, Φn(a) ≡ 0mod p. Using the fact that Φn|(xn − 1), we then have an ≡
1mod p. Now let ordp(a) = m, then m | n. Assume the opposite that we have m < n. By

the same reason, we must have am ≡ 1mod p. Since by definition∏
d|m

Φd(a) = am − 1 ≡ 0mod p,

we have Φd(a) ≡ 0mod p for some d < n. This shows that xn − 1 has a double root

at a modulo p, i.e. xn − 1 ≡ (x − a)2f(x)mod p for some polynomial f(x) over the

integers. Therefore, the derivative of xn − 1 should also vanish at a modulo p, giving

nan−1 ≡ 0mod p. As argued above, neither n nor a is divisible by p, therefore m = n by

contradiction.

We have shown that ordp(a) = n. Together with Fermat’s Little Theorem, this implies

n|(p− 1), equivalently p ≡ 1modn.

In fact, similar proofs also exist for progressions such as 3mod 4: Suppose p1, ..., pk are all

the primes congruent to 3 modulo 4, denote their product by P . Consider the polynomial

f(x) = 4x− 1 ∈ Z[x], clearly f(P ) ≡ 3mod 4. Since f(P ) is a composite number and the

product of any two primes congruent to 1 modulo 4 is still congruent to 1 modulo 4, f(P )

has to be divisible by one of p1, ..., pk. However, we also have f(P ) ≡ −1mod pi for all

1 ≤ i ≤ k. This is a contradiction.

Observe the proofs above and Euclid’s argument are extremely similar: they all use a

polynomial, unique to their own cases, namely f(x) = 4x− 1 for 3mod 4 and g(x) = x+1

in Euclid’s argument, whose integer values have prime factors in the desired arithmetic

progression. Based on this observation, we shall make the following definition:

Definition 1.4 (Euclidean proof). A Euclidean proof of Dirichlet’s Theorem involves

the construction of a non constant polynomial f(x) ∈ Z[x], which follows Euclid’s proof-

by-contradiction method to prove the infinitude of primes. In particular, the argument

involves primes dividing the polynomial’s values at integers.

It is also worth taking note that the cyclotomic polynomial is an important type of poly-

nomial that is widely used in almost every area in algebra, so one might wonder if it is

just pure coincidence that the cyclotomic polynomial is used to prove a particular case of

Dirichlet’s Theorem. Notice in the proof, we have used the idea of greatest common divisor

(hence division), which only makes sense in a unique factorisation domain. Furthermore,

notice we have never distinguished between irreducibles and primes in Dirichlet’s The-

orem, so it seems like only principal ideal domains can obtain an analogous Euclidean

proof. With all these criteria, the easiest candidate to come up with is then the Gaussian
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integers Z[i], which is also known for sharing many properties with the integers. Together,

they give the objective of this dissertation: generalisation of the cyclotomic polynomial

proof for Dirichlet’s Theorem on arithmetic progressions in the Gaussian integer, which

we formalise as follows:

Guess. There exists a Euclidean proof for the following statement: for any Gaussian

integer z, there are infinitely many Gaussian primes satisfying π ≡ 1 mod z.

Our first goal is to examine how these polynomials are constructed, outlining the key

ingredients behind them. We will then build up on the theories, namely Galois theory and

class field theory, with the objective of applying them to the Gaussian integers. Finally, we

will state how to find an analogous cyclotomic polynomial proof (abbreviated cyclotomic

proof in later sections) for Dirichlet’s Theorem in the Gaussian integers.

2 Theory behind the cyclotomic proof

2.1 Infinitude of prime divisors

Our goal here is to dissect the cyclotomic proof in Proposition 1.3 through understanding

the construction of polynomials in general cases. Recall when we defined a Euclidean

proof, we said it has to involve primes dividing values of a particular polynomial. Yet, in

the proofs presented in Section 1, both of them only show that there should be infinitely

many such primes. Since it is not obvious that all polynomials should have such a property,

we give a proof for it, which is also a type of Euclidean proof without any surprise.

Definition 2.1. Let f ∈ Z[x] be a polynomial over the integers, p be a rational prime.

We say p is a prime divisor of f if there exists an integer t such that p | f(t). We denote

P (f) the set of all prime divisors of the polynomial f .

Theorem 2.2 (I. Schur). If f ∈ Z[x] is non-constant, then f has infinitely many prime

divisors.

Proof. The proof is due to Murty and Thain [11, Theorem 2]. Let f ∈ Z[x] be a non-

constant polynomial and suppose c = f(0) ̸= 0. Otherwise, p | f(p) for any rational prime

p and the theorem is trivially proved. Note that P (f) is non-empty: f(x) = ±1 has only

finitely many solutions so it can only take on the values ±1 finitely many times. This

means f will take at least one non-unit integer value, therefore having at least 1 prime

divisor.

Suppose f only has finitely many prime divisors p1, ..., pk. Let Q = p1...pk, then f(Qcx) =

cg(x) for some g ∈ Z[x] of the form g(x) = 1+a1x+ ...+akx
k with Q | ai for all 1 ≤ i ≤ k.

Since P (g) is non-empty, by construction, for any prime p ∈ P (g), p ∈ P (f), implying

p | Q. However, this cannot be true, otherwise p ∈ P (g) implies p divides 1. Therefore, f

has infinitely many prime divisors by contradiction.

3



2 THEORY BEHIND THE CYCLOTOMIC PROOF

In this proof, we have only assumed that there are no zero divisors and division makes

sense in the integers. Hence, this proof still holds if we replace the integers with any other

integral domain, except we need to replace ±1 with ±u in the proof, where u is a unit of

the domain. This gives us a stronger version of the statements above, in which we have

adapted from [3, page 2].

Definition 2.3 (Prime divisor of a polynomial). Let K be a number field, f ∈ OK [x] be a

polynomial over the ring of integers of K, p be a prime ideal. We say p is a prime divisor

of f if f mod p has a root. We denote P (f) the set of all prime divisors of the polynomial

f .

Theorem 2.4. Let K be a number field, OK the ring of integers of K. If f ∈ OK [x] is

non constant, then f has infinitely many prime divisors.

We are now ready to explore the intuition behind the cyclotomic polynomial in the proof.

2.2 Construction of the polynomial

In this section, the theorems and proofs presented are followed from the article by Murty

and Thain [11, Theorem 4], although they originate from an old paper of I. Schur [8].

Let ζm ∈ C be a primitive m-th root of unity. From Galois Theory, we know Q(ζm)/Q is

a Galois extension with Galois group isomorphic to (Z/mZ)×. Let H be a subgroup of

(Z/mZ)×, and let Q(α) ⊂ Q(ζm) be the fixed field of H, where α is guaranteed to exist

by the Primitive Element Theorem and α = h(ζm) for some h ∈ Z[x].

Lemma 2.5. With the notations above, let n = [(Z/mZ)× : H] be the index of the subgroup

H in (Z/mZ)×, let a1, ..., an be the coset representatives of H in (Z/mZ)× and set αi =

h (ζaim ). Define

f(x) :=

n∏
i=1

(x− αi). (2.1)

Then the following results hold:

1. αi = h (ζaim ) is independent of the choice of coset representatives for all 1 ≤ i ≤ n;

2. αi = h (ζaim ) are all distinct conjugates of α for 1 ≤ i ≤ n;

3. f(x) is an irreducible polynomial in Q[x].

Remark 2.6. The polynomial f constructed above is specific to the subgroup H we choose.

Proof. Let σi ∈ Gal(Q(ζm)/Q) sending ζm to ζim. Suppose the αi are not distinct, so there

exists some distinct coset representatives x, y of H with h (ζxm) = h (ζym). We can rewrite

this as

σx(α) = σx(h (ζm)) = σy(h (ζm)) = σy(α)
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We can further simplify it to σxy−1(α) = α, deducing that σxy−1 fixes Q(ζm) and hence x, y

are in the same coset of H, which is a contradiction. Therefore, αi = h(ζaim ) are distinct

conjugates of α for 1 ≤ i ≤ n.

Irreducibility of f comes from the fact that the Galois group acts transitively on the set of

roots of polynomials over the rationals. Suppose the polynomial f is reducible, so f = gh

for some irreducible polynomials g, h ∈ Q[x], then any automorphism σ ∈ Gal(Q(ζm)/Q)

will permute the roots of g and h among themselves. Therefore, the Galois group does

not act on f transitively, which is a contradiction. Note that for any automorphism

σ ∈ Gal(Q(ζm)/Q), we have σ(f(αi)) = f(σ(αi)) = 0, i.e. the automorphisms act on the

coefficients of f as the identity, so f ∈ Q[x]. By definition, αi ∈ Z[ζm] so it is integral over

Q. Then by irreducibility of f , the polynomial must have integer coefficients.

Theorem 2.7. Let H be a subgroup of (Z/mZ)×, and α the generator of the fixed field of

H in Q(ζm). Then there exists an irreducible polynomial f ∈ Q[x] such that if p ∈ P (f),

then either p divides m or [p] ∈ H, where [p] denotes the equivalence class of p modulo m.

Proof. We continue to adopt the notation used in Lemma 2.5. Define

f(x) :=
n∏

i=1

(x− αi) (2.2)

By Lemma 2.5, f ∈ Q[x] is irreducible. We will show that f satisfies the other conditions

in the theorem. Denote the discriminant of a polynomial g by disc(g).

Let p ∈ P (f) such that p ∤ disc(f), then there exists a ∈ Z such that p divides f . Let q

be any prime ideal of Q(ζm) dividing (p), then q | (p) | f(a) for some rational a. Since q

is a prime ideal in OQ(ζm), there exists i such that q | (a−αi) =⇒ a ≡ αimod q. We also

have gcd(a, p) = 1, so a ≡ apmod p by Fermat’s Little Theorem.

By divisibility, we must have a ≡ apmod q and similarly, h(xp) ≡ h(x)pmod q. We

therefore have a set of congrueunces:

h(ζai) ≡ αi ≡ a ≡ ap ≡ αp
i ≡ h(ζai)p ≡ h(ζaip)mod q (2.3)

which shows that q divides (h(ζaim )p − h(ζaipm )).

Since p ∤ disc(f) and p ∤ m, we must have gcd(pai,m)=1, forcing h(ζaipm ) = h(ζ
aj
m ) for some

j, and in fact i = j. Otherwise, suppose h(ζaipm ) ̸= h(ζaim ), then there exists j such that

q|(αi − αj) by (2.3). Since disc(f) is a rational integer, we also have p | disc(f), which
contradicts with our choice of p.

