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Introduction

A sequence of groups G1 ↪→ G2 ↪→ · · · ↪→ Gn ↪→ . . . is said to satisfy homological
stability if the induced maps HiGn → HiGn+1 are isomorphisms in a range 0 ≤
i ≤ f(n) increasing with n. In [18], the authors improve an important technique
to study homological stability problems for sequences of groups admitting a
braided monoidal structure. Namely, given such a family, with some extra
assumptions, one can construct a pre-braided category locally homogeneous
at a pair of objects (A,X). Moreover the groups Gn fit into the category as
automorphism groups of the objects A⊗X⊗n. Once the sequence fits into this
categorical framework, one constructs a family of spaces whose connectivity
yields stability for the sequence of groups.

In showing homological stability in this way, usually the hardest step is to
prove connectivity. Indeed there are many examples of sequences of groups
fitting the categorical framework, but for which it is not known yet whether or
not the connectivity requirement is satisfied. What is more, connectivity for the
constructed spaces is thought to be so strongly related to homological stability
that it is conjectured to hold if and only if stability holds.

In this context we do not know many examples of sequences of groups fitting
the categorical framework of pre-braided homogeneous categories, but for which
we don’t have connectivity, and homological stability fails. Peter Patzt in [13]
constructed such an example with the symmetric groups on 2n elements, endowed
with a symmetric monoidal structure different from the classical one. The goal
of this thesis is to present other examples of the same flavour. In particular
we will present unstable sequences of groups fitting perfectly into pre-braided
homogeneous categories, using general linear groups, and projective general
linear groups. In all the examples we will show the failure at the level of H1. In
addition we will see also examples very similar to the previous ones, where H1

stabilises and for which we do not know if we have or not failure at a higher
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2 Introduction

level.
One interesting thing in the presented examples is that when stability fails

dramatically (at the level of H1) also the connectivity for the associated spaces
fails dramatically (they are not even 0-connected). While in the examples where
there is no failure at the level of H1, the spaces are 0-connected. In showing
0-connectivity or not for the associated spaces we will make use of a quick criteria
useful in our context.

The work is organised as follows. Chapter one provides all the algebraic tools
needed later, as well as the necessary theory about homology of groups. Integral
group rings, induced modules, standard resolution, homology with coefficients,
Shapiro’s Lemma, and a brief recap about spectral sequences.

Chapter two basically introduces homological stability in the categorical
framework of pre-braided locally homogeneous categories. For pairs of objects in
such categories we construct the associated sequence of spaces, and formulate
the connectivity axiom. We give also a proof of an homological stability theorem
(only for integral homology), which states that the connectivity implies stability
for the sequence of automorphism groups associated to the pair. We also show
how starting from a groupoid with a braided monoidal structure we can construct
an associated pre-braided locally homogeneous category.

The last chapter is completely devoted in presenting the examples of instability
that we have mentioned before. After the criteria for the 0-connectivity, we
will see examples with symmetric groups, general linear groups and projective
general linear groups.



Chapter 1

Homology of Groups

This Chapter is devoted to a brief summary about all the basic algebraic tools
needed in this Thesis. We will begin with a brief recalling about integral group
rings, and continue with an introduction about group homology. We will not
prove everything in this chapter, so the main reference for these two parts is
[3]. We will conclude with a brief summary about the properties of Spectral
Sequences that are needed later, referring again to [3], but also to [12] for a
complete development of the topic.

1.1 Integral group rings

In order to talk about homology of groups, first of all we need to talk about
Integral Group Rings, which provide the algebraic base for group homology.

Definition 1.1. Let G be a group written multiplicatively. The integral group
ring of G, denoted either ZG or Z[G] is the free Z-module generated by the
elements of G, with multiplication given by the unique extension of the multipli-
cation of G to a Z-bilinear product on ZG.

Note that G is a subgroup of (ZG)∗, and that we have the following universal
mapping property:

UP of Integral Group Rings. Given a ring R and a group homomorphism
from G to R∗, there is a unique extension of it to a ring homomorphism from
ZG to R. Thus we have:

Hom(ZG,R) ∼= Hom(G,R∗).

3



4 Homology of Groups

In view of this, a (left) ZG-module (also called a G-module), is simply an
abelian group M together with a left action of G on M .

Example 1.2. The abelian group Z can always be considered a G-module, via
the trivial action of G.

The simplest way to construct G-module is via permutation module.

Definition 1.3. Given a set X with a G-action. The permutation module
ZX (also denoted Z[X]), is the G-module obtained from the free abelian group
generated by X, where we extends the action of G on X, to a Z-linear action of
G on ZX.

Example 1.4. Given a subgroup H < G we have that G acts on G/H (the
set of cosets gH) by left translation. So we can obtain a permutation module
Z
[
G/H

]
The operation of disjoint union in the category of G-sets corresponds to the

direct sum operation in the category of G-modules:

Z
[∐

Xi

]
=
⊕

ZXi.

It follows that given a G-set X and a set of representatives E for the G-orbits,
we can decompose ZX:

ZX ∼=
⊕
x∈E

Z
[
G/stab(x)

]
.

If in addition the action of G on X is free, then every stabiliser contains only
the identity, and ZX is a free ZG-module with basis E. So we have proved the
following.

Proposition 1.5. If X is a free G-set and E a set of representatives for the
G-orbits in X, then ZX is a free ZG-module with basis E.

1.1.1 Extension and restriction of scalars

Let f : R → S be a ring homomorphism. Recall that any S-module can be
regarded as an R-module via f , and we obtain in this way a functor from
S-module to R-module called restriction of scalars.

Conversely for any left R-module M , consider the tensor product S ⊗RM ,
where S is regarded as a right R-module by s ·r := s ·f(r). We can make S⊗RM
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a left S-module by setting

s · (s′ ⊗m) := (ss′)⊗m. (1.1)

This S-module is said to be obtained from M by extension of scalars from R to
S. Note that there is a natural map ι : M → S ⊗RM given by ι(m) = 1⊗m,
which is an R-module homomorphism when S⊗RM is regarded as an R-module
by restriction of scalars. Moreover the following universal mapping property
holds:

UP of extension of scalars. Given an S-module N and an R-module map
g : M → N there is a unique S-module map h : S ⊗R M → N , such that the
following diagram commutes:

M S ⊗RM

N

ι

g
h

(1.2)

Thus we have
HomS(S ⊗RM,N) ∼= HomR(M,N).

Remark 1.6. Recall that in order for a tensor product M ⊗R N to make sense,
M must be a right R-module, and N a left R-module. In the case R is an
integral group ring ZG, we can avoid having to consider both left and right
modules by using the anti-automorphism g 7→ g−1 of G. Thus we can regard any
left G-module M as a right G-module by setting mg = g−1m, and in this way
we can make sense out of the tensor product M ⊗G N of two left modules. If M
naturally admits both a left and a right G-action we will revert to the notation
M ⊗ZG N if we want to indicate that the tensor product is taken considering
the given right action of G on M , rather than the right action obtained from
the left action.

1.1.2 Induced Modules

We will see now how to apply the notation and theory just developed to inclusion
of a subgroup H < G.

For every subgroup H < G, we have a natural inclusion of rings ZH ↪→ ZG,
and we can apply the constructions just made to this ring homomorphism. In
this case extension of scalars is called induction from H to G. For an H-module
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M we will write
IndGH(M) := ZG⊗ZH M,

which is a left ZG-module as shown in (1.1). Here ZG is a right ZH-module,
with H acting by right translation on G. since this action is free, ZG is a free
right ZH-module, and as basis we can take a set E of representatives for the left
cosets gH. It follows that IndGH(M), as abelian group, admits a decomposition

ZG⊗ZH M =
⊕
g∈E

g ⊗M. (1.3)

In particular the canonical H-map ι : M ↪→ ZG⊗ZH M maps M isomorphically
into its image 1⊗ZHM . We can therefore use ι to regard M as an H-submodule
of IndGH(M). Moreover the summand g ⊗M that occurs in (1.3) is simply the
transform of this submodule under the action of g. Putting everything together
in a proposition:

Proposition 1.7. The G-module IndGH(M) contains M as an H-submodule,
and is the direct sum of its transforms:

IndGH(M) =
⊕

g∈G/H

gM

Remark 1.8. The H-submodule M is mapped onto itself by the action of H,
so that the subgroup gM of IndGH(M) depends only on the class of g in G/H.

The Proposition 1.7 completely characterizes induced G-modules. More
precisely the following is true

Proposition 1.9. Let N be a G-module whose underlying abelian group is a
direct sum ⊕i∈IMi. Assume also that the G-action transitively permutes the
summands (i.e. there is a transitive action of G on I such that gMi = Mgi). If
Mi0 is one of the summands and H = stab(i0), then Mi0 is an H-module and
N ∼= IndGH(Mi0).

Proof. Let us show first that Mi0 is an H-submodule. If g ∈ H we have
gMi0 = Mgi0 = Mi0 , so we have that the action of H restricted to Mi0 , gives an
action of H on Mi0 .

Using the universal mapping property (1.2) we have that the inclusion
Mi0 ↪→ N extends to a G-map ϕ : IndGH(Mi0). Clearly ∀g ∈ G we have

ϕ(gMi0) = gϕ(Mi0) = gMi0 .
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So ϕ maps the summand gMi0 of IndGH(Mi0) isomorphically onto the correspond-
ing summand Mgi0 of N .