Therefore, αi = h (ζaim ) = h (ζpaim ) = σp (h (ζ
ai
m )) = σp(αi), implying that σp fixes the field

Q(α) and so p modulo m belongs to H.
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An immediate consequence of the theorem above is the infitude of primes in the arithmetic

progression 1 mod n, providing us an alternative proof of Proposition 1.3.

Corollary 2.8. There exist infinitely many rational prime numbers satisfying p ≡ 1modm.

Proof. Set H = {1}, then the fixed field is the cyclotomic field K = Q(ζm) itself, so

α = ζm in Theorem 2.7. Clearly, f = Φm, the m-th cyclotomic polynomial. Let S be the

set of all prime divisors of m, and S is clearly a finite set. Using previous results, we know

P (Φm) \ S is infinite and it consists of primes p ≡ 1modm only.

This corollary has an important implication: in Proposition 1.3, the cyclotomic polynomial

did not arise coincidently, but as the minimal polynomial of the m-th root of unity, which

is adjoined to the rationals to give the cyclotomic extension. In fact, every finite abelian

extension of the rationals Q lies in a cycltomic field Q(ζm) for some natural number m.

This is known as the Kronecker-Weber Theorem, announced in 1853 by Kronecker [4].

This explains why Φn(x) and x
m − 1 cannot have a common root modulo p for m | n in

the cyclotomic proof, because the cyclotomic field is the splitting field of the polynomial.

Perhaps, a similar statement to the Kronecker-Weber Theorem may be needed to write

down explicitly a similar polynomial for the Gaussian integers (to be discussed in later

sections).

Nonetheless, in order to extend the result of Theorem 2.7 to other number fields, it is

necessary to understand the underlying theory of the constructive Euclidean proof. No-

tice the proof relies heavily on prime powers appearing in the set of congruences, which

corresponds to applying the automorphism σp ∈ Gal(Q(ζm)/Q) modulo a prime. By show-

ing that σp fixes the fixed field of the subgroup H, we deduced that there are infinitely

many primes belonging to H, which is the key trick of the proof. Instead of reducing

the prime p modulo m directly via the usual map ϕ : Z → (Z/mZ), we used the isomor-

phism ω : Gal(Q(ζm/Q)
∼−→ (Z/mZ)× to assign each prime p to an automorphism σp, then

mapped σp to its equivalence class [p] in H ≤ (Z/mZ)×. This suggests a relationship be-

tween rational primes and the elements of the Galois group, pointing out the importance

of understanding the structure of the Galois group in the proof.

Now consider the set of primes, S, that divide the discriminant of the polynomial f . These

primes are excluded to avoid contradiction with the fact that the coset representatives of

H are distinct, while in the cyclotomic proof, the exclusion of such primes is explained in

terms of the roots of cyclotomic polynomial Φn modulo p. These explanations are limited

to their respective proofs, so one might be curious about the theory behind them. It turns

out there is an alternative explanation based on Galois extensions, specifically the splitting

of primes in field extensions.
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P (f) \ S [p] ∈ (Z/mZ)×

σp ∈ Gal(Q(ζm)/Q)

ϕ

ω

Figure 1: Illustration of the constructive Euclidean proof.

To summarise, we have the following questions to be answered:

1. How does the constructive Euclidean proof associate or map each rational prime to

an element of the Galois group? What is the relationship explicitly?

2. If (Z/mZ)× is the Galois group of Q(ζm)/Q, do we have a similar group structure

for the Galois group of some extension L/Q(i)?

3. If we can identify the group structure, what is the corresponding field extension for

the Gaussian rationals Q(i)?

3 Rational primes and the Frobenius element

3.1 Decomposition of primes in Galois extensions

In the previous section, we have suggested that primes are associated to a certian element

in the Galois group. Now we want to make this relationship explicit. In this section, we

take L/K to be a Galois extension of number fields. For a prime ideal p in OK with

pOL = qe11 ...q
eg
g , where e1, ..., eg are positive integers, we write Sp = {q1, ..., qg} to be the

set of prime factors of p and we say qi lies over or divides p.

Now we consider a particular prime q ∈ Sp. It is clear that there is a natural embedding

OK ↪→ OL, in which we can extend it to get OK ↪→ OL → OL/q. Since q lies over p, the

kernel of this composite map is OK ∩ q = p. Then by the First Isomorphism Theorem, we

have the embedding OK/p ↪→ OL/q. By the definition of the Galois group G = Gal(L/K),

the automorphisms act on L while fixing K, so they also act on OL while fixing OK , so

(OL/q) / (OK/p) is indeed a field extension.

Definition 3.1 (Residue class degree). Suppose q is a prime of OL lying over p, then the

residue class degree of q is fq/p = [OL/q : OK/p].

By the above discussion, for any σ ∈ Gal(L/K), σ must fix p and send its prime divisor qi

to another divisor qj , so G permutes the prime divisors of p. In fact, this is a a transitive

action.

Proposition 3.2. Suppose L/K is a Galois extension, p prime of OK , pOL =
∏g

i=1 q
ei
i ,

fi = fqi/p. Then G = Gal(L/K) acts transitively on Sp and e = ei, f = fi for 1 ≤ i ≤ g

and we have [L : K] = efg.

7
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Proof. Assume the opposite, that G = Gal(L/K) does not act on Sp transitively. Say the

image of q1 under G is OrbG(q1) = {q1, ..., qr} with r < g. We set

A =

r∏
i=1

qi, B =

g∏
j=r+1

qj ,

and then we have

pOL =

g∏
i=1

qeii ⊆
g∏

i=1

qi = AB = A ∩B.

The last equality comes from the fact that A and B are coprime and in rings of integers,

all prime ideals are maximal so A and B are comaximal (i.e. A+B = OL). In particular,

B ̸= OL. By construction, A and B are G invariant, or equivalently, σ(A) = A, σ(B) = B

for all σ ∈ G. Since A+B = OL, by the Chinese Remainder Theorem, there exists a ∈ OL

that satisfies the set of congruences

a ≡ 0modA, a ≡ 1modB.

Let a = 1+ b with b ∈ B, and consider the product of the conjugates of a. We can express

it in two ways using the congruences above:

c =
∏
σ∈G

σ(a) ∈ K ∩A ⊆ p ⊆ A ∩B ⊆ B, and

c =
∏
σ∈G

σ(a) =
∏
σ∈G

σ(1 + b) ∈ 1 +B.

Therefore, we deduce that c ∈ 1+B and c ∈ B, meaning 1 ∈ B. This contradicts the fact

that B ̸= OL, so G acts transitively on Sp by contradiction.

By transitivity, we can rewrite the unique factorisation of the ideal p as follows:

pOL = σ(pOL) =

g∏
i=1

σ(qi)
ei .

Therefore, we conclude that e = ei for 1 ≤ i ≤ g. Similarly, we also have for any

σ ∈ G, qi ∈ Sp, OL/qi ∼= OL/σ(qi). By transitivity again, we also conclude that f = fi for

1 ≤ i ≤ g.

For the equality [L : K] = efg, the proof involves finding the dimension of OL/qi as a

vector space over OK/p, which we refer readers to Chapter I.6, page 30–33 of [9].

Now that we know the Galois group acts transitively on Sp, if we fix a prime factor q ∈ Sp,

it is natural to investigate the stabiliser of q ∈ Sp in G.

Definition 3.3 (Decomposition Group). Let L/K be a Galois extension with G = Gal(L/K).

The decomposition group of q ∈ Sp is the subgroup Dq = {σ ∈ G : σ(q) = q} of G (i.e. the

8



3 RATIONAL PRIMES AND THE FROBENIUS ELEMENT

stabiliser of q in G).

Using the Orbit-Stabiliser Theorem, we know that [G : Dq] equals the cardinality of the

orbit of q. Recall ‘transitive action’ means that there is only one orbit, so the cardinality

of the orbit must be the number of primes lying over p, so [G : Dq] = #Sp = g.

Lemma 3.4. The decomposition subgroups Dq corresponding to primes q lying over a

given prime p are all conjugate as subgroups of G.

Proof. This proof is due to [13, page 104]. Let σ, τ ∈ G. We have τ−1στ(q) = q if and

only if στ(q) = τ(q), so τστ−1 ∈ Dτq if and only if τστ−1(τ(q)) = τσ(q) = τ(q) if and

only if σ ∈ Dq.

Similarly, we also have τ−1στ ∈ Dq if and only if τ−1στ(q) = q. So τ−1στ ∈ Dq if and

only if στ(q) = τ(q) if and only if σ ∈ Dτq. Hence, we have proved τDqτ
−1 = Dτq.

As previously mentioned, the quotient field (OL/q) / (OK/p) = Fq/Fp is a field extension.

Furthermore, since the ideal Dq fixes q, any σ ∈ Dq induces a well-defined automorphism

σ on Fq/Fp given by σ(x + q) = σ(x) + q [9, page 123]. The map σ 7→ σ is a reduction

homomorphism from Gal(L/K) to the Galois group of the residue fields, Gal(Fq/Fp),

denoted as πq : Dq → Gal(Fq/Fp). This is the first indication of associating primes with

the Galois group Gal(L/K). It is worth noting that the map πq is surjective, but we will

not provide a proof as it does not provide information about the pre-image, which is not

useful for our purposes. For interested readers, further details can be found in Chapter 7,

page 66 of [14].

3.2 The Frobenius element

Definition 3.5 (Inertia group). Let πq : Dq → Gal(Fq/Fp) be the reduction homomor-

phism. The inertia group of q is defined to be Iq = Ker(πq).

The inertia group consists of those automorphisms of Dq which induce the trivial auto-

morphism on the residue class field Fq/Fp, so we can write

Iq = {σ ∈ G : σ(a) = amod q for all a ∈ OK}.

Since the reduction map is surjective, we have the following exact sequence of groups

1 → Iq → Dq → Gal(Fq/Fp) → 1.

Together with the fact that [L : K] = efg from Proposition 3.2 and [G : Dq] = g, we yield

#Iq =
#Dq

#Gal(Fq/Fp)
=

#Gal(L/K)

gf
= e.

9



3 RATIONAL PRIMES AND THE FROBENIUS ELEMENT

Therefore, the inertia group actually measures how p ramifies in L. In particular, if p

is unramified, we have #Iq = 1 and therefore the isomorphism Dq
∼−→ Gal(Fq/Fp). It

is a standard fact that the Galois group of finite fields is generated by the Frobenius

automorphism σp, defined by x 7→ x#Fp , so in this case the decomposition group must be

generated by the pre-image of the Frobenius automorphism.

Definition 3.6 (Frobenius element). Suppose q | p is unramified with finite residue fields

Fq,Fp. The inverse image of the Frobenius automorphism in Gal(Fq/Fp) under the re-

duction homomorphism πq : Dq
∼−→ Gal(Fq/Fp) is the Frobenius element σq ∈ Dq ⊆ G =

Gal(L/K).

Proposition 3.7. Suppose q | p is unramified with finite residue fields Fq,Fp.

1. The Frobenius element σq is the unique element in Dq such that for all a ∈ L,

σq(a) ≡ a#Fp mod q.

2. For q1, q2 ∈ Sp, the Frobenius elements σq1 , σq2 are conjugates in G.

Proof. (1): It is obvious that σq has the required property, so remains to show uniqueness.

Suppose σ ∈ G also satisfies the property above. For any x ∈ q, we have x ≡ 0mod q, so

σ(x) ≡ 0mod q implies σ(x) ∈ q, therefore σ ∈ Dq.

By the isomorphism map πq, both elements must be mapped to the Frobenius automor-

phism x 7→ x#Fp , so we have σ = σq.

(2): This part is due to [13, page 107]. Apply the definition of Frobenius element to σq1 ,

then for any x ∈ OL, we have σq1σ
−1
q2 (x)− σ−1

q2 (x)#Fp ∈ q. Then apply σq2 on both sides

to yield

σq2σq1σ
−1
q2 (x) ≡ x#Fp modσq2(q)

which is equivalent to σq2σq1σ
−1
q2 = σσq2 (q1)

. The result follows from the uniqueness of the

Frobenius element.

In this context, the conjugacy class of the Frobenius element σq ∈ G is the Frobenius class

of p, denoted by Frobp. However, the previous proposition tells us that each conjugacy

class is only a singleton set (Frobp = {σq : q ∈ Sp}) when L/K is an abelian extension,

so there is no dependence on the choice of q. It follows that for each p in OK , we can

associate a uniquely determined element in Dq ⊆ Gal(L/K) which we denote by Frobp.

Definition 3.8 (Artin symbol). Suppose L/K is an abelian extension. Then given an

unramified prime p in K, and q ∈ L dividing p, we denote the resulting Frobenius element

10
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Frobp by the Artin symbol (
L/K

p

)
:= Frobp .

The purpose of this notation is to emphasise the independence of the Frobenius element

from the choice of q and the extension we are considering, which can also be viewed as a

function that maps unramified primes p ∈ K to Frobp ∈ G.

Remark 3.9. The Artin symbol looks like the Legendre symbol, which is in fact intentional

since the Artin symbol does generalise the (quadratic/cubic) Legendre symbol.

Therefore, we have obtained the answers to our first question. By considering the residue

fields, if all the primes we consider in the rationals Q are unramified in the field extension

Q(ζm), we can associate each rational prime p to a Frobenius element Frobp. So when we

consider the specific case p ≡ 1modm, this is also the same as requiring the Frobenius ele-

ment Frobp to be the identity map in Gal(Q(ζm)/Q). On the other hand, the requirement

for primes to be unramified also explains why there is a finite set of primes excluded in

the polynomial proof and the constructive Euclidean proof of Dirichlet’s Theorem, which

are in both cases the primes that divide m. In addition, the set of congruences (2.3) in

the constructive Euclidean proof is essentially applying Frobp to αi and a.

It is worth emphasising again that the theory developed above is limited to abelian ex-

tensions, otherwise we would need to consider Frobenius conjugacy classes instead, com-

plicating our investigation.

4 Galois groups of abelian extensions of the Gaussian ratio-

nals

Now that we understand how to associate rational primes with the Frobenius element, we

can apply this concept directly to give the constructive Euclidean proof for the Gaussian

integers Z[i]. However, this approach is not helpful in identifying the group structure

Gal(L/Q(i)) for an abelian extension L/Q(i). Recall that the constructive Euclidean

proof in Theorem 2.7 relies heavily on the isomorphism Gal(Q(ζm)/Q) ∼= (Z/mZ)×, so
do we have a generalization of (Z/mZ)× for Gal(L/Q(i))? This motivates us to find an

abelian extension for the Gaussian rationals. It fact, in algebraic number theory, the

branch known as class field theory is about describing abelian extensions of global and

local fields. We will use it to help us find an answer.

4.1 The Artin map

Previously we have introduced the Artin symbol to represent the Frobenius element, and

we view it as a correspondence between unramified primes of the number field K and

Frobenius elements in G = Gal(L/K). This can be extended further and in fact, this is

11
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the first sign of relating Galois groups to generalised ideal class groups.

Definition 4.1 (First definition of the Artin map). Let S be the finite set of primes of

K which ramifies in L, denote the ideal group of K by IK (i.e. the group of non-zero

fractional ideals of K), and let ISK be the subgroup of IK generated by all the primes

outside S. The Artin map is the homomorphism(
L/K

·

)
: ISK → Gal(L/K),

t∏
i=1

pei 7→
t∏

i=1

(
L/K

pi

)ei

.

Remark 4.2. Here we once again emphasise that we are considering the product of prime

ideals that are unramified in L.

This product is well defined since we have assumed Gal(L/K) to be abelian; and if t = 1, it

is simply the Frobenius element Frobp ∈ Gal(L/K). Any ideal in a ring of integers admits

a unique prime ideal factorisation, up to reordering, so this is establishing a relationship

between the Galois group of a field extension and ideals even if the Artin map is not an

isomorphism.

With regards to how we define the generalisation of Dirichlet’s Theorem in the Gaussian

integers, one might expect the role of the integer m in p ≡ 1modm is simply played by

an ideal m in number fields. It turns out that this is not precise enough (we will see why

later) and we need to introduce the notion of a modulus. The following definition is taken

from [6, §8, page 144].

Definition 4.3 (Modulus). Let K be a number field. A modulus (or divisor) is a formal

product m =
∏

p p
np over all primes p, finite or infinite, of K, where the exponents must

satisfy:

1. np ≥ 0, and at most finitely many are non-zero;

2. np = 0 whenever p is a complex infinite prime;

3. np ≤ 1 whenever p is a real infinite prime.

This definition has abused some of the terminologies - here ‘primes’ actually refers to

‘places’, set of equivalence classes of absolute values induced by prime ideals. One can think

of finite primes as p-adic absolute values, while an infinite prime is the usual Archimedean

absolute value |x| we use, but after applying an embedding σ : K → C to an element x (i.e.

|σ(x)|). Therefore, when it says ‘formal product’, one should think of the product as a

way of listing primes with embeddings, since we do not really know what does multiplying

ideals by embeddings mean. In this case, the exponent np is really an indicator for finite,

real and complex embeddings.

12
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With the explanation above, one can also rewrite the definition of aK-modulus as a formal

product m = m∞m0, where m∞ is a formal product of real embeddings of K (since when

it is a complex embedding, the exponent is 0), and m0 (the ‘finite’ part) is a nonzero ideal

in OK . Therefore, for a purely imaginary field K, the definition of a modulus is the same

as an ideal with m = m0. Since the Gaussian rationals Q(i) are purely imaginary, we will

omit the explanations involving places. Readers can refer to Chapter 3.1, page 45–47 of

[2] or Chapter II.1, page 83-90 of [9].

Definition 4.4 (Second definition of the Artin map). For Galois extension L/K, let m

be a K-modulus divisible by all ramified primes in K, ImK the subgroup of IK generated by

all the primes of K coprime with m0. The Artin map is the homomorphism

Φm
L/K =

(
L/K

·

)
: ImK → Gal(L/K);

∏
p∤m

pnp 7→
∏
p∤m

(
L/K

p

)np

.

Theorem 4.5 (Artin, 1927). Let L/K be an abelian Galois extension, and let m be a

modulus that is divisible by all primes that ramify in L. Then the Artin map Φm
L/K : ImK →

Gal(L/K) is surjective.

This is the result of a lot of analytical materials, which are largely irrelevant from the

objective of this dissertation. Readers may refer to Chapter IV, page 162–164 of [9] or

Lecture 21, page 6–10 of [14], where the former uses the Frobenius Density Theorem to

prove the result while the latter does not. Nevertheless, this is an extremely important

property of the Artin map, because with certain restrictions on the choice of modulus m

(we will see later), we can apply the First Isomorphism Theorem to yield the isomorphism

between the Galois group Gal(L/K) and ImK quotient by the kernel. So for an abelian

extension of the Gaussian rationals Q(i), the quotient group of ImK is the generalisation of

(Z/mZ)× that we are looking for.

Remark 4.6. It is also possible to use an algebraic approach to prove the result above,

but it will require far more complicated concepts such as ideles, which is considered to be

the modern approach. Readers might refer to Chapter 4 of [2] or Chapter VI, X of [10].

4.2 Ray class group of the Gaussian rationals

We will start by defining some subgroups of K× associated with a modulus m.

� ImK ⊆ IK , the subgroup of fractional ideals coprime to m0.

� Km ⊆ K×, the subgroup of K× such that for α ∈ K×, (α) ∈ ImK .

� Km,1 ⊆ Km, the subgroup of α ∈ Km that satisfies a ≡ 1modm, or equivalently

1. α ≡ 1modm0 ⇐⇒ ordp(α− 1) ≥ ordp(m0) for all p |m0; and

13
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2. a ≡ 1modm∞ ⇐⇒ σ(α1 ) = σ(α) > 0 for all real embeddings σ | m∞ (i.e. the

image of α under σ is positive).

� Pm
K ⊆ ImK , the subgroup of principal fractional ideals (α) with α ∈ Km,1. This is

sometimes called the ‘rays’ of principal ideals or ray group.

Definition 4.7 (Ray class group). The ray class group of K for the modulus m is the

quotient ClmK := ImK/P
m
K (when m = 1, this is just the usual class group of K).

Remark 4.8. In §1, we have mentioned the way how we view generalisation of Dirichlet’s

Theorem to other number fields differs from the usual convention. In fact, one possible way

is interpreting it is ‘there exist infinitely many prime ideals p ∈ OK in each generalised

ideal classes of Pm
K for a number field K and modulus m’ [2, page 49].

Here we will give two examples to show why we need to use moduli instead of ideals in

the definition of ray class group, although it does not really matter if the number field is

purely imaginary as discussed before. Consider K = Q, with the modulus m = (5). We

have

� Km = {a
b ∈ Q× : gcd(ab , 5) = 1} = {a

b : a, b ̸≡ 0mod 5, a, b ∈ Z},

� Km,1 = {a
bZ : a

b ≡ 1mod 5} = {a
b : a ≡ bmod5}.