Example 1.10. The permutation module Z
[
G/H

]
is direct sum of copies of

Z, with a transitive G-action on the summands, and H as stabilizer of every
summand. So applying Proposition 1.9 we obtain Z

[
G/H

] ∼= IndGH(Z)

Example 1.11. Let X be a CW-complex with a G-action which is transitive on
simplices of each dimension. The G-module Cn(X) is a direct sum of copies of Z,
one for each n-simplex of X, and the summands are permuted by the G-action.
Hence choosing a simplex σ ∈ Cn(X) and applying Proposition 1.9 we have

Cn(X) ∼= IndGstab(σ)(Zσ). (1.4)

Where Zσ is the orientation module associated to σ: an infinite cyclic group
whose two generators correspond to the two orientations of σ. Thus g ∈ stab(σ)
acts on Zσ as the identity if g preserves the orientation of σ, and −identity
otherwise.

1.2 The Homology of a group

In this section we will consider Z as a G-module with trivial G-action.

Definition 1.12. A G-complex is simply a CW-complex with an action of G
which permutes the cells.

When X is a G-complex, we have an action of G on the cellular chain complex
C∗(X), which thereby becomes a chain complex of G-modules. Moreover the
augmentation map ε : C0(X) → Z defined by sending every 0-cell in 1 is a
G-modules homomorphism.

We will say that X is a free G-complex if the action of G freely permutes the
cells of X. In this case each Cn(X) admits a Z-basis which is freely permuted
by G, hence in view of Proposition 1.5 Cn(X) is a free ZG-module with one
basis element for every G-orbit of cells. If in addition X is contractible, then
the augmented cellular chain complex of X is a free resolution of Z over ZG.

1.2.1 The standard resolution

Let us now construct the so called standard resolution of Z in ZG-modules. First
of all let X be the "simplex" spanned by G. The complex X has vertices the
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elements of G with G acting by left translation, and every finite subset of G is
a simplex of X. The action of G on X is free on vertices but not necessarily
on higher dimensional simplices. We can bypass this problem considering the
ordered chain complex C ′∗(X) instead of the usual chain complex C(X) (see [15]
Ch. 4, §3). Namely C ′n(X) has a Z-basis consisting of the ordered (n+ 1)-tuples
(V0, . . . , Vn) of vertices of X such that {V0, . . . , Vn} is a simplex of X. In this way
the action of G is free on these n+ 1-tuples. Combined with the fact that X is
contractible by a straight-line homotopy we obtain a free resolution F∗ = C∗(X)
of Z in ZG-modules.

Explicitly Fn is the free Z-module generated by the (n+1)-tuples (g0, . . . , gn)
of elements of G, with the G-action given by g · (g0, . . . , gn) = (gg0, . . . , ggn).
The boundary operator ∂ : Fn → Fn−1 is given by ∂ =

∑n
i=0(−1)idi, where

di(g0, . . . , gn) = (g0, . . . , ĝi, . . . , gn), (1.5)

and the augmentation ε : F0 → Z by ε(g0) = 1.
As basis for the free ZG-module Fn we may take the (n+ 1)-tuples whose

first element is 1, and write these elements in "bar" notation

[g1|g2| . . . |gn] := (1, g1, g1g2, . . . , g1g2 . . . gn).

In this notation the boundary maps (1.5) become

di [g1| . . . |gn] =


g1[g2| . . . |gn] i = 0,

[g1| . . . |gi−1|gigi+1|gi+2| . . . |gn] 0 < i < n,

[g1| . . . |gn−1] i = n.

(1.6)

In low dimensions the resolution has the form

F2
∂2−→ F1

∂1−→ ZG ε−→ Z→ 0,

where

∂2([g|h]) = g[h]− [gh] + [g], (1.7)

∂1([g]) = g[ ]− [ ] = g − 1, (1.8)

ε(1) = 1. (1.9)
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1.2.2 Integral Homology

Definition 1.13. Given a groupG and aG-moduleM , the group of co-invariants
of M , denoted MG, is the quotient of M by the additive subgroup generated by
all the elements of the form gm−m for g ∈ G and m ∈M .

Thus MG is simply obtained from M by "dividing out" by the G-action.
Regarding Z as a right G-module with trivial action, we can give another
description of the co-invariants group

MG
∼= Z⊗ZGM.

To justify this description simply note that tensoring with Z actually kills the
G-action. Indeed in Z⊗ZGM we have 1⊗ gm = 1 · g ⊗m = 1⊗m.

Remark 1.14. If M is a free ZG-module with basis (ei), then MG is a free
Z-module with basis (ēi).

The co-invariants functor assigns to every G-module an abelian group. It
is right-exact, but it is not an exact functor. Roughly speaking the homology
groups of G measure the failure of this functor to be exact.

Definition 1.15. If ε : F → Z is a projective resolution of Z in ZG-modules.
Define the homology groups of G as

HiG := Hi(FG). (1.10)

Where FG is obtained from F applying the co-invariants functor to each
G-module. The homology of FG is independent from the choice of the resolution,
up to canonical isomorphism.

For any group G we can always take F to be the standard resolution and
write C∗(G) for the chain complex FG. Using the Remark 1.14 we can describe
C∗(G) explicitly. On the (n+1)-tuples of elements of G introduce the equivalence
relation given by the action of G: (g0, . . . , gn) ∼ (gg0, . . . , ggn) for all g ∈ G.
Then Cn(G) has a Z basis consisting of the equivalence classes [g0, . . . , gn] and
boundary maps given by the alternating sum of the maps induced by (1.5) in
the quotient.

We can also use the bar notation to describe C∗(G). From this point of
view Cn(G) has a Z basis consisting of the classes of n-tuples [g1| . . . |gn], where
with abuse of notation we are omitting the square-brackets which denote the
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class of the element [g1| . . . |gn] ∈ Fn in the quotient (Fn)G. In this notation
the boundary maps are given by the alternating sum of the maps (1.6) in the
quotient:

di [g1| . . . |gn] =


[g2| . . . |gn] i = 0,

[g1| . . . |gi−1|gigi+1|gi+2| . . . |gn] 0 < i < n,

[g1| . . . |gn−1] i = n.

In low dimension C∗(G) has the form

C2(G) ∂2−→ C1(G) ∂1−→ Z→ 0,

where ∂1 = 0 since the elements in the image of (1.8) are exactly the one
we quotient. While (1.7) in the quotient becomes ∂2[g|h] = [h] − [gh] + [g].
Consequently H0G = Z and H1G is isomorphic to the abelianization of G. More
precisely the following holds

Lemma 1.16. Denoting with ḡ the homology class of the cycle [g] in C1(G),
the map

H1G→ G/[G : G]

sending ḡ in the class of the element g in the quotient by [G : G], is an
isomorphism.

The homology H∗G is a covariant functor of G, since C∗(G) is functorial in G.
But we want to describe the induced map also in terms of arbitrary resolutions.
Given an homomorphism α : G→ G′ and projective resolutions F and F ′ of Z
over ZG and ZG′ respectively, think of F ′ as a complex of G-modules via α. Even
though F ′ is not necessarily projective over ZG, it is still acyclic. Combining
this with the projectivity of F from a well known theorem of homological algebra
(see for example [3] Ch.1, Theorem7.4) we obtain an augmentation preserving
G-map τ : F → F ′, unique up to homotopy. For τ the condition to be a G-map
means that ∀g ∈ G, ∀x ∈ F we have

τ(gx) = α(g)τ(x). (1.11)

The map τ induces a map FG → F ′G′ , and so a well-defined map α∗ : H∗G →
H∗G

′.
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Lemma 1.17. Conjugation by an element g0 ∈ G is an automorphism of G
which induces the identity on H∗G.

Proof. If F is a projective resolution of Z in ZG-modules we can take τ : F → F

to be τ(x) = g0 · x. Indeed τ commutes with the boundary maps since these one
are morphisms of ZG-modules and moreover satisfies (1.11). But τ induces the
identity on FG, and so the identity also on H∗G.

1.2.3 Homology with coefficients

Definition 1.18. Let F be a projective resolution of Z over ZG, and M a
G-module. We define the homology of G with coefficients in M by

H∗(G,M) := H∗(F ⊗GM). (1.12)

Where F ⊗GM is the complex obtained from F applying the functor _⊗GM .
Then we can see that (1.12) is a true generalization of (1.10). Indeed we recover
the latter by takingM = Z, and for this reason it is also called integral homology.

The complex F ⊗GM can also be be thought as a tensor product of chain
complexes, with M a complex concentrated in zero dimension. So with a bit
of homological algebra we can also use a projective resolution in ZG-modules
η : P →M of M to compute the homology:

H∗(F ⊗GM) ∼= H∗(F ⊗G P ) ∼= H∗(Z⊗G P ). (1.13)

From this description, since F ⊗G _ is a covariant functor, we get that
H∗(G,_) is also a covariant functor of the coefficients module. Furthermore
H∗(G,M) can be seen as a covariant functor of the couple (G,M). Let C be the
following category: an object of C is a pair (G,M) where G is a group, and M
is a G-module. A morphism in C from (G,M) to (G′,M ′) is a pair (α, f) where
α : G → G′ is a group homomorphism, and f : M → M ′ is a map of abelian
groups such that f(gm) = α(g)f(m) for g ∈ G and m ∈M (in other words f is a
G-module morphism if M ′ is regarded as a G-module via α). We can now repeat
the same construction we have made to show functoriality of integral homology.
Consider F , F ′ projective resolutions of Z over ZG and ZG′ respectively, exactly
as before we have an augmentation preserving G-map satisfying (1.11) unique
up to homotopy. Then there is a chain map

τ ⊗ f : F ⊗GM → F ′ ⊗G′ M ′,
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which induces a well-defined map (α, f)∗ : H∗(G,M)→ H∗(G′,M ′). In this way
H∗ becomes a covariant functor on C. If we have M = M ′ and f = IdM we
simply write α∗. Since

τ ⊗ f = (τ ⊗ IdM ′) ◦ (IdF ⊗f),

we have that (α, f)∗ can always be written as the composite

H∗(G,M) H∗(IdG,f)−−−−−−−→ H∗(G,M ′)
α∗−−→ H∗(G′,M ′). (1.14)

Proposition 1.19 (Shapiro’s Lemma). If H ≤ G is a subgroup, and M an
H-module, then

(α, ι)∗ : H∗(H,M) ∼−→ H∗(G, IndGH(M))

is an isomorphism, where α : H ↪→ G is the inclusion of the subgroup, and
ι : M ↪→ IndGH(M) is the canonical H-map (see (1.3)).

Proof. If F is a projective resolution of Z over ZG, then it also can be regarded
as a projective resolution of Z over ZH. Moreover IdF is an augmentation
preserving H-map. This follows since α : H ↪→ G is simply the inclusion of the
subgroup, and because

IdF (hx) = α(h) IdF (x)

holds for h ∈ H and x ∈ F . This can be used to compute (α, ι)∗ which is induced
by

IdF ⊗ι : F ⊗H M → F ⊗G IndGH(M). (1.15)

Since
F ⊗G IndGH(M) = F ⊗G (ZG⊗H M) ∼= F ⊗H M,

we have that (1.15) is an isomorphism.

1.3 Review on spectral sequences

Definition 1.20. A differential bigraded module over a ring R is a collection of
R-modules, {Ep,q} where p, q ∈ Z, together with an R-linear mapping d : E∗∗ →
E∗∗, the differential, of bidegree (−r, r − 1), for some integer r, and satisfying
d ◦ d = 0.
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One can easily imagine a differential bigraded module as an integral lattice in
the Cartesian plane, where the R-module Ep,q sits at the point (p, q). With the
differential, we can consider also the homology of a differential bigraded module
Hp,q(E∗∗, d).

Definition 1.21. A Spectral sequence (of homological type) is a collection of
differential bigraded R-modules {Er∗,∗, dr} where r ∈ N∗, the differential dr has
bidegree (−r, r − 1), and for all p, q, r

Er+1
p,q
∼= Hp,q(Er∗,∗, dr).

A common way of thinking about a spectral sequence is to imagine a book
where in the page r there is a differential bigraded R-module (Er∗,∗, dr). Every
differential bigraded module determines the bigraded module in the next page
(given by simply taking the homology), but not necessarily the differential in the
next page.

Although we have our spectral sequence indexed by r = 1, 2, . . . it is clear
that the indexing can begin at any integer. We want to define now the target of
the spectral sequence. To identify this target we present a spectral sequence as
a tower of submodules of a given module.

Let us begin with E1
∗,∗. For the sake of clarity we suppress the bigrading.

Let Z1 := ker d1 and B1 := im d1, we have B1 ⊆ Z1 ⊆ E1 and by definition
E2 ∼= Z1/B1. Denote Z̄2 := ker d2 : E2 → E2. Since Z̄2 is a submodule of E2 it
can be written as Z2/B1 where Z2 is a submodule of Z1. Similarly B̄2 = im d2

is isomorphic to B2/B1 and so

E3 ∼= Z̄2
/B̄2 ∼=

(
Z2
/B1

)
/
(
B2
/B1

) ∼= Z2
/B2.

These data can be presented as a tower of inclusions B1 ⊆ B2 ⊆ Z2 ⊆ Z1 ⊆ E1.
Iterating this process we present the spectral sequence as an infinite tower of
submodules of E1:

B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ · · · ⊆ Zn ⊆ · · · ⊆ Z2 ⊆ Z1 ⊆ E1

with the property that En+1 ∼= Zn/Bn.
Now let Z∞ :=

⋂
n Z

n the submodules of elements that survives forever,
and B∞ :=

⋃
nB

n. From the tower of inclusions we know that B∞ ⊆ Z∞, so
E∞ := Z∞/B∞ is the bigraded module that remains after the computation of
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the infinite sequence of homologies. The E∞-term of a spectral sequence is the
general goal of a computation.

In many cases our spectral sequence collapses at the N th-term, which means
that dr = 0 for r ≥ N . If this happens, the condition dr = 0 forces Zr = Zr−1

and Br = Br−1, and then the tower of submodules becomes:

B1 ⊆ · · · ⊆ BN−1 = BN = · · · = B∞ ⊆ Z∞ = · · · = ZN = ZN−1 ⊆ · · · ⊆ Z1,

implying E∞ = EN .

1.3.1 The Spectral Sequence of a filtered complex

Definition 1.22. By an increasing filtration on an R-module M , we mean a
family of submodules FpM with p ∈ Z, such that FpM ⊆ Fp+1M . The filtration
is said to be finite if FpM = 0 for p sufficiently small and FpM = M for p
sufficiently large.

Definition 1.23. Given a filtration on M the associated graded module E0
∗(M)

is defined by
E0
p(M) := FpM/Fp−1M.

One can think of M as being built up from the "pieces" E0
p(M).

Remark 1.24. If the filtered module M is graded (and each FpM is a graded
submodule), then we have for each n ∈ Z a filtration {FpMn} on Mn, and hence
there is an obvious way of associating a bigraded module to M , setting

E0
p,q(M) := FpMp+q/Fp−1Mp+q.

To simplify the notation we will sometimes suppress the second subscript and
simply write E0

pM = FpM/Fp−1M .

Definition 1.25. A spectral sequence {Er∗,∗, dr} is said to converge to the
graded R-module M , if there is a filtration F on M such that

E∞p,q
∼= E0

p,q(M,F )

Definition 1.26. An R-module C, is a filtered differential graded module if:

(1) C is the direct sum of submodules, C =
∞⊕
n=0

Cn.
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(2) There is an R-linear mapping d : C → C of degree −1 satisfying d ◦ d = 0.

(3) C has a filtration F and the differential respects that filtration, that is
d : FpC → FpC.

Since the differential respects the filtration, also the homology H(C) admits
a filtration induced by the inclusion map FpC ↪→ C. Explicitly

FpH(C) = FpC ∩ Z/FpC ∩B,

where Z and B are respectively the submodule of cycles and the submodule
of boundaries of C. We will say that the filtration is dimension-wise finite, if
{FpCn}p∈Z is a finite filtration of Cn for each n.

We can now state the main theorem of this brief survey on spectral sequences.
We refer to Theorem 2.6 of [12] for the proof.

Theorem 1.27. Each filtered differential graded module C determines a spectral
sequence {Er∗,∗, dr}∞r=1 with dr of bidegree (−r, r − 1), and

E1
p,q
∼= Hp+q(FpC/Fp−1C). (1.16)

Moreover if the filtration of C is dimension-wise finite, then the spectral sequence
converges to the homology H(C), that is

E∞p,q
∼= FpHp+q(C)/Fp−1Hp+q(C)

1.3.2 Double complexes

Definition 1.28. A Double Complex is a bigraded R-module C = (Cpq)p,q∈Z,
with a horizontal differential d′ of bidegree (−1, 0) and a vertical differential d′′

of bidegree (0,−1), such that d′ ◦ d′′ = d′′ ◦ d′.

A double complex C gives rise to an ordinary chain complex TC, called the
total complex as follows:

(TC)n :=
⊕
p+q=n

Cpq,

with differential d given by

d
Cpq

= d′ + (−1)pd′′.
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The tensor product of two chain complexes C ′ and C ′′ provides a familiar
example of this construction. Indeed we have a double complex C with Cpq :=
C ′p ⊗C ′′q and TC is simply the usual tensor product C ′ ⊗C ′′ of chain complexes.

We now filter TC by setting

Fp(TC)n =
⊕
i≤p

Ci,n−i.

If the double complex C is a first quadrant double complex (i.e. if Cpq = 0
when p < 0 or q < 0) then TC is a filtered differential graded module, with a
dimension-wise finite filtration. Thus we can apply Theorem 1.27 and we have a
spectral sequence {Er∗,∗, dr} converging to H∗(TC). Let us compute the E1-page
and the differential d1 of this spectral sequence. First of all the bigraded module
associated to the filtration of TC is given by:

E0
p,q(TC) = Fp(TCp+q)

Fp−1(TCp+q)
=

⊕
i≤p Ci,p+q−i⊕
i≤p−1 Ci,p+q−i

= Cpq.

The differential d of TC induces a differential in E0
p,q(TC), which simply is ±d′′

(with sign depending on p). Therefore using (1.16) we have that E1 is the vertical
homology of C (i.e. E1

p,q = Hq(Cp,∗)), and the differential d1 : E1
p,q → E1

p−1,q is
the map induced by the chain map d′ : Cp,q → Cp−1,q. Thus E2 can be described
as the horizontal homology of the vertical homology of C.

One could as well filter TC "horizontally" instead of "vertically", which simply
means

Fp(TC)n =
⊕
j≤p

Cn−j,j .

We obtain then a second spectral sequence converging to H∗(TC), but this time
with E0

p,q = Cq,p, E1
p,q = Hq(C∗,p), and d1 : E1

p,q → E1
p−1,q equal up to sign to

the map induced by d′′ : C∗,p → C∗,p−1.

Remark 1.29. Even though the two spectral sequences have the same abutment
H∗(TC) they do not in general have the same E∞-term. Indeed we have to
keep in mind that two different filtrations of TC leads possibly to two different
filtrations on H∗(TC), which means two different E∞-terms.



Chapter 2

Homological Stability

Before approaching Instability, we must talk about Homological Stability. This
chapter basically presents a simplified version of the machinery built in [18],
focusing only on homology with constant coefficients Z. Following the first three
sections of [18], we will develop the categorical setting of (Locally) Homogeneous
Categories, where certain sequences of groups arises naturally as automorphisms.
Using Quillen’s classical argument [14], we will prove also the main Homological
Stability Theorem of [18] (only for constant coefficients Z), which states that
connectivity of certain spaces yields stability for the considered sequences. The
last section is the most useful for our work. We will see how starting from
a groupoid satisfying some mild extra assumptions, one can build a locally
homogeneous category in which the groupoid fits naturally. Moreover in this
category, it is possible to study the connectivity of the spaces associated to the
sequence of groups, and possibly apply stability results.