Note that in this example, the modulus m = (5) does not include any real embeddings, so

we have dropped the condition a
b > 0. This gives us

� ImK = {(1),
(
1
2

)
, (2),

(
1
3

)
,
(
2
3

)
,
(
3
2

)
, (3),

(
1
4

)
,
(
3
4

)
,
(
4
3

)
, (4),

(
1
6

)
, (6), ...},

� Pm
K = {(1),

(
2
3

)
,
(
3
2

)
,
(
1
4

)
, (4),

(
1
6

)
, (6),

(
2
7

)
,
(
7
2

)
, ...},

� ImK/P
m
K = {

(
1
2

)
, (2),

(
1
3

)
, (3),

(
3
4

)
,
(
4
3

)
, ...}.

Notice we have 2 ≡ −3mod 5 and clearly
(
2
3

)
=
(
−2

3

)
, so

(
2
3

)
is indeed an element of

Pm
K . In fact, we are now dealing with fractional ideals, therefore multiplying the ideals

by ±1 does not change the equivalence class in the ray class group. Specfically, we have

−4 ≡ 1mod 5, so the ray class group mod m is:

ClmK = ImK/P
m
K = {[(1)], [(2)], [(3)], [(4)]}/{[(1)], [(4)]} ∼= (Z/5Z)×/{±1} ∼= (Z/2Z)×

If we consider K = Q,m = (5)m∞ instead, we will need to consider the image of the

principal ideals under the real embeddings. The only real embedding for Q is the identity

element, so we are only allowed to consider the fractional ideals generated by positive

elements. Equivalently, we now consider Km,1 = {a
b : a

b > 0 and a ≡ bmod5}. This gives

� Pm
K = {(1),

(
1
6

)
, (6),

(
2
7

)
,
(
7
2

)
, ...},

� ImK/P
m
K = {(1),

(
1
2

)
, (2),

(
1
3

)
,
(
2
3

)
,
(
3
2

)
, (3),

(
1
4

)
,
(
3
4

)
,
(
4
3

)
, (4), ...}.

14
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In this case, [(−1)] ̸≡ [(1)], so the order of
(
a
b

)
· Pm

K is max{ord5(a), ord5(b)}. Hence, we

deduce that

ClmK = ImK/P
m
K

∼= (Z/5Z)×.

One can see that when we use modulus instead of ideal in the definition of a ray class

group, we allow a varying sign condition and this will produce a larger group as well. Even

though it does not matter for any purely imaginary field as we emphasised, this might give

us some insights in computing the ray class group when we do not have any other tools.

Now consider K = Q(i), with the modulus m = (1 + 2i). Considering it is more difficult

to compute the congruence classes, a geometric approach has been adopted.

0

1 + 2i

3 + i

2 + 4i

4 + 3i

2 + 4i

2 − i−3 − i

−3 + 4i

−2 + i

−1 − 3i

−1 − 2i

−4 + 2i

4 − 2i

−1 + 3i

Figure 2: Z[i]-multiples of 1 + 2i, with representatives of Z[i]/(1 + 2i) in orange.

With reference to Figure 2, the equivalence classes of m are

Z[i]/(m) = {[0] ≡ [1 + 2i], [i], [2i] ≡ [−1], [−1 + 2i] ≡ [−i], [−1 + i] ≡ [1]} = {⟨[i]⟩}.

With this piece of information, we can immediately identify that ImK = Pm
K . Notice for

any fractional ideals of Z/mZ[i],
[(

a
b

)]
≡ [i]k for some integer k. Following the argument

in the case of K = Q, m = (5),
(
i−k · a

b

)
=
(
a
b

)
with

[(
i−k · a

b

)]
≡ [1]. Therefore, the ray

class group is just the trivial group, ClmQ(i) = {id}.

This example may look useless at first sight, but if we compare all these examples, one

might notice the argument above is perhaps suggesting that for K = Q(i) with respect to

a modulus m, the ray class group has the structure ClmK
∼= (Z[i]/(m))× /(Z[i])×. At least,
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the cardinality argument works for the example above. Instead, this observation is true

for any number field K.

Theorem 4.9. Let m be a modulus for a number field K. We have an isomorphism

Km/Km,1 ∼= {±1}#m∞ × (OK/m0)
×.

If K is a purely imaginary number field, then it simplifies to Km/Km,1 ∼= (OK/m0)
×.

Proof. We will prove the latter case only, since the former involves the use of finite and

infinite places which we have omitted for clarity. For full proof refer to Lecture 21, page

5 of [14]. Define the homomorphism

ψ : Km → (OK/m0)
× ; α 7→ [α],

where [α] = [a][b]−1 ∈ (OK/m0)
×. By definition of Km, (a) and (b) are coprime to m0, so

both lie in (OK/m0)
×. Therefore, this is a well-defined operation.

The kernel of the map is clearly Km,1, while surjectivity follows from the definition of

equivalence classes being non-empty. Therefore, the isomorphism follows from the First

Isomorphism Theorem.

Recall from the previous examples of ray class groups, multiplying an ideal by units does

not change the ideal. Since Km/Km,1 is not invariant under unit multiplication, we must

have
(
Km/Km,1

)
/O×

K
∼= ImK/P

m
K . Therefore, we yield

ImQ(i)/P
m
Q(i) = ClmQ(i)

∼= (Z[i]/(m))× /(Z[i])×.

Recall the discussion in Section 2.2, one of the reasons why the constructive Euclidean

proof by Schur in Theorem 2.7 gives us the 1mod p condition is because the group

Gal(Q(ζm/Q) is isomorphic to the multiplicative group of integers modulo m. Hence,

by showing the automorphism σ ∈ Gal(Q(ζm/Q) fixes the fixed field H, this allows us to

directly to reduce a prime p over a modulus we are interested in. Sadly, we now know

that this is generally not true for the Gaussian rationals; it is not so clear what it means

for a Gaussian prime π to satisfy π ≡ 1 ∈ (Z[i]/mZ[i])×/{±1,±i}. Fortunately, we can

perform the same trick if we choose our modulus m carefully. We first give a definition to

make the following process clearer to the reader:

Definition 4.10. A Gaussian integer β is said to be odd if it is not divisible by (1 + i),

and even otherwise.

Proposition 4.11. For any odd Gaussian integer β, β ≡ iεmod2(i + 1) for some ε ∈

16
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{0, 1, 2, 3}. Furthermore, there is an isomorphism

(Z[i]/(2 + 2i)Z[i])× ∼= (Z[i])× = {±1,±i}.

Proof. Note that if β is odd, then it is necessarily a unit of Z[i]/(2+2i)Z[i], so we are left

with proving the isomorphism. Note that a+ ib is not coprime with 2(1+i) if and only if

a+ ib is divisible by (1± i), which happens when

a+ ib

1 + i
=
a+ b

2
+
b− a

2
i and

a+ ib

1− i
=
a+ b

2
+
a+ b

2
i

are Gaussian integers and these will both require a ≡ bmod2. Therefore, we have∣∣∣∣∣
(

Z[i]
(2 + 2i)Z[i]

)×
∣∣∣∣∣ = 1

2
Nm(2 + 2i) = 4.

The units of Gaussian integers are {±1,±i}, which are clearly distinct equivalent classes

in Z[i]/(2 + 2i)Z[i]. This yields the isomorphism.

0

4i

4−4

4 + 4i−4 + 4i

2 + 2i

2 − 2i

−2 + 2i

−2 − 2i

Figure 3: Z[i]-multiples of 2 + 2i, with odd representatives of Z[i]/(2 + 2i) in green.

This proposition is extremely useful: consider m = 2(i+ 1)β, where β is an odd Gaussian

integer. By the Chinese Remainder Theorem, we have

(Z[i]/(m))×/(Z[i])× ∼= (Z[i]/(2 + 2i)Z[i])×/(Z[i])× × (Z[i]/βZ[i])× ∼= (Z[i]/βZ[i])×.
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We have now made significant progress towards obtaining the generalization of (Z/mZ)×

in the Gaussian integers. To complete this generalisation, we must establish that the kernel

of the Artin map Φm
L/K is the ray class group with respect to the modulus m = (2 + 2i)β,

where β is an odd Gaussian integer. However, it should be noted that when we defined

the Artin map in Definition 4.4, we assumed that the field extension L/K was given and

that we could find a modulus m containing all primes ramifying in L. Unfortunately,

this presents a challenge in our current situation, as we cannot prove that the modulus

m = (2 + 2i)β contains all the primes that ramify, nor can we compute the kernel.

Despite these obstacles, we can rely on class field theory to overcome this challenge. It

assures us that our concerns about the choice of modulus are unnecessary.

4.3 Class groups and class fields

The Galois correspondence provides a significant result in the bijection between groups

and field extensions, with the conventional approach being to understand the Galois group

as groups are generally easier to comprehend. In the same spirit of Galois theory, our

discussion begins with an examination of certain subgroups of the fractional ideals ImK .

Definition 4.12 (Congruence subgroup). A subgroup H of ImK is called a congruence

subgroup with modulus m if there is a modulus m for K such that Pm
K ⊆ H ⊆ ImK . We say

H is defined mod m in this context, denoted Hm.

One might observe that for two moduli m, n satisfying n | m, we have ImK ⊆ InK by definition

(if n | m, then there are more fractional ideals coprime with n than with m), and similarly

for Pm
K ⊆ P n

K . Therefore, it might happen that Hm = ImK ∩Hn for a congruence subgroup

Hn defined mod n; in this case we say Hm is the restriction of Hn to ImK . This restriction

provides us an equivalence relation on the set of congruence subgroups of IK .

Definition 4.13. Let K be a number field. Two congruence subrgoups H1,H2 have a

common restriction, written H1 ∼ H2, if there is a modulus m for K such that

H1 ∩ ImK = H2 ∩ ImK .

This is indeed an equivalence relation: reflexivity and symmetry are clear. Suppose H1 ∼
H2 and H2 ∼ H3, then there exist moduli m and n such that

H1 ∩ ImK = H2 ∩ ImK and H2 ∩ InK = H3 ∩ InK

Let m′ be a modulus divisible by both moduli m, n (so we can pick m′ to be the least

common multiple of m and n), then clearly

H1 ∩ Im
′

K = H2 ∩ Im
′

K and H2 ∩ Im
′

K = H3 ∩ Im
′

K

18
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Hence we have transitivity, H1 ∼ H3, proving that ∼ is an equivalence relation [9, page

200]. We have shown that the least common multiple of two moduli is in the same

equivalence class. Going the other way, the greatest common divisor of two moduli also

has the same property, surprisingly.