2.1 Locally Homogeneous Categories

This first section provides the categorical setting where the main homological
stability theorem is formulated.

Definition 2.1. A strict monoidal category (C,⊗, e) is a category C with a
bifunctor ⊗ : C × C → C which is associative, and with an object e which is a
left and right unit for ⊗.

Recall that being a bifunctor, means that ⊗ assigns to each pair of objects
A,B ∈ C an object A ⊗ B of C, and to each pair of arrows f : A → A′ and

17
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g : B → B′ an arrow f ⊗ g : A ⊗ B → A′ ⊗ B′, according to the composition
laws

1A ⊗ 1B = 1A⊗B

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g),

where we denote by 1A the identity automorphism of the object A. Associativity
means that ⊗ is associative both for objects ((A ⊗ B) ⊗ C) = (A ⊗ (B ⊗ C)),
and for arrows ((f ⊗ g)⊗ h) = (f ⊗ (g ⊗ h)). Similarly, being a left and right
unit means that e is a unity for objects e⊗A = A = A⊗ e, and 1e is a unity for
arrows 1e ⊗ f = f = f ⊗ 1e.

Remark 2.2. From now on with monoidal category we will always mean strict
monoidal category. We will also adopt the notation to indicate the identity
isomorphism of an object 1X , simply with the symbol X, (where it is clear that
we are not talking about the object).

Consider now a monoidal category (C,⊗, e) in which the unit e is initial (i.e.
for each object A ∈ C there is exactly one arrow e → A). For every pair of
objects A and B in such a category, we have a preferred morphism

ιA ⊗B : B = e⊗B → A⊗B

where ιA denotes the unique morphism in C from the initial object e to A.
Given a generic morphism g ∈ HomC(X,Y ), since we have that AutC(Y ) acts
on this set under post-composition, we can indicate with stab(g) the subgroup
of automorphisms that fix g under post-composition:

stab(g) := {φ ∈ Aut(Y ) | φ ◦ g = g}.

We are now ready to give the central definition.

Definition 2.3. A monoidal category (C,⊗, e) is locally homogeneous at a pair
of objects (A,X) if e is initial in C and if it satisfies the following two axioms:

LH1 For all 0 ≤ p < n, Hom(X⊗p+1, A⊗X⊗n) is a transitive Aut(A⊗X⊗n)-set
under post-composition.

LH2 For all 0 ≤ p < n, the map Aut(A⊗Xn−p−1)→ Aut(A⊗X⊗n) taking f
to f ⊗X⊗p+1 is injective with image stab(ιA⊗X⊗n−p−1 ⊗X⊗p+1).
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At this point one can ask how these two conditions can possibly provide us
a useful setting in studying homological stability problems. To see that, take
a monoidal category locally homogeneous at a pair (A,X), and consider the
groups

Gn := Aut(A⊗X⊗n).

We have a canonical map ΣX : Gn → Gn+1 (called stabilisation map) taking
f ∈ Gn to f ⊗X ∈ Gn+1. With this interpretation condition LH2 makes more
sense now, because for example implies injectivity of ΣX . As a consequence we
obtain a sequence of groups: a family of groups and canonical injections between
them

G1 ↪→ G2 ↪→ · · · ↪→ Gn ↪→ . . . (2.1)

Definition 2.4. Given a monoidal category locally homogeneous at a pair
(A,X). We will call the sequence (2.1), the stabilisation sequence associated to
(A,X).

Remark 2.5. Another parallel and important goal of Definition 2.3 is to simplify
the study of the set Hom(X⊗p+1, A ⊗ X⊗n). Condition LH1 says that for
0 ≤ p < n this set is a transitive Gn-set under post-composition, and moreover
we have already pointed out a special element σp ∈ Hom(X⊗p+1, A ⊗ X⊗n)
defined as

σp := ιA⊗X⊗n−p−1 ⊗X⊗p+1. (2.2)

As a consequence we can write every other element f ∈ Hom(X⊗p+1, A⊗X⊗n)
as

f = φ ◦ σp with φ ∈ Gn. (2.3)

In these terms we can reformulate condition LH2 which says that in the same
range of p the map _ ⊗ X⊗p+1 sends Gn−p−1 isomorphically onto stab(σp).
Then the subgroup of Gn that fixes our preferred morphism is Gn−p−1⊗X⊗p+1,
which is the immersion of Gn−p−1 inside Gn under composition of stabilisation
maps (with abuse of notation we often will indicate it simply as Gn−p−1). With
this in mind we have

HomC(X⊗p+1, A⊗X⊗n) ∼= Gn/Gn−p−1 (2.4)

where the isomorphism is obtained sending the element f ∈ HomC(X⊗p+1, A⊗
X⊗n) in the corresponding class σGn−p−1 accordingly with (2.3).

In many cases the axioms LH1 and LH2 holds for all objects A and X of C,
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because the category satisfies the following stronger and global version of these
axioms.

Definition 2.6. A monoidal category (C,⊗, e) is homogeneous if e is initial in
C and if it satisfies the following two axioms:

H1 For all objects A, B in C, Hom(A,B) is a transitive Aut(B)-set under
post-composition.

H2 For all objects A, B in C, the map Aut(A)→ Aut(A⊗B) taking f to f ⊗B
is injective with image stab(ιA ⊗B).

2.1.1 Introducing a Braiding

Definition 2.7. A Braiding for a monoidal category (C,⊗, e) consists of a family
of isomorphisms

bA,B : A⊗B → B ⊗A

natural in A and B ∈ C, which satisfy for e the commutativity bA,e = be,A = 1A,
and which, with the associativity, make both the following diagrams commute

A⊗B ⊗ C C ⊗A⊗B

A⊗ C ⊗B

bA⊗B,C

1A⊗bB,C b−1
C,A
⊗1B

(2.5)

A⊗B ⊗ C B ⊗ C ⊗A

B ⊗A⊗ C

bA,B⊗C

bA,B⊗1C 1B⊗b−1
C,A

. (2.6)

Definition 2.8. A symmetric monoidal category, is a monoidal category (C,⊗, e),
with a braiding b, such that bB,A ◦ bA,B = 1A⊗B for all objects A,B ∈ C.

Definition 2.9. Let (C,⊗, e) be a monoidal category with e initial. We say
that C is pre-braided if its underlying groupoid is braided and for each pair of
objects A and B in C, the groupoid braiding bA,B satisfies

bA,B ◦ (A⊗ ιB) = ιB ⊗A : A→ B ⊗A (2.7)

Recall that a groupoid is simply a category in which every arrow is invertible.
In this way every category C has an underlying groupoid with objects the same
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objects of C, and with morphisms simply the invertible arrows of C. We will
denote this category with Iso(C).

Remark 2.10. A pre-braided monoidal category is not necessarily a braided
monoidal category (Naturality can fail).

2.1.2 The Semi-Simplicial Set associated to a pair

We have seen how the condition to be locally homogeneous at a couple, gives
better insight about the action of Aut(A⊗X⊗n) on the set Hom(X⊗p+1, A⊗
X⊗n). We want now to build a semi-simplicial set where we can use this action
to gather informations about the groups Aut(A⊗X⊗n). To fix the notation we
recall the definition of a semi-simplicial set

Definition 2.11. A semi-simplicial set consists of a set Xn ∀n ≥ 0 (called the
set of n-simplices), and ∀i : 0 ≤ i ≤ n+ 1, a face map di : Xn+1 → Xn such that
didj = dj−1di whenever i < j.

Remark 2.12. While in a simplicial complex a p-simplex is determined by an
unordered set of p+ 1 distinct vertices, in a semi-simplicial set, every p-simplex
has an ordered set of (p+1) vertices not necessarily distinct (obtained by applying
repeatedly the boundary maps). Moreover in a semi-simplicial set two distinct
simplices may have the same set of vertices, while in a simplicial complex the
list of vertices determines the simplex.

Definition 2.13. Let (C,⊗, e) be a monoidal category with e initial and (A,X)
a pair of objects in C. Define Wn(A,X) to be the semi-simplicial set with set of
p-simplices

Wn(A,X)p := HomC(X⊗p+1, A⊗X⊗n)

and with face map

di : HomC(X⊗p+1, A⊗X⊗n)→ HomC(X⊗p, A⊗X⊗n) (2.8)

defined by pre-composing with X⊗i ⊗ ιX ⊗X⊗p−i.

Remark 2.14. Given a p-simplex f ∈ HomC(X⊗p+1, A ⊗ X⊗n), from the
definition of the boundary maps we can obtain easily the p+ 1 vertices of the
simplex. Define ιj : X → X⊗p+1 for 0 ≤ j ≤ p to be the inclusion into the
j-factor:

ιj := ιX⊗j ⊗X ⊗ ιX⊗p−j : X → X⊗p+1.
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Then the j-vertex of the simplex f is simply given by the composition f ◦ ιj :
X → A⊗X⊗n.

Post-composition in C defines a simplicial action of the group Aut(A⊗X⊗n)
on Wn(A,X), and condition LH1 simply says that this action is transitive on
p-simplices for 0 ≤ p < n. In this context we will call our preferred morphism
σp (defined in (2.2)) the standard p-simplex of Wn(A,X). The importance of
the standard p-simplex in our work will be clear later, and for the moment we
will only make some observations.

Remark 2.15. Consider the stabilisation sequence associated to a pair (A,X)
(see Definition 2.4). The composition of the stabilisation maps Gn−p−1 ↪→ Gn

gives the map of condition LH2, which takes f ∈ Gn−p−1 to f ⊗X⊗p+1. In this
way condition LH2 says exactly that this map takes Gn−p−1 isomorphically into
stab(σp) ⊆ Gn (for 0 ≤ p < n), considering the action of Gn just defined.

Remark 2.16. Let us analyse the boundary of the standard p-simplex for
0 < p < n. From the definition of the face maps (2.8) we obtain

di(σp) = (ιA⊗X⊗n−p−1 ⊗X⊗p+1) ◦ (X⊗i ⊗ ιX ⊗X⊗p−i)

= ιA⊗X⊗n−p−1 ⊗X⊗i ⊗ ιX ⊗X⊗p−i,
(2.9)

for 0 ≤ i ≤ p. In particular d0(σp) = σp−1, but also the other faces are not so
different from σp−1: they simply differ from σp−1 for the position of the term
ιX in (2.9), which in any case "sits" in one of the last p+ 1 spots. If in addition
C is pre-braided we have an easy way to switch the position of ιX . If 0 < i ≤ p,
the condition (2.7) ensures that

bX⊗i,X ◦ (X⊗i ⊗ ιX) = ιX ⊗X⊗i.

Hence if we set

hi := A⊗X⊗n−p−1 ⊗ bX⊗i,X ⊗X⊗p−i ∈ AutC(A⊗X⊗n) (2.10)

we have hi ◦ di(σp) = σp−1. Another feature of these elements hi arises if C
is locally homogeneous at the pair (A,X). From the Remark 2.15 we know
that every element in stab(σp) can be written in the form f ⊗ X⊗p+1 with
f ∈ AutC(A⊗X⊗n−p−1), as a consequence they all commute with these hi, since
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they act on disjoint part:

(f ⊗X⊗p+1) ◦ hi = f ⊗ bX⊗i,X ⊗X⊗p−i = hi ◦ (f ⊗X⊗p+1).

Remark 2.17. In general the stabiliser of a simplex fixes the simplex pointwise.
Indeed suppose g ∈ Aut(A⊗X⊗n) fixes the simplex f , then g ◦ f = f , and we
have that g ◦ f ◦ ιj = f ◦ ιj . Fixing the vertices of f , g fixes f pointwise.

We can now formulate a connectivity condition depending on a parameter
k ∈ N that this semi-simplicial sets can satisfy. We will call it "connectivity
axiom", and we will see later how strongly it is related to the homological stability
problem for the groups Aut(A⊗X⊗n).

Definition 2.18. Let (C,⊗, e) be a monoidal category and (A,X) a pair of
objects in C. We say that C satisfies LH3 at (A,X) with slope k ∈ N if

LH3 For all n ≥ 1, |Wn(A,X)| is
(
n−2
k

)
-connected.

Remark 2.19. For the sake of clarity we fix some conventions about connectivity.
A non-empty space X is said to be m-connected if πi(X) = 0 for all integers i
such that 0 ≤ i ≤ m, and all basepoints. A non-empty space is always at least
(−1)-connected, while we will consider the empty-space (−2)-connected.

2.2 The Main Homological Stability Theorem

In this section we use Quillen’s classical argument [14] in the case of general
linear groups to show that in a locally homogeneous category in which the
semi-simplicial sets Wn(A,X) are highly-connected, the stabilisation sequence
associated to the pair (A,X) satisfy homological stability with constant coeffi-
cients Z. The precise statement is the following.

Theorem 2.20. Let (C,⊗, e) be a pre-braided category locally homogeneous
at a pair of objects (A,X). Suppose that C satisfies LH3 at (A,X) with slope
k ≥ 2. Then the map

Hi(Aut(A⊗X⊗n)) Hi(ΣX)−−−−−→ Hi(Aut(A⊗X⊗n+1)) (2.11)

is an epimorphism if n ≥ ik and an isomorphism if n ≥ ik + 1.

Proof. Let us denote Gn := Aut(A ⊗ X⊗n) and Wn := Wn(A,X), we will
work on the general index n+ 1 because admits an easier development of the
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computation. We begin recalling and making a number of observations about
the set-up of the theorem:

(1) The semi-simplicial set Wn+1 is
(
n−1
k

)
-connected. This holds by LH3.

(2) The action of Gn+1 on Wn+1 is transitive on p-simplices for each p ≤ n

and the stabiliser of each simplex fixes the simplex pointwise (Remark
2.17).

(3) The map _⊗X⊗p+1 : Gn−p → Gn+1 is an isomorphism onto the stabiliser
of the standard p-simplex σp of Wn+1 (Remark 2.15).

We will construct a double complex and we will gather informations about
the two spectral sequences associated to it. Then we will conclude proving
homological stability by induction on the homological dimension i.

Step1: The two spectral sequences argument. For G = Gn+1 let F∗
be a free resolution of Z in ZG-modules, and let

· · · → Cp → Cp−1 → · · · → C0 → Z→ 0

be the augmented simplicial chain complex of W = Wn+1. The action of G on
W makes C∗ a complex of ZG-modules, so we can consider the double complex

C̃∗∗ = C∗ ⊗G F∗. (2.12)

First of all C̃ is a first quadrant double complex, since Cp ⊗G Fq = 0 if p < −1
or q < 0. As a consequence we can apply the machinery developed in Subsection
1.3.2. We will filter the double complex "horizontally" and then "vertically",
obtaining two different spectral sequences both converging to H∗(TC̃).

Let us begin filtering the double complex "horizontally". As stated in the re-
called Subsection we obtain a spectral sequence {Ēr∗,∗, dr} converging to H∗(TC̃)
with

Ē0
p,q = C̃q,p = Cq ⊗G Fp,

Ē1
p,q = Hq(C̃∗,p) = Hq(C∗ ⊗G Fp).

If we assume W is c(W )-connected (In our case c(W ) = n−1
k ), then the complex

C∗ is exact through dimension c(W ). Since Fp is free, C∗ ⊗G Fp is exact in the
same range so Ē1

p,q for q ≤ c(W ). Combining this information with the fact
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that Ē0
p,q = 0 for p < 0 we obtain that Ē∞p,q = 0 for p + q ≤ c(W ). With this

computation we can say something about the abutment of the spectral sequence:
H∗(TC̃). For p+ q ≤ c(W ) we have

0 ∼= Ē∞p,q
∼= FpHp+q(TC̃)/Fp−1Hp+q(TC̃),

so FpHp+q(TC̃) = Fp−1Hp+q(TC̃) whenever p + q ≤ c(W ), which implies
Hp+q(TC̃) = 0 for p+ q ≤ c(W ).

Let now filter the double complex C̃ "vertically". We obtain a second spectral
sequence {Er∗,∗, dr} with the same abutment as the first one. Since we know
from the first one that Hp+q(TC̃) = 0 for p + q ≤ c(W ), we must have that
E∞p,q = 0 in the same range of degrees. From Subsection 1.3.2 we have

E0
p,q = C̃p,q = Cp ⊗G Fq,

E1
p,q = Hq(C̃p,∗) = Hq(Cp ⊗G F∗) = Hq(G;Cp),

and the differential d1 = (IdG, ∂)∗ (see Subsection 1.2.3) is the map induced
in homology by the boundary map ∂ of the complex C∗. Observe now that
since the action of G = Gn+1 on W = Wn+1 is transitive on p-simplices for each
0 ≤ p ≤ n, we are exactly in the situation described in the Example 1.11. Then
choosing the standard p-simplex σp as representative of its orbit, the equation
(1.4) becomes

Cp ∼= IndGstab(σp)(Zσp
).

Moreover as observed in (2), the stabiliser of a simplex fixes the simplex pointwise.
This implies that every element in stab(σp) preserves the orientation of σp, and
so Zσp

as stab(σp)-module is simply Z with trivial action. In this way as we
stated in Example 1.10, Cp is simply a permutation module

Cp ∼= IndGstab(σp) Z ∼= Z
[
G/stab(σp)

]
. (2.13)

Combining this observation with Shapiro’s Lemma (Proposition 1.19), for
0 ≤ p ≤ n we obtain that the natural inclusion

(stab(σp),Z) ↪→ (G, IndGstab(σp) Z)
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induces an isomorphism in homology

Hq(stab(σp);Z) ∼= Hq(G; IndGstab(σp) Z) ∼= Hq(G;Cp).

Then Considering σ−1 to be the empty set, with stabiliser the whole group Gn+1

the E1-page takes the form:

E1
p,q = Hq(stab(σp)) for − 1 ≤ p ≤ n.

We will be interested only in degrees p+ q ≤ c(W ) = n−1
k (for which E∞p,q = 0),

so shall ignore the fact that the above holds only for p ≤ n.
By observation (3) we have a preferred isomorphism of stab(σp) with Gn−p,

but we want also to keep track of the d1 differential after all these isomorphisms
of E1

p,q. To do so, recall that it is induced by the boundary map ∂p : Cp → Cp−1,
which is the alternating sum of the maps di as defined in (2.8). Using the last
form in (2.13), we need only to choose an element hi ∈ Gn+1 which takes diσp
to σp−1. Then the d1 differential is induced by the alternating sum of the maps

Hq(stab(σp))
(αi)∗−−−→ Hq(stab(diσp))

(chi
)∗−−−−→ Hq(stab(σp−1)), (2.14)

where αi : stab(σp) ↪→ stab(diσp) is the inclusion , and chi
is the conjugation by

the element hi: chi
(g) = high

−1
i .

For p = 0 we don’t have the map induced by conjugation, so

d = d1 : E1
0,i = Hi(Gn)→ E1

−1,i = Hi(Gn+1)

is simply the map in homology induced by the inclusion of a vertex stabiliser
into the whole group, and it identifies with the map in the statement of the
theorem by observation (3).