Lemma 4.14. Let H1,H2 be congruence subgroups defined modulo m1 and m2 respectively,

which have a common restriction H3 = Hi∩Imi
K for i = 1, 2. Let m be the greatest common

divisor of m1 and m2. Then there is a congruence subgroup Hm defined mod m such that

Hm ∩ Imi
K = Hi for i = 1, 2.

Proof. Refer to Chapter V.6, page 200 of [9].

Combining these facts, we can now see that there is a unique modulus that represents

each equivalence class. We formalise the ideas in the definition below.

Definition 4.15. An equivalence class of congruence subgroups is called an ideal group.

Further suppose an ideal group H contains congruence subgroups defined mod m1, ...,mk,

then there is a unique modulus f satisfying Hf ∈ H and f | mi for all i = 1, ..., k. This

modulus f is called the conductor of H.

Earlier in §4.1, we have said that the Galois group of an abelian extension L/K is isomor-

phic to ImK/Ker
(
Φm
L/K

)
under certain restrictions on the choice of modulus m. The main

concern is if the kernel of the Artin map is not a congruence subgroup, then the quotient

group does not make sense. By combining the idea of ideal group and conductor, we now

would like to make the restrictions explicit by presenting one of the most important results

in class field theory.

Theorem 4.16 (Artin Reciprocity Theorem - Artin, 1927). Let L/K be a given abelian

extension. Then the conductor f of L/K, divisible by exactly the primes of K ramifying in

L, exists and for any modulus m divisible by all finite and infinite primes of K that ramify

in L, we have

Pm
K ⊆ Ker(Φm

L/K) ⊆ ImK if and only if f | m

Therefore, if f | m, the Artin map Φm
L/K : ImK → Gal(L/K) is surjective with Ker(Φm

L/K)

satisfying ImK/Ker(Φm
L/K) ∼= Gal(L/K).

Proof. Refer to Chapter V.5, page 190–198 of [9], although note that we have rephrased

the statement according to [4, Theorem 6.3] to give a clearer version of the theorem.

Again, this is not the condition we have. However, class field theory actually says that

the converse to the Artin Reciprocity Theorem holds. Surprisingly, we do not even have

to worry if the modulus m is divisible by the conductor or not. This result is known as

the Existence Theorem [4, Theorem 5.6].
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ImK Gal(L/K)

ImK/Ker(Φm
L/K)

(
L/K

·

)

∼=

Figure 4: Illustration of the Artin Reciprocity theorem.

Theorem 4.17 (Existence Theorem - Takagi, 1920). Let m be a modulus of K and H be

a congruence subgroup for m given. Then there is a unique abelian extension L of K, all

of whose ramified primes, finite or infinite, divide m, such that if Φm
L/K : Im → Gal(L/K)

is the Artin map of K ⊂ L, then H = Ker(Φm).

Proof. Refer to Chapter V.9, 208–214 of [9].

The Existence Theorem has quite a few remarkable consequences: the Existence theorem

asserts that for any ideal class group, a corresponding abelian field extension of K must

exist. We call such abelian field extension a class field. In particular, there are two types

of class fields that are in our interest in this dissertation.

Definition 4.18. Consider an abelian extension L/K.

1. If all primes of K, except the factors of the modulus m, are unramified in L for which

Ker
(
Φm
L/K

)
= Pm

K , we call L the ray class field for the modulus m, denoted by K(m).

2. If L is the maximal unramified abelian extension of K (i.e. the primes of K are all

unramified in L, or equivalently the conductor associated is f = (1)), we call L the

Hilbert class field of K, denoted by H/K.

Therefore, for any given modulus m, we can find a corresponding ideal class and the ray

class fieldK(m) that contains some other smaller class fields. In other words, the Existence

Theorem is a generalisation of the Kronecker-Weber Theorem to a number field K. While

for the Hilbert class field, we will use it in the next section.

Historically, Takagi first discovered that for each ideal group H, there is a corresponding

class field L over K. However, he did not explicitly construct the isomorphism ImK/H
∼=

Gal(L/K), as the concept of the Artin map had not yet been developed. The Artin

Reciprocity Theorem, proved by Artin in 1927, provides a converse to Takagi’s Existence

Theorem, allowing for a more precise statement of the Existence Theorem to be used

today and in this dissertation. The reason to introduce these two theorems in a reversed

chronological order is because we would like to emphasise the fact that the kernel of the

Artin map might not be a congruence group.
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The deep connection between the Existence Theorem and the Artin Reciprocity Theorem

provide complimentary perspectives on the structure of abelian extensions of number fields,

which is why they are the most fundamental results in class field theory. Together, they

give the main theorem in class field theory.

Theorem 4.19 (The classification theorem). Let K be any alegbraic number field, the

correspondence LH → H is a one-to-one, inclusion reversing, correspondence between

finite dimensional, abelian extensions and ideal groups of K.

Proof. Refer to Chapter V.9, page 215 of [9].

ImK

H

Pm
K

K

LH

K(m)

Figure 5: Correspondence between congruence subgroups and class fields LH.

4.4 Constructive Euclidean proof for the Gaussian rationals

Using the theory we have developed, we can now assure that with respect to the modulus

m = 2(1 + i)β, where β is an odd Gaussian integer, we can surely find a corresponding

abelian Galois extension L/Q(i) with the Galois group being isomorphic to the multiplica-

tive group of residue classes modulo β, (Z[i]/βZ[i])×. Using Theorem 4.19, we can choose

L to be the ray class field of Q(i) for the modulus m = 2(1+ i)β, β odd, which must exist

by Existence Theorem. By construction, we have Ker(Φm
L/Q(i)) = Pm

Q(i), which is clearly a

congruence subgroup. It then follows from the Artin Reciprocity Theorem that we have

the isomorphism χ : ImQ(i)/P
m
Q(i)

∼−→ Gal(L/Q(i)), induced by the Artin map Φm
L/Q(i).

We do not know what the ray class field L actually looks like, so we are unable to define

the isomorphism explicitly (this will require the material from the next section). However,

Theorem 4.9 and Proposition 4.11 tell us that with respect to the same modulus m, we

have the isomorphism

ρ : ImQ(i)/P
m
Q(i)

∼−→ (Z[i]/βZ[i])×,
a

b
Z[i] 7→ [a][b]−1.

Therefore, the two isomorphisms above allow us to identify Gal(L/Q(i)) with (Z[i]/βZ[i])×

by ρ ◦ χ−1 : Gal(L/Q(i))
∼−→ (Z[i]/βZ[i])×. In such a way, we can describe the Artin map

for K = Q(i) as follows:

Φm
L/Q(i) : I

m
Q(i) → (Z[i]/βZ[i])×, Φm

L/Q(i)

(a
b
Z[i]
)
= [a][b]−1.
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ImQ(i) ImQ(i)/P
m
Q(i) (Z[i]/βZ[i])×

Gal(L/Q(i))

Φm
L/Q(i)

ρ

χ
ρ◦χ−1

Figure 6: Illustration of identifying Gal(L/Q(i)) with (Z[i]/βZ[i])×.

Gathering all the ingredients, we can now mimic the constructive Euclidean proof for

Theorem 2.7 and write one for the Gaussian integers.

With respect to the modulus m = 2(1+ i)β where β is an odd Gaussian integer, the Artin

map tells us that Gal(L/Q(i)) is isomorphic to (Z[i]/βZ[i])×. By the Primitive Element

Theorem, there exists an algebraic integer η such that L = Q(i)(η) is the ray class field of

Q(i).

Theorem 4.20. For any odd Gaussian integer β, let H be a subgroup of (Z[i]/βZ[i])×,
Q(i, θ) be the fixed field of H in Q(i)(η). Then there is an irreducible polynomial f in

Q(i)[x] such that if p is a prime divisor of f, then either p is a factor of β or p modulo β

belongs to H.

Proof. Let a1, ..., an be the coset representatives of H in (Z[i]/βZ[i])× (so n = [(Z/βZ)× :

H]) and set θi = h (ηai), where ηai is the image of η under the automorphism σai ∈
Gal(L/Q(i)). By the exact same argument in Lemma 2.5, θi = h (ηai) are the distinct

conjugates of θ. Define

f(x) :=
n∏

j=1

(x− θj).

Similar to the argument in Lemma 2.5, since the Galois group acts on the roots of f

transitively and its coefficients as the identity, the polynomial f is irreducible over Z[i] as
we want. Let p ∈ P (f), which we know is non-empty by Theorem 2.4, such that p ∤ disc(f),
then by Theorem 2.4, there exists a ∈ OQ(i) such that p divides f(a).

Now let q be any prime ideal dividing p, then q | p | f(a) for some Gaussian integer a.

Since q is a prime ideal in OQ(i), there exists j such that q | (a− θj) =⇒ a ≡ θj mod q.

From Proposition 3.7, the definition of the unique Frobenius element gives us Frobp(θj) ≡
θ
#Fp

j mod q. By transitivity of the Galois group, Frobp must map θj to another coset

representative; from the description of the Artin map, we also have Frobp(θj) = θj′ for

some 1 ≤ j ≤ n. Together, we have

θj′ ≡ θ
#Fp

j mod q

With respect to the finite field Fp, we apply the Frobenius automorphism to a, yielding

a ≡ a#Fp mod p =⇒ a ≡ a#Fp mod q. Therefore, we have a set of congrueunces as
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previously:

θj ≡ a ≡ a#Fp ≡ θ
#Fp

j ≡ θj′ mod q (4.1)

As argued in Theorem 2.7, the coset representatives θj and θj′ must be the same. Equiv-

alently, θj = Frobp(θj), so Frobp fixes the fixed field Q(i, θ) and we deduce that p modulo

m belongs to H.

Corollary 4.21. There exist infinitely many Gaussian primes satisfying p ≡ 1modβ.

Proof. Set H = {1}, then the fixed field is the ray class field L = Q(i, η) itself, so θ = η in

Theorem 4.20 and we take f to be the minimal polynomial of η over the Gaussian rationals

Q(i). The odd Gaussian integer β has a finite set of prime divisiors, so the set of primes

P (f) excluding all factors of m is infinite and it consists of primes p ≡ 1modβ only.

Thus far, it may have become apparent to readers that the constructive Euclidean proof

relied solely on the connection between primes and Frobenius elements. This suggests that

the constructive Euclidean proof can be extended to number fields with abelian Galois

extensions more generally, by focusing on Frobenius elements instead of primes. The

relevant statements will be presented in the following sections, and readers are encouraged

to consult the article by Murty and Thain [11, page 8–10] for a more detailed treatment

of the topic.

Theorem 4.22. Let L, K be algebraic number fields, where L/K is abelian with Galois

group Gal(L/K). Suppose L = K(α) and let H be a subgroup of Gal(L/K), then there

exists an irreducible polynomial f ∈ OK [x] such that all the prime divisors p of f, with

finitely many exceptions, have Frobq ∈ H for all primes q lying over p.

Corollary 4.23. If f is the minimal polynomial of α, then the prime divisors of f either

divide the discriminant or have Frobq = id.

Therefore, we can conclude that for the Gaussian integers, a polynomial proof for the

arithmetic progression 1modn exists if n is a Gaussian integer coprime with 1+i, showing

that our guess in the beginning to be partially correct. This is surprising because simply

judging from the Eucldiean proofs in integers, they do not hint any connection between

the infinitude of primes and prime ramification.

5 The lemniscatic extension

5.1 Abelian extension of imaginary quadratic fields

Now we would like to write down explicitly the polynomial suggested by the constructive

Euclidean proof in Corollary 4.21, which will require us to compute an explicit field exten-

sion of the Gaussian rationals. Recall that the Kronecker-Weber Theorem says that every

finite abelian extension of the rationals lies in a cyclotomic field Q(ζm) for some natural
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number m. In other words, adjoining the m-th root of unity, which are the m-division

points of the unit circle, to the rationals generates abelian extensions of the rationals. It

turns out that something similar happens for imaginary quadratic fields:

Definition 5.1 (Group of c-torsion points). Let K be a number field, c be an ideal in

OK . For an elliptic curve E with complex multiplication by OK , we define the group of

c-torsion points of E to be

E[c] = {P ∈ E : [α]P = 0 for all α ∈ c}.

Theorem 5.2. Let K be a quadratic imaginary field, E be an elliptic curve with complex

multiplication by OK and h : E → P1 be a Weber function for the curve E defined over H,

the Hilbert class field of K. Let c be an integral ideal of OK , the the field K (j(E), h(E[c]))

is the ray class field of K modulo c.

We have not defined what a Weber function is, but to put it in simple terms, it is a

function that gives the x-coordinates of the torsion points of E/H. One way to define it

is as follows: Take the Weierstrass equation for E/H of the form y2 = x3 + Ax+B with

A,B ∈ H, then the following is a Weber function for E/H:

h(P ) = h(x, y) =


x, if AB ̸= 0,

x2, if B = 0,

x3, if A = 0.

Examining the cyclotomic extension again, one can consider the map C∗ → C∗, defined by

z 7→ zm, then the kernel is precisely the group of m-th roots of unity. In other words, they

are the group of ‘m-torsion points’ of C∗. Therefore, the theorem above is an analogous

result of the Kronecker-Weber Theorem and did not come out of nowhere. One can refer

to Chapter II, §5 of [12] for more details and the proof of Theorem 5.2.

In our case, the set of Gaussian rationals Q(i) is an imaginary quadratic field, in fact it is

also its own Hilbert class field since Q(i) has class number 1. Therefore, this theorem tells

us that we should look for an elliptic curve defined over Q(i). Surprisingly, the associated

elliptic curve is induced by considering the division points of an algebraic curve called the

lemniscate (of Bernoulli), similar to how we considered the division points of the unit circle.

This was first investigated by the mathematician Niels Henrik Abel (1802–29), where he

showed the n-division points of the lemniscate can be constructed using straightedge and

compass. Following the work of David A. Cox [5, Chapter 15], we will try to find the field

extension for the Gaussian rationals, and hence find the desired polynomial.
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5 THE LEMNISCATIC EXTENSION

5.2 The lemniscate and lemniscatic function

Definition 5.3 (Lemniscate). The lemniscate, or the lemniscate of Bernoulli, is the plane

curve defined by the equation (x2 + y2)2 = x2 − y2, or the polar equation r2 = cos(2θ).

-1 1

s
r

Figure 7: The lemniscate of Bernoulli, defined by r2 = cos 2θ.

Unlike circles, the division points of the lemniscate are defined in terms of arc length, so

we need to find a formula for the arc length of the lemniscate. Since the lemniscate is

symmetric in the x-axis and y-axis, we can consider the first quadrant only. Using the

polar equation, we have θ = 1
2 cos

−1(r2). Then by the arc length formula (with respect to

polar coordinates), we have

arc length = s =

∫ r

0

1√
1− t4

dt, (5.1)

where s is the arc length along the lemniscate from the origin to the point in the first

quadrant. This integral is improper when r = 1, but since it converges,
∫ 1
0

1√
1−t4

dt is the

arc length of the lemniscate in the first quadrant.

Definition 5.4 (Lemniscate constant). The lemniscate constant, ω, is the ratio of the

perimeter of the lemniscate to its diameter, defined to be

ω := 2

∫ 1

0

1√
1− t4

.

Now it follows that the arc length of the lemniscate is 2ω and the distance between

consecutive n-division points is 2ω
n . By definition, s is an increasing function in r defined

on a closed interval, so the inverse function exists, written as

r = φ(s), 0 ≤ s ≤ ω

2
⇐⇒ s =

∫ r

0

1√
1− tt

dt.
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This function is now only defined on the first quadrant, but it is not hard to extend the

notion of arc length parameterisation. We follow the notion of [5, page 465–466].

Definition 5.5. The arc length paramterisation of the lemniscate is defined by sending a

real number s to a point P on the lemniscate such that

� If s = 0, then P is the origin.

� If s > 0, then move from the origin into the first quadrant portion of the lemniscate

and continue along the curve until we reach the point P whose cumulative arc length

from the origin is s.

� If s < 0, then move from the origin into the third quadrant portion and continue

until we reach the point P whose cumulative arc length from the origin is −s.

We call s the signed arc length variable of the lemniscate.

The polar distance paramterisation of the lemniscate is defined by sending r ∈ [−1, 1] to a

point P on the lemniscate such that

� If 0 ≤ r ≤ 1, then P is on the right half of the lemniscate;

� If −1 ≤ r ≤ 0, then P is on the left half of the lemniscate.

We call r the signed polar distance of the corresponding point on the lemniscate.

In such way, we can now see that the signed arc length s satisfies (5.1) for −ω
2 ≤ s ≤ ω

2 and

−1 ≤ r ≤ 1. We call the resulting function φ(s) the lemniscatic function. It is obvious that

when |s| is large, it is just looping around the lemniscate. Similar to measuring angles on

the unit circle, we also have φ(s) = φ(s+2ω). Therefore, not only now we have extended

φ to all of R, but we have also shown that ψ(s) is a function of period 2ω. In particular,

one can also deduce the identities

φ(−s) = −φ(s), φ(ω − s) = φ(s), (5.2)

where the first follows from the symmetry in y-axis, and the second follows from the

symmetry in the x-axis, according to how we define the arc length above. Other identities

are listed below.

Proposition 5.6. For x, y ∈ R, the lemniscatic function satisfies

� φ′(x) =
√

1− φ4(x),

� φ(x± y) = φ(x)φ′(y)±φ(y)φ′(y)
1+φ2(x)φ2(y)

(this is called the addition law).

Proof. Refer to Chapter 15.2, page 467 of [5].
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Theorem 5.7 (Multiplication by integers). Given an integer n > 0, there are relatively

prime polynomals Pn(x), Qn(x) ∈ Z[x] such that if n is odd, then

φ(nx) = φ(x)
Pn(φ

4(x))

Qn(φ4(x))
,

and if n is even, then

φ(nx) = φ(x)
Pnφ

4(x))

Qn(φ4(x))
φ′(x).

Furthermore, Qn(0) = 1.

Proof. Refer to Chapter 15.2, page 470–471 of [5].

Recall that the primary motivation for defining the lemniscatic function is to study the n-

division points of the lemniscate, and the theorem above is the key to it. By construction,

the polar distances of the n-division points are φ
(
m2ω

n

)
for m = 0, 1, ..., n− 1. When n is

odd,

0 = φ(m · 2ω) = φ

(
n ·m2ω

n

)
= φ(m

2ω

n
)
Pn(φ

4(m2ω
n ))

Qn(φ4(m2ω
n ))

where we have used the periodicity of the lemniscatic function in the first equality. There-

fore, the polar distance φ
(
m2ω

n

)
is a root of the polynomial xPn(x

4) ∈ Z[x] when n is

odd.

Corollary 5.8. Let n be an odd integer and define xPn(x
4) ∈ Z[x] to be the n-division

polynomial. Then the polar distances of the n-divison points of the lemniscate are roots of

the n-division polynomial.

5.3 The complex lemniscatic function

To describe the roots of the n-division polynomial in a nice way, Abel wanted to represent

all roots of the polynomial using the lemiscatic function φ. However, most of the roots are

complex numbers and a ‘complex polar distance’ does not make sense at all. Therefore,

one approach is to extend φ to a function defined on the complex plane C. This can be

achieved by using change of variable t = iu in (5.1), which shows that∫ ir

0

1√
1− t4

dt = i

∫ r

0

1√
1− u4

du = iy, where r = φ(y)

Therefore, for a real number y, we can define φ(iy) to be φ(iy) = ir = iφ(y). Using the

addition law and the fact that φ′(iy) = φ′(y), we can define φ over C.

Definition 5.9. For z = x+ iy ∈ C, the complex lemniscatic function is defined to be

φ(z) = φ(x+ iy) =
φ(x)φ′(y) + iφ(y)φ′(x)

1− φ2(x)φ2(y)
.
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Proposition 5.10. The function φ(z) satisfies the following properties:

1. For z ∈ C and m,n ∈ Z, we have

φ(z + (m+ in)ω) = (−1)m+nφ(z).

2. The addition law

φ(z + w) =
φ(z)φ′(w) + φ(w)φ′(z)

1− φ2(z)φ2(w)
.

holds for all z, w ∈ C such that both sides are defined.

3. φ(z) is analytic for all z ̸= (m+ in)ω2 , where m,n are odd integers. In particular:

� For m,n ∈ Z, φ(z) has simple zeros at z = (m+ in)ω.

� For m,n odd integers, φ(z) has simple poles at z = (m+ in)ω2 .