For p ≥ 1 we can choose the elements hi as stated in Remark 2.16 (remember
to use n+ 1 instead of n). In this way the map

chi ◦ αi : stab(σp)→ stab(σp−1)

takes the element g ∈ stab(σp) to the element high−1
i = g, since hi commutes

with every element in stab(σp). As a consequence the map 2.14 is independent
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from i and always induced by the inclusion ι : stab(σp) ↪→ stab(σp−1). Then

d1 =
p∑
i=0

(−1)iι∗ : H∗(stab(σp))→ H∗(stab(σp−1)) (2.15)

is the zero map when p is odd, and can be identified with the stabilisation map
HqGn−p → HqGn−p+1 when p is even.

Step2: Inductive argument for surjectivity. In the situation we are
considering, the E1-page of the spectral sequence has the following form:

i Hi(Gn+1) Hi(Gn) Hi(Gn−1) · · ·

i− 1 Hi−1(Gn+1) Hi−1(Gn) Hi−1(Gn−1) · · ·

...
...

...
...

q = 0 H0(Gn+1) H0(Gn) H0(Gn−1) · · ·

p = −1 0 1 · · ·

d 0

0

0

We want to show that the map d is surjective when n ≥ ki and injective
when n ≥ ki+ 1. We prove this by induction on the homological dimension i, so
consider the statements

(SI) The map d is surjective for i ≤ I and n ≥ ki.

(II) The map d is an isomorphism for i ≤ I and n ≥ ki+ 1.

The statement (S0) holds trivially. Indeed we have i = 0 and n ≥ 0, so
n−1
k ≥ −1 and we must have that E∞−1,0 = 0. But the only differential that can

kill it is d1, so d must be surjective.
To prove (I0) simply notice that for i = 0 and n ≥ 1 we have n−1

k ≥ 0,
so E∞−1,0 = E∞0,0 = 0. This implies surjectivity of d, and exactness in E1

0,0,
since the d1 differential is the only one capable of killing that term. Now since
d1 : E1

1,0 → E1
0,0 is the zero map as stated at the end of the previous step, then

d must be also injective.
We start by showing the implication (SI−1) + (II−1) ⇒ (SI). So let i ≤ I

and n ≥ ki. Surjectivity of d follows from:
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(SI1) E∞−1,i = 0.

(SI2) E2
p,q = 0 for p+ q = i and q < i.

Indeed (SI1) says that E1
−1,i has to be killed before E∞, and condition (SI2)

says that the sources of all possible differentials to that term after d1 are 0, and
therefore d1 is the only differential that can kill it, so d must be surjective.

Condition (SI1) holds because E∞p,q = 0 when p + q ≤ n−1
k , and i − 1 ≤

n
k − 1 ≤ n−1

k when n ≥ ki and k ≥ 1.
In order to prove (SI2) we begin by showing that for p+ q = i, with q < i

the map induced by inclusion of stabilisers

Hq(stab(σj))
ι∗−→ Hq(Gn+1) (2.16)

is an isomorphism when j ≤ p, and an epimorphism if j = p+ 1. This map can
be written as a composition of stabilisation maps

Hq(Gn−j)→ Hq(Gn−j+1)→ · · · → Hq(Gn+1) (2.17)

as a consequence of observation (3). Since q ≤ I − 1, each one of these maps is
an epimorphism when n − j ≥ kq, and an isomorphism when n − j ≥ kq + 1,
due to (SI−1) and (II−1) respectively. For j = −1 there is nothing to prove, and
for j = 0 we have n ≥ ki ≥ kq + 1, so (2.17) reduces to a single map, which is
an isomorphism by (II−1). Otherwise we can assume j ≥ 2, and since k ≥ 2 by
hypothesis, we have the inequalities

n ≥ ki ≥ kp+ kq ≥ kj + kq ≥ j + kq + 1.

Bringing j to the other side gives n − j ≥ kq + 1, so the maps (2.17) are all
isomorphisms. The argument for the case j = p+ 1 is similar. Indeed

j + q = i+ 1 ≤ n

k
+ 1 = n+ k

k
,

which implies n + k ≥ kj + kq, and so n + k(1 − j) ≥ kq. Observe also that
j ≥ 2, because q < i and j + q = i+ 1, so we have j

(j−1) ≤ 2 ≤ k, which implies
−j ≥ k(1− j). Combining these two computations we get

n− j ≥ n+ k(1− j) ≥ kq,
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which shows that the maps (2.17) are all epimorphisms.
Let us consider now the diagram

Hq(stab(σp−1)) Hq(stab(σp)) Hq(stab(σp+1))

Hq(Gn+1) Hq(Gn+1) Hq(Gn+1)

ι∗ ι∗

d1

ι∗

d1

0 Id

(2.18)

where the vertical maps are all induced by inclusion of stabilisers (2.16), and
the top row is a "piece" taken from the E1-page. As stated at the end of the
previous step, the top horizontal maps are alternately the zero map and the
map induced by inclusion of stabilisers, which on the bottom line correspond to
the zero map and the identity map. In (2.18) is illustrated the case when p is
odd. The left square commutes because we have the zero map on the top and on
the bottom line. The right square commutes because all the maps involved are
induced by subgroup inclusions. The case p even is identical, simply switching
the two squares in (2.18). In both cases the bottom sequence is exact in the
middle since alternates identities and zero maps. By the previous paragraph the
vertical map on the left and the one in the middle are isomorphisms, while the
right one is an epimorphism. This implies that also the top line is exact in the
middle, and in particular we have that E2

p,q = 0 when p+ q = i and q < i.

Step3: Inductive argument for injectivity. To conclude the proof of
the Theorem it remains only to show that (SI) + (II−1)⇒ (II). So assume i ≤ I
and n ≥ ki+ 1. As before we will prove the two sentences

(II1) The term E∞0,i = 0;

(II2) The term E2
p,q = 0 when p+ q = i+ 1 and q < i;

since together imply (II). Indeed condition (II1) says that E1
0,i has to be killed

before E∞, and condition (II2) says that the sources of all possible differentials
to that term after d1 are 0. Therefore d1 is the only differential that can kill it.
But from the end of the first step we know that d1 : E1

1,i → E1
0,i is the zero map.

So necessarily d must be injective to kill E1
0,i.

To prove (II1) and (II2) the same argument as in Step2 works. Indeed for
(II1) we need only i ≤ n−1

k which we have assumed. For (II2) the vertical
map on the left and the one in the middle of (2.18) are isomorphisms when
n− p ≥ kq+ 1, which holds if p+ q = i+ 1 with q < i and n ≥ ki+ 1. While the
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right vertical map is an epimorphism when n− p− 1 ≥ kq, which holds under
the same conditions.

2.3 Starting from a groupoid

Now that we have developed all these techniques in the setting of locally homo-
geneous categories, one can ask how to apply them if we start with a family of
groups which doesn’t fit already into a locally homogeneous category. So this
section is devoted to the construction of a locally homogeneous category starting
from a monoidal groupoid. The main tool here will be Quillen’s construction of
a category 〈G,G〉 (see [7]), which we will indicate UG, following the notation of
[18].

So let (G,⊗, e) be a monoidal Groupoid, and define UG to be the category
with the same objects of G, but with different morphisms. A morphism in UG
from A to B is an equivalence class of pairs (X, f) where X is an object of G
and f : X ⊗ A → B is a morphism in G, and where (X, f) ∼ (X ′, f ′) if there
exists an isomorphism g : X → X ′ in G making the diagram

X ⊗A B

X ′ ⊗A

g⊗A

f

f ′
(2.19)

commute. We will use the notation [X, f ] for such an equivalence class. The
composition of two morphisms [X, f ] ∈ HomUG(A,B), and [Y, g] ∈ HomUG(B,C)
is defined as

[Y, g] ◦ [X, f ] = [Y ⊗X, g ◦ (Y ⊗ f)].

2.3.1 Preserving the automorphisms

When using the construction for UG, we will be interested in the relationship
between the automorphism groups in G we start with, and those in UG. With
particular attention to the cases where they remain unchanged. First of all
notice that we have a functor F : G → Iso(G) taking an isomorphism f in G to
the class [e, f ]. The following proposition gives us conditions that ensures F to
be full and faithful.

Remark 2.21. Recall that having no zero divisors for a monoidal category G
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means that the following implication is true for objects in G

U ⊗ V ∼= e =⇒ U ∼= V ∼= e.

Proposition 2.22. If (G,⊗, e) is a monoidal groupoid, then the following holds:

(i) If AutG(e) = {1e}, the functor F is faithful.

(ii) If G has no zero divisors, the functor F is full.

in particular if both conditions hold, G is the underlying groupoid of UG.

Proof. For (i), if [e, f ] = [e, g] in UG, we have that there is an isomorphism
φ : e→ e in G such that g = f ◦ (φ⊗A). Since AutG(e) = {1e}, we must have
that φ = 1e and hence that f = g.

For (ii) suppose that [X, f ] ∈ HomUG(A,B) is an isomorphism, with inverse
[Y, g] ∈ HomUG(B,A). This means that

[Y, g] ◦ [X, f ] = [Y ⊗X, g ◦ (Y ⊗ f)] = [e,1e].

So in particular Y ⊗ X ∼= e in G, which implies Y ∼= X ∼= e in G, because
there are no zero divisors in G. Choosing an isomorphism φ : e → X, we get
[X, f ] = [e, f ◦ φ], which shows that [X, f ] is in the image of the functor.

2.3.2 Extending the monoidal structure

Starting with a monoidal groupoid, we want to extend this structure at least to
UG, preserving the properties we have seen useful in the previous sections. This
is a proposition in this direction.

Proposition 2.23. Let (G,⊗, e) be a monoidal groupoid, then:

(i) The object e is initial in UG

(ii) If G is braided monoidal with no zero divisors then UG is a pre-braided
monoidal category.

(iii) If G is symmetric monoidal then UG is a symmetric monoidal category.

Proof. We first show that the unit e is initial in UG. If [X, f ] and [Y, g] are
two elements of HomUG(e,A), then g−1 ◦ f : X → Y is an isomorphism such
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that the following diagram

X ⊗ e A

Y ⊗ e
g−1◦f

f

g
(2.20)

commutes, which implies that (X, f) ∼ (Y, g) represent the same element of
HomUG(e,A).

Assuming now that G is braided monoidal, we define the monoidal structure
on UG as follows: we can use on objects exactly the same monoidal structure of
G, while given [X, f ] ∈ Hom(A,B) and [Y, g] ∈ Hom(C,D), we define

[X, f ]⊗ [Y, g] := [X ⊗ Y, (f ⊗ g) ◦ (X ⊗ b−1
A,Y ⊗ C)] ∈ Hom(A⊗ C,B ⊗D).

We have that G can be seen in UG through the functor F already defined, and
in this sense we have that the monoidal structure on G is compatible with the
one defined on UG. Indeed if [e, f ] ∈ Hom(A,B) and [e, g] ∈ Hom(C,D), then

[e, f ]⊗ [e, g] = [e⊗ e, (f ⊗ g) ◦ (1e ⊗ b−1
A,e ⊗ C)] = [e, f ⊗ g]

because in a braided monoidal category we have bA,e = A. With this monoidal
product, (UG,⊗, e) is a monoidal category: the only nontrivial condition to check
is the associativity for arrows, which follows from the compatibility conditions
(2.5), (2.6) on G. Indeed given [X, f ] ∈ Hom(A,B), [Y, g] ∈ Hom(C,D) and
[W,h] ∈ Hom(E,F ), let’s check that

([X, f ]⊗ [Y, g])⊗ [W,h] = [X, f ]⊗ ([Y, g]⊗ [W,h]) . (2.21)

The left hand side is equal to[
X ⊗ Y ⊗W, (f ⊗ g ⊗ h) ◦ (X ⊗A⊗ Y ⊗ b−1

C,W ⊗ E) ◦ (X ⊗ b−1
A,(Y⊗W ) ⊗ C ⊗ E)

]
which we can write in a more concise form omitting the symbol ⊗ in the monoidal
products between objects, and also omitting completely the monoidal products
with identity morphisms:[

XYW, (f ⊗ g ⊗ h) ◦ b−1
C,W ◦ b

−1
A,(Y⊗W )

]
.
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In the same way the right hand side is equal to[
XYW, (f ⊗ g ⊗ h) ◦ b−1

A,Y ◦ b
−1
(A⊗C),W

]
,

so (keeping this notation with identity morphisms omitted) we have only to
check that

b−1
C,W ◦ b

−1
A,(Y⊗W ) = b−1

A,Y ◦ b
−1
(A⊗C),W

as elements in HomG(XYWACE,XAY CWE), but now simply using (2.5), and
(2.6) we have

bA,(Y⊗W ) = b−1
W,A ◦ bA,Y

b(A⊗C),W = b−1
W,A ◦ bC,W .

The functor F : G → Iso(UG) is a bijection on objects, and since G has no
zero divisors, applying Proposition 2.22 we get also that the functor is full. In
view of the fact that in this way we can reach every isomorphism of UG, we get
that the braided monoidal structure on G induces one on Iso(UG). In order to
prove that UG is pre-braided, remains only to check that

bA,B ◦ (A⊗ ιB) = ιB ⊗A,

but this follows from the computation

bA,B ◦ (A⊗ ιB) = [e, bA,B ] ◦ ([e,1A]⊗ [B,1B ])

= [e, bA,B ] ◦ [B,1A⊗B ◦ b−1
A,B ] = [B,1A⊗B ]

ιB ⊗A = [B,1B ]⊗ [e,1A] = [B,1A⊗B ◦ b−1
e,e] = [B,1A⊗B ].

Suppose now that G is symmetric monoidal. On UG we can use the same
braiding as G since they have the same objects. Moreover the only nontrivial
condition to check in order to prove that UG is symmetric monoidal is naturality
in both arguments of the braiding. Namely given [X, f ] ∈ Hom(A,B) and
[Y, g] ∈ Hom(C,D) we have to show

([Y, g]⊗ [X, f ]) ◦ [e, bA,C ] = [e, bB,D] ◦ ([X, f ]⊗ [Y, g]).
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The left hand side is

[Y ⊗X, (g ⊗ f) ◦ (Y ⊗ b−1
C,X ⊗A) ◦ (Y ⊗X ⊗ bA,C)]

and the right hand side is

[X ⊗ Y, bB,D ◦ (f ⊗ g) ◦ (X ⊗ b−1
A,Y ⊗ C)].

Notice now that bX,Y : X ⊗ Y → Y ⊗X defines an isomorphism between the
complements of these two morphisms. The fact that they represent the same
morphism corresponds to the commutativity of the following diagram:

XY AC Y XAC

XAY C Y CXA

BD DB

bX,Y

b−1
A,Y

b−1
C,X
◦bA,C

bX⊗A,Y⊗C

f⊗g g⊗f

bB,D

.

The bottom square commutes for naturality of the braiding b in G. Let us prove
that the top square commutes. Using (2.5) and (2.6) we have that

b−1
C,X ◦ bA,C = bX⊗A,C ,

bX⊗A,Y⊗C = b−1
C,X⊗A ◦ bX⊗A,Y = bX⊗A,C ◦ bX⊗A,Y .

Where in the last one we use that b is a symmetry, so b−1
C,X⊗A = bX⊗A,C . After

substituting these two arrows we are left to show only that bX,Y = bX⊗A,Y ◦b−1
A,Y .

But using again that b is a symmetry we get exactly (2.5).

2.3.3 Getting homogeneity

The aim of this construction is to obtain local homogeneity at couples of objects
(A,X) in UG, or more generally global homogeneity for the category UG. So let
us look for conditions on G which provides local or global homogeneity.

Definition 2.24. For a pair of objects (A,X) in a monoidal groupoid (G,⊗, e)
we say that G satisfies local cancellation at (A,X) if it satisfies

LC For all 0 ≤ p < n, if Y ∈ G is such that Y ⊗ X⊗p+1 ∼= A ⊗ X⊗n, then
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Y ∼= A⊗X⊗n−p−1

Remark 2.25. The axiom LC implies in particular that morphisms X⊗p+1 →
A ⊗Xn in UG have unique complements, and this is one of the main way in
which we shall use it.

Sometimes LC holds because our groupoid satisfies a stronger global condition
which implies LC at each pair of objects.

Definition 2.26. We say that a monoidal groupoid (G,⊗, e) satisfies cancellation
if the following holds

C For all objects A,B,C in G, if A⊗ C ∼= B ⊗ C then A ∼= B.

The following Theorem states that these two conditions are exactly what we
are looking for.

Theorem 2.27. Let (G,⊗, e) be a braided monoidal groupoid with no zero
divisors, and UG its associated pre-braided category. Then

(a) The category UG satisfies LH1 at (A,X) if and only if G satisfies LC at
(A,X).

(b) If the map AutG(A⊗X⊗n−p−1)→ AutG(A⊗X⊗n) taking f to f ⊗X⊗p+1

is injective for all 0 ≤ p < n, then UG satisfies LH2 at (A,X).

In particular if (a) and (b) are both satisfied then UG is locally homogeneous at
(A,X). The corresponding global results are:

(c) The category UG satisfies H1 if and only if G satisfies C.

(d) If for all objects A,B in G the map AutG(A)→ AutG(A⊗B) taking f to
f ⊗B is injective, then UG satisfies H2.

In particular if (c) and (d) are both satisfied then UG is homogeneous.

Proof. Let’s start with (a). Suppose that G satisfies LC at (A,X) and let
[U, f ], [V, g] ∈ HomUG(X⊗p+1, A⊗X⊗n). As we noticed earlier in the Remark
2.25, since f and g are isomorphisms, by two applications of LC we have that U
and V are isomorphic. Choose φ : U ∼−→ V , then [V, g] = [U, g ◦ (φ⊗X⊗p+1)],
thanks to the same isomorphism φ, and moreover from the last one we can obtain
[U, f ] simply post-composing with [e, f ◦(g◦(φ⊗X⊗p+1)−1)] ∈ AutUG(A⊗X⊗n):

[e, f ◦ (g ◦ (φ⊗X⊗p+1))−1] ◦ [U, g ◦ (φ⊗X⊗p+1)] = [U, f ],
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which proves LH1.
Conversely assume that UG satisfies LH1 and that we have an isomor-

phism φ : Y ⊗X⊗p+1 ∼−→ A ⊗X⊗n. We can consider [Y, φ] as an element of
HomUG(X⊗p+1, A ⊗X⊗n), but also [A ⊗X⊗n−p−1,1A⊗X⊗n ] is an element in
that set. By LH1, there exists an automorphism [U,ψ] of A⊗X⊗n such that

[U,ψ] ◦ [Y, φ] = [A⊗X⊗n−p−1,1A⊗X⊗n ].

Since G has no zero divisors we can apply Proposition 2.22. Then exists ψ′ ∈
AutG(A ⊗ X⊗n) such that [U,ψ] = [e, ψ′]. It follows that [Y, ψ′ ◦ φ] = [A ⊗
X⊗n−p−1,1A⊗X⊗n ]. But this implies that Y ∼= A⊗X⊗n−p−1, proving LC and
finishing the proof of (a).