4. Fix a complex number w0. Then the equation φ(z) = w0 has a solution z0 ∈ C.
Furthermore, if z0 is one solution, then all solutions are given by

z = (−1)m+nz0 + (m+ in)ω,m, n ∈ Z.

Proof. Refer to Chapter 15.3, page 477–481 of [5].

This is a series of remarkable properties, particularly the first one since it tells us that

φ(z) is doubly periodic: φ(z) = φ(z + (1 + i)ω) = φ(z + (1 − i)ω), in which the periods

(1 + i)ω, (1− i)ω are clearly linearly independent over R.

0
2ω

(1 + i)ω

2ωi

−(1 − i)ω

−2ω

−(1 + i)ω

−2ωi

(1 − i)ω

Figure 8: Period lattice of φ(z).
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Remark 5.11. One should notice that the identity (5.2) follows from φ(iz) = iφ(z) by

taking (m,n) = (1, 0) in (1) in the proposition above. Therefore, the complex lemniscate

function agrees with itself over the reals.

While (3) of Proposition 5.10 tells us that φ(z) is a meromorphic function on C. All

together, φ(z) is an elliptic function on C for the lattice Λ = Z(1 + i)ω + Z(1 − i)ω,

producing the elliptic curve E = C/Λ.

Proposition 5.12. The Weierstrass equation of E is y2 = 4x3 + x and E has complex

multiplication by Z[i].

Proof. Refer to page 47 of [7].

In particular, the second property allows us to generalise the notion of multiplication by

integers in Theorem 5.7 to Gaussian integers for the φ(z).

Theorem 5.13 (Multiplication by Gaussian integers). Let β be an odd Gaussian integer,

d = 1
4(Nm(β) − 1), where Nm(β) is the norm of β. Then there exists relatively prime

polynomals Pn(x), Qn(x) in the polynomial ring Z[i][x] and ε ∈ {0, 1, 2, 3} such that:

1. For all z ∈ C, we have

φ(βz) = iεφ(z)
Pβ(φ

4(z))

Qβ(φ4(z))
.

2. Pβ(x) and Qβ(x) have degree d.

3. The roots of the β-division polynomial xPβ(x
4) are the complex numbers φ(αω

β )

for odd Gaussian integers α.

4. Pβ(x) is monic, Qβ(0) = 1 and Qβ(x) = xdPβ

(
1
x

)
.

5. Suppose β = π is an odd Gaussian prime, then

Pπ(x) = xd + x1x
d−1 + ...+ ad,

such that each aj is divisible by π and ad = i−επ. Furthermore, Pπ(x
4) is irreducible.

Proof. Refer to Chapter 15.4, page 486–495 of [5].

Readers might find other sources saying the roots of the β-division polynomial xPβ(x
4)

are of the form φ
(
α2ω

β

)
for odd α, particularly in [7]. This is just another way of writing

(3) in Theorem 5.13: using the identities in (5.2), we have

φ

(
2ω

β

)
= φ

(
ω − 2ω

β

)
= φ

(
(β − 2)

ω

β

)
.
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Since β is an odd Gaussian integer, β−2 is odd as well and we are back to (3) in Theorem

5.13. In particular, one may also replace 2 with any other even Gaussian integer in the

argument above. Alternatively, one may also argue that since φ(2ω) = 0, φ
(
2ω
β

)
must be

a root of the β-division polynomial (simply substitute z = 2ω
β in the first result of Theorem

5.13). In order to align with Abel’s original motive, we will write the roots of xPβ(x) as

φ
(
α2ω

β

)
for odd α from now onwards.

5.4 Computation of the field extension

With all the theory of the lemniscate (function), we can finally show that the field Kβ =

Q
(
i, φ

(
2ω
β

))
is the ray class field of the modulus m = 2(1 + i)β we have chosen in §4.

Theorem 5.14. Let β ∈ Z[i] be odd and consider Kβ = Q
(
i, φ

(
2ω
β

))
. Then Kβ/Q(i) is

an abelian Galois extension.

Proof. We will follow [5, page 499]. In Theorem 5.13, we were told that the roots of

xPβ(x
4) are of the form φ

(
α2ω

β

)
for odd α. We claim the associated α ∈ Z[i] is unique

modulo β ∈ Z[i]:

Suppose φ(α2ω
β ) = φ(α̃2ω

β ) for some odd Gaussian integers α, α̃, then both α2ω
β and α̃2ω

β

are solutions to the equation φ(z) = w0, w0 ∈ C. Using property 4 in Proposition 5.10,

there exists (a+ ib) ∈ Z[i] such that

α̃
2ω

β
= (−1)a+bα

2ω

β
+ (a+ ib)ω.

Simplifying gives

α̃ = (−1)a+bα+ (a+ ib)β.

Since α, α̃, β are all odd Gaussian integers and sum of two odd Gaussian integers is even,

(a+ ib) is even so (−1)a+b = 1 by Proposition 4.11 and hence

α̃ = α+ (a+ ib)β.

This shows that α̃ and α belong to the same coset, proving uniqueness.

Since α is odd, Theorem 5.13 shows that φ
(
α2ω

β

)
is a rational function in φ

(
2ω
β

)
with

coefficients in Q(i). Together with the uniqueness of α it follows that the β-division

polynomial xPβ(x
4) splits completely in Kβ. Clearly one of the roots is φ

(
2ω
β

)
, so Kβ is

the splitting field of xPβ(x
4) over Q(i) and Kβ/Q(i) is a Galois extension.

Remark 5.15. This proofs tells us that we can rewrite (3) in Theorem 5.13 as follows:

the β-division polynomial xPβ(x
4) has Nm(β) distinct roots given by φ(α2ω

β ) for α ∈
Z[i]/βZ[i].
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The next lemma will help us in the main proof to be presented.

Lemma 5.16. Let β be odd, then the fields Kβ = Q
(
i, φ

(
2ω
β

))
and Q

(
i, φ

(
(1+i)ω

β

))
are equivalent.

Proof. We shall use a trick similar to that of page 47 of [7]. Since β is odd, by Bézout’s

lemma we know there exists Gaussian integers u, v such that uβ + v(1− i) = 1. Multiply

both sides by (1+i)ω
β gives

u(1 + i)ω + v
2ω

β
=

(1 + i)ω

β

Recall φ is doubly periodic with respect to the lattice Λ (Proposition 5.10), so we obtain

φ

(
v
2ω

β

)
= φ

(
(1 + i)ω

β
+ (−u− ui)ω

)
= φ

(
(1 + i)ω

β

)
.

Theorem 5.13 tells us that φ
(
v 2ω

β

)
= φ

(
(1+i)ω

β

)
is a rational function in φ

(
2ω
β

)
, showing

that Q
(
i, φ

(
(1+i)ω

β

))
⊆ Kβ.

Conversely, using the addition law from Proposition 5.10 together with φ′(iz) = φ′(z) and

φ(iz) = iφ(z),

φ((1− i)z) = φ(z − iz) =
φ(z)φ′(−iz) + φ(−iz)φ′(z)

1− φ2(z)φ2(−iz)
=

(1− i)φ(z)φ′(z)

1− φ4(z)
.

Substituting z = (1+i)ω
β then shows that φ

(
2ω
β

)
is a rational function in φ

(
(1+i)ω

β

)
,

proving the other inclusion.

Proposition 5.17. Let β ∈ Z[i] be odd. For any σα ∈ Gal(Kβ/Q(i)), there is a unique

[α] ∈ (Z[i]/βZ[i])× such that σα(φ
(
2ω
β

)
) = φ

(
α2ω

β

)
. Furthermore, the map σα 7→ [α]

defines an isomorphism

Gal(Kβ/Q(i)) ∼= (Z[i]/βZ[i])×.

Proof. The first part of the proof follows from Chapter 15.5, page 499 of [5]. It is a standard

fact that the Galois group of an irreducible polynomial permutes its roots transitively.

Therefore, for σα ∈ Gal(Kβ/Q(i)), there exists an odd Gaussian integer α, unique modulo

β, such that

σα

(
φ

(
2ω

β

))
= φ

(
α
2ω

β

)
.

Now consider the map Gal(Kβ/Q(i)) ↪→ (Z[i]/βZ[i])×, defined by σα 7→ [α].

Well-defined.

Since Z[i] is a principal domain, [α] ∈ (Z[i]/βZ[i])× if and only if α, β are coprime. Let m
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be the order of σα in Gal(Kβ/Q(i)), then

φ

(
2ω

β

)
= σmα

(
φ

(
2ω

β

))
= φ

(
αm 2ω

β

)
,

where the last equality follows from repeatedly applying σα to (1) of Theorem 5.13 with

z = ω
β . By uniquess of α, we conclude that αm ≡ 1modβ.

Group homomorphism.

Let α, γ ∈ (Z[i]/βZ[i])×. Then

σασγ

(
φ

(
2ω

β

))
= σα

(
φ

(
γ
2ω

β

))
= φ

(
αγ

2ω

β

)
= σαγ

(
φ

(
2ω

β

))
.

Injection.

Suppose σα

(
φ
(
2ω
β

))
= σγ

(
φ
(
2ω
β

))
, then we have φ

(
α2ω

β

)
= φ

(
γ 2ω

β

)
with which we

have shown that α, γ must belong to the same coset in (Z[i]/βZ[i])× as in Theorem 5.14.

Surjection.

There is a proof that fully utilises class field theory, but with lots of tedious calculations.

Therefore, we will only outline the main procedures, for details one may refer to [7, page

48–49].

Apply Theorem 5.2 to the elliptic curve E/Q(i) in Proposition 5.12 and choose our modulus

to bem = 2(1+i)β, this tells us that the ray class field ofQ(i) for the modulusm = 2(1+i)β

is L = Q
(
i, ℘

(
ω
2β

)2)
(this is based on another way of analytically defining a Weber

function, see [12, page 135]). Using the results in Section 4, we know

L = Q

(
i, ℘

(
ω

2β

)2
)

∼= (Z[i]/βZ[i])× .

According to Cox, φ satisfies

φ(z) = −2
℘(z)

℘′(z)
, φ′(z) =

4℘(z)2 − 1

4℘(z)2 + 1
.

These identities can be used to replace the Weierstrass ℘-function with Abel’s lemniscate

function in the expression of L, giving

L = Q
(
i, φ′

(
ω

2β

))
.

If we differentiate the addition law in Proposition 5.10 for φ
(
z − ω

2

)
, we get

φ′
(
z − ω

2

)
= 2

φ(z)

1 + φ(z)2
. (5.3)
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Using Proposition 4.11, there exists v ∈ Z[i] such that 2(1 + i)v − β = iε. Multiply both

sides by ω
2β to give (1+i)ω

β v − ω
2 = ω

2β i
ε. Together with φ′(iz) = φ′(z) (which is how we

defined φ over C) and the fact that Kβ = Q
(
i, φ

(
(1+i)ω

β

))
as proved in Lemma 5.16, we

obtain

φ′
(
ω

2β

)
= φ′

(
iε
ω

2β

)
= φ′

(
(1 + i)ω

β
v − ω

2

)
= 2

φ( (1+i)ω
β v)

1 + φ( (1+i)ω
β v)2

by the identity given in (5.3)

∈ Q
(
i, φ

(
(1 + i)ω

β

))
= Kβ.

Hence, Q(i) ⊆ L ⊆ Kβ and |Gal(Kβ/Q(i))| ≥ |Gal(L/Q(i))| = | (Z[i]/βZ[i])× |. Since we

have shown the injection Gal(Kβ/Q(i)) ↪→ (Z[i]/βZ[i])×, we must have L = Kβ, proving

the isomorphism.

Hence, if we take
{
φ
(
α2ω

β

)
: α ∈ (Z[i]/Z[i])×

}
to be the roots of a monic polynomial,

then all the results we have developed in this section along with standard Galois theory

results tell us that such a polynomial has to be irreducible over Z[i]. We use the definition

from [7, page 49].

Definition 5.18 (Lemnatomic polynomial). Let β be an odd Gaussian integer, we define

the β-th lemnatomic polynomial to be the product

Λβ(x) :=
∏

[α]∈(Z[i]/βZ[i])×

(
x− φ

(
α
2ω

β

))
∈ Z[i][x].

This is the minimal polynomial required in Corollary 4.21. In particular, it is monic of

degree | (Z[i]/βZ[i])× | in particular. As we conclude this section, we would like to highlight

a few properties of the lemnatomic polynomial. These properties are similar to those of

cyclotomic polynomials, and may be useful in finding a Euclidean proof for the statement

‘there are infinitely many Gaussian primes satisfying π ≡ 1modβ for odd β’.

Proposition 5.19. Let β ∈ Z[i] be odd and xPβ(x
4) ∈ Z[i][x] be the β-division polynomial

from Theorem 5.13, then the lemnatomic polynomial satisfies the following properties:

1. If β is a unit, then Λβ(x) = x (this follows from the definition immediately).
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2. xPβ(x
4) =

∏
γ|β Λγ(x), where the product is over all divisors γ of β and without loss

of generality, we assume γ ≡ 1mod 2(1 + i).

3. Suppose β is not a unit. If β = uπk where u is a unit, π is a Gaussian prime and

k ≥ 1, then Λβ(0) = π. Otherwise, Λβ(0) = 1.

Proof. See page 50–51 in [7].

6 Conclusion

The objective of this dissertation was to determine whether it is true or not that for any

Gaussian integer z, we can show the existence of infinitely many Gaussian primes π that

satisfy π ≡ 1mod z using a Euclidean proof. It turns out that this guess is partially

correct: such a proof does exist and we even managed to find the required polynomial

explicitly, but it only works for odd Gaussian integers (i.e. coprime with 1 + i).

The investigation began by examining the polynomial proofs for Dirichlet’s Theorem, in

the hope of producing a similar constructive Euclidean proof for the Gaussian integers to

show our guess in §1 to be correct. It was then observed that the proof relies heavily on

the isomorphism Gal(Q(ζm)/Q) ∼= (Z/mZ)×, which associates rational primes p that are

unramified in Q(ζm) to the Frobenius element Frobp ∈ Gal(Q(ζm)/Q) ∼= (Z/mZ)×. This

observation led to demonstrating the theory behind Frobenius elements, as presented in

§3. The investigation then looked into possible structures of Gal(L/Q(i)) for some abelian

extension L/Q(i). By utilising class field theory, it was shown that for an odd Gaussian

integer β, choosing the modulus m = 2(1+ i)β guarantees the ray class field modulo m to

exist. In particular, Gal(Q(i)(m)/Q(i)) ∼= (Z[i]/βZ[i])×, as given by the Artin map.

Whilst the results we have obtained above allow us to prove the existence of a Euclidean

proof for Dirichlet’s Theorem in the Gaussian integers, we decided to conclude the in-

vestigation by computing the polynomial explicitly, therefore finding the ray class field

modulo m, Q(i)(m), explicitly (note that here Q(i)(m) does not mean adjoining m to

Q(i)). It turns out that Q(i)(m)/Q(i) is called the lemniscatic extension, related to the

division points on the lemniscate of Bernoulli, similar to how cyclotomic extensions are

related to division points on the unit circle. By examining the properties of the complex

lemniscatic function φ(s) and using existing class field theory results, we have demon-

strated that Q(i)(m) = Q
(
i, φ

(
2ω
β

))
and deduced that the required polynomial is the

β-th lemnatomic polynomial, defined by

Λβ(x) =
∏

[α]∈(Z[i]/βZ[i])×

(
x− φ

(
α
2ω

β

))
.
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6 CONCLUSION

The findings of this dissertation have connected different branches of number theory,

namely Galois theory, class field theory, and the theory of elliptic curves. Yet, the starting

point of this investigation was a specific case of a theorem in number theory that is typ-

ically considered elementary and within the reach of high school students, which is what

makes the results of this dissertation surprising. In comparison with the usual analytic

methods used to prove Dirichlet’s Theorem, the algebraic approach in this dissertation has

uncovered the underlying meaning or theories behind results that we might have taken

for granted nowadays. The connections made between different areas of number theory in

this dissertation could inspire new techniques and approaches that could be used to tackle

related problems, where the analytic approaches might be too specific to the problem to

achieve the same effect.

Readers might also recall that the primary motive of this investigation is to generalise

‘elementary tricks’ for Dirichlet’s Theorem in other number fields. In Cox’s work [5, page

49–54], an ‘elementary’ proof was provided to demonstrate that Q
(
i, φ

(
2ω
β

))
is the ray

class field modulo m = 2(1 + i)β, where β is odd. To be precise, this was achieved by

showing that the β-th lemnatomic polynomial is irreducible over the Gaussian rationals

Q(i). However, we did not adopt this approach in our work as it requires prior knowledge

of the existence of this polynomial, which is precisely what we were trying to prove.

Additionally, this method relies on advanced results such as Theorem 5.13, and thus is

ironically an ‘elementary result’ based on non-elementary results. Similarly, most results

in this dissertation have gone beyond the scope of what might be considered elementary.

Therefore, even if one can use the lemnatomic polynomial to give a Euclidean proof of the

infinitude of Gaussian primes satisfying π ≡ 1mod z, gcd(1 + i, z) = 1, we would hardly

consider it elementary, or at least equivalently as difficult as the analytical approach.

In addition, there are still limitations that must be addressed. The focus has been on

purely imaginary fields, specifically, imaginary quadratic fields in §5. As a result, the

methods or tricks employed lack generalisability to most number fields. Furthermore, the

heavy reliance on class field theory restricts the computation to abelian extensions only.

It is worth noting that this limitation prompts the question of whether a constructive,

non-elementary proof such as Theorem 4.20 exists for non-abelian extensions. Although

the answer to this question is unknown, it is anticipated that solving such a problem

would be extremely complex. In conclusion, this dissertation provides an introduction to

problems associated with field extensions and class field theory, while also accomplishing

the original objectives.

35



REFERENCES

References

[1] Kumar, A. Cyclotomic Polynomials, Primes Congruent to 1 mod n. Massachusetts

Institute of Technology: MIT OpenCouseWare, https://ocw.mit.edu/courses/18-781-

theory-of-numbers-spring-2012/resources/mit18 781s12 lec12/. (2012).

[2] Childress, N. Class field theory. Springer. https://doi.org/10.1007/978-0-387-72490-4.

(2009).

[3] Conrad, K. Euclidean proofs of Dirichlet’s Theorem.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/dirichleteuclid.pdf. (2010).

[4] Conrad, K., Lemmermeyer, F., Roquette, P.J., & Serre J., History of Class Field

History. https://kconrad.math.uconn.edu/blurbs/gradnumthy/cfthistory.pdf. (2009)

[5] Cox, D. A. Galois theory. John Wiley & Sons, Incorporated. (2012).

[6] Cox, D. A. Primes of the form x2 + ny: Fermat, class field theory, and complex

multiplication (Second ed.). John Wiley & Sons, Inc. (2013).

[7] Cox, D., Hyde, T. The Galois theory of the lemniscate. Journal of Number Theory

135, page 43-59. (2014)

[8] I. Schur, Uber die Existenz unendlich vieler Primzahlen in einiger speziellen arith-

metischen Progressionen. S-B Berlin. Math. Ges., 11, page 40–50. (1912).

[9] Janusz, G. J. Algebraic number fields (2nd ed.). American Mathematical Society.

(1996).

[10] Lang, S. Algebraic number theory (2nd ed.). Springer-Verlag.

https://doi.org/10.1007/978-1-4612-0853-2. (1994).

[11] Murty, R. and Thain, N. Prime Numbers in Certain Arithmetic Progressions. Func-

tiones Et Approximatio Commentarii Mathematici, Volume 35, page 249-259. (2006).

[12] Silverman, J. H. Advanced topics in the arithmetic of elliptic curves. Springer-Verlag.

https://doi.org/10.1007/978-1-4612-0851-8. (1994).

[13] Stein, W. Introduction to Algebraic Number Theory. https://wstein.org/129-

05/notes/129.pdf. (2005).

[14] Sutherland, A. Number Theory I. Massachusetts Institute of Technology:

MIT OpenCouseWare, https://ocw.mit.edu/courses/18-785-number-theory-i-fall-

2021/resources/mit18 785f21 full lec/. (2021).

36


	Introduction
	Theory behind the cyclotomic proof
	Infinitude of prime divisors
	Construction of the polynomial

	Rational primes and the Frobenius element
	Decomposition of primes in Galois extensions
	The Frobenius element

	Galois groups of abelian extensions of the Gaussian rationals
	The Artin map
	Ray class group of the Gaussian rationals
	Class groups and class fields
	Constructive Euclidean proof for the Gaussian rationals

	The lemniscatic extension
	Abelian extension of imaginary quadratic fields
	The lemniscate and lemniscatic function
	The complex lemniscatic function
	Computation of the field extension

	Conclusion
	References