For (b) we must show that the map

_⊗X⊗p+1 : AutUG(A⊗X⊗n−p−1)→ AutUG(A⊗X⊗n) (2.22)

is injective and identify its image. The map is a group homomorphism, then to
check injectivity we can look at the kernel. Suppose that [V, f ] ∈ AutUG(A ⊗
X⊗n−p−1), is such that [V, f ] ⊗ X⊗p+1 = [V, f ⊗ X⊗p+1] is the identity in
AutUG(A⊗X⊗n). This means that there exists an isomorphism φ : V → e in G
such that the following diagram commute

V ⊗A⊗X⊗n A⊗X⊗n

e⊗A⊗X⊗n .
φ⊗A⊗X⊗n

f⊗X⊗p+1

A⊗X⊗n

In other words f ⊗ X⊗p+1 = φ ⊗ A ⊗ X⊗n−p−1 ⊗ X⊗p+1 in G, where the
hypothesis of injectivity implies f = φ ⊗ A ⊗X⊗n−p−1. But this means that
[V, f ] = [e,A⊗X⊗n−p−1] in AutUG(A⊗X⊗n−p−1), which proves injectivity. It
remains only to show that the image of the map (2.22) is stab(σp). For simplicity
let’s denote U = A⊗X⊗n−p−1, V = X⊗p+1. We have

ιU ⊗ V = [U,1U ]⊗ [e,1V ] = [U,1U⊗V ].

Moreover the usual functor F is full since we have no zero divisors, so we obtain

stab(ιU ⊗ V ) = {[e, φ] ∈ AutUG(U ⊗ V ) | [e, φ] ◦ [U,1U⊗V ] = [U,1U⊗V ]}
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= {[e, φ] ∈ AutUG(U ⊗ V ) | [U, φ] = [U,1U⊗V ]}.

The last equality is equivalent to saying that stab(ιU ⊗ V ) consists of the
morphisms [e, φ] such that there is an isomorphism ψ : U → U in G satisfying
φ = ψ ⊗ V , which is exactly saying that [e, φ] is the image of [e, ψ] ∈ AutUG(U).

For (c) and (d) the proof is identical.





Chapter 3

Homological Instability

In this chapter we present some sequences of groups showing the following
interesting pattern. We start with a braided monoidal groupoid which satisfies
cancellation and everything is needed to apply Theorems 2.22, 2.23, 2.27, and get
an associated pre-braided homogeneous category. Choosing a pair (A,X) in this
category, we have seen in the previous chapter that homological stability for the
associated stabilisation sequence follows if the |Wn(A,X)| are highly connected.
Here instead we will present a pair in the category for which homological stability
of the associated stabilisation sequence fails. In this way we obtain a family
of groups not stable even if it fits perfectly into the framework of pre-braided
homogeneous category. In all the examples the failure is already at the level of
H1, but we present also examples very similar where the H1 stabilises and for
which we do not know if we have or not failure at a higher level. The interesting
thing in these type of examples is that when stability fails dramatically (at the
level of H1) also the high-connectivity of the |Wn(A,X)| fails dramatically (they
are not even connected). While in the examples where there is no failure at the
level of H1, the |Wn(A,X)| are connected.

3.1 Showing connectivity

In this section we will present a quick and nice criteria useful in many of our
examples to check connectivity of |Wn(A,X)|.

Let (C,⊗, e) be a pre-braided monoidal category, locally homogeneous at a
pair of objects (A,X). Recall the nice description of the set of p-simplices we

39
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gave in Remark 2.5: we fix our preferred p-simplex σp := ιA⊗X⊗n−p−1 ⊗X⊗p+1

and write every other element f ∈ HomC(X⊗p+1, A⊗X⊗n) as f = σ ◦ σp with
σ ∈ Gn. In this way we have

HomC(X⊗p+1, A⊗X⊗n) ∼= Gn/Gn−p−1

where the isomorphism is obtained sending the element f in the corresponding
class σGn−p−1.

We now want to interpret in these terms the boundary maps of Wn(A,X),
at least for 1-simplices. Define then tn := A ⊗ Xn−2 ⊗ b−1

X,X ∈ Gn for n ≥ 2,
and consider a 1-simplex σGn−2 ∈ Gn/Gn−2; from the definition of the first
boundary map we have:

d0(σGn−2) = σ ◦ (ιA⊗X⊗n−2 ⊗X⊗2) ◦ (ιx ⊗X) = σGn−1 ∈ Gn/Gn−1.

While for the second boundary map we have:

d1(σGn−2) = σ ◦ (ιA⊗X⊗n−2 ⊗X⊗2) ◦ (X ⊗ ιX)

= σ ◦ tn ◦ (ιA⊗X⊗n−2 ⊗X⊗2) ◦ (ιx ⊗X) = σtnGn−1 ∈ Gn/Gn−1,

since from the definition of pre-braiding we have X ⊗ ιX = b−1
X,X ◦ (ιX ⊗X).

Denoting with 〈 〉G the generated subgroup in G, we can now easily prove
the following

Lemma 3.1. For n ≥ 2, 〈tn, Gn−1 ⊗X〉Gn
= Gn if and only if |Wn(A,X)| is

connected.

Proof. Suppose first that 〈tn, Gn−1 ⊗X〉 = Gn. Denoting with e the unity of
Gn we have to show that from every vertex σGn−1 we can reach the vertex eGn−1

through a path of 1-simplices. Choose a representation σ = g1tng2 . . . gktn with
gi ∈ Gn−1 ⊗X (the value k = 0 corresponds to σ = e), and work by induction
on k. For k = 0 there is nothing to prove, since we already are in the vertex
eGn−1. For k ≥ 1 consider the 1-simplex g1tn . . . tngkGn−2. Since

d0(g1tn . . . tngkGn−2) = g1tn . . . gk−1tnGn−1

d1(g1tn . . . tngkGn−2) = g1tn . . . gktnGn−1 = σGn−1

we can move from σGn−1 to a vertex with a lower value of k, and use the
inductive hypothesis.
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Conversely suppose that |Wn(A,X)| is connected, and pick an element
σ ∈ Gn. We have a minimal path of vertices σGn−1 = V0, V1, . . . , Vk = eGn−1,
with the property that each vertex Vi is connected to Vi+1 through a 1-simplex.
Again we can prove that σ ∈ 〈tn, Gn−1〉 by induction on k. For k = 0 we
have σ ∈ Gn−1. For k ≥ 1 if τGn−2 is the 1-simplex connecting σGn−1 and V1

(represented by σ′Gn−1) we have two possibilities. If d0(τGn−2) = σGn−1 and
d1(τGn−2) = σ′Gn−1, then ∃g, g′ ∈ Gn−1 such that σ = σ′g′t−1

n g. Otherwise
d0(τGn−2) = σ′Gn−1 and d1(τGn−2) = σGn−1, so ∃g, g′ ∈ Gn−1 such that
σ = σ′g′tng. In both cases we have only to prove that σ′ ∈ 〈tn, Gn−1〉, which
holds for inductive hypothesis, since σ′Gn−1 = V1 admits a lower value of k.

Remark 3.2. If we are in the case A = e the unit object, and we already
know that |Wn−1(e,X)| is connected, we can take advantage of it in showing
connectivity of |Wn(e,X)| via the previous lemma. Indeed suppose to be in
this case, with n ≥ 3; we have that Gn−1 ⊗ X contains X ⊗ Gn−2 ⊗ X as a
subgroup, and also we can write tn = X ⊗ Xn−3 ⊗ b−1

X,X = X ⊗ tn−1. Now
applying the previous lemma, from connectivity of |Wn−1(e,X)| we have that
〈tn−1, Gn−2 ⊗X〉Gn−1 = Gn−1, so 〈X ⊗ tn−1, X ⊗Gn−2 ⊗X〉Gn = X ⊗Gn−1.
Then the condition 〈tn, Gn−1 ⊗X〉Gn = Gn is equivalent to 〈X ⊗Gn−1, Gn−1 ⊗
X〉Gn = Gn, which can be more easy to verify.

3.2 Symmetric Groups

Consider the following groupoid G: for every nonzero natural number n the set
n := {1, . . . , n} is an object of G, and morphisms are simply the self-bijections
of these sets. In this way AutG(n) = Sn is the symmetric group on n elements.
The usual cartesian product of sets, induces a well defined symmetric monoidal
structure (G,⊗, 1) on this groupoid. Indeed we have only to fix a bijection
between {1, . . . , n} × {1, . . . ,m} and {1, . . . , nm}, which means to choose an
order for the nm elements of {1, . . . , n} × {1, . . . ,m}. To order this set think
about it as a matrix with m rows and n columns with the element (i, j) ∈
{1, . . . , n}×{1, . . . ,m} in position (i, j) in the matrix. Now simply start ordering
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the matrix from left to right starting from the first row and so on.

1 2 · · · n

n+ 1 n+ 2 · · · 2n

...
...

. . .
...

mn− n+ 1 · · · · · · mn

On morphisms, given two self-bijections σ ∈ AutG(n) and τ ∈ AutG(m), we
have a natural well defined self-bijection σ × τ of the cartesian product, given
by (σ × τ)(i, j) := (σ(i), τ(j)), and so through the ordering just presented a well
defined self bijection σ⊗τ ∈ Snm. In the matrix representation, the permutation
σ ⊗ τ acts on these elements permuting the m rows with τ , and the n columns
with σ.

The usual symmetry T : n×m ∼= m× n of the cartesian product induces a
symmetry bn,m : n⊗m→ m⊗n in our monoidal groupoid. Namely in the matrix
representation is simply the transposition of the matrix, so as a permutation
bn,m ∈ Snm is simply this transposition seen under the two isomorphisms with
{1, . . . , nm}:

n×m m× n

nm nm

∼=

T

∼=
bn,m

Example 3.3. Let us see the computation of b2,3 ∈ S6 to fix the idea of the
procedure. We start with our six elements disposed in a 3× 2 matrix (left matrix
in (3.1)), and transpose it:

1 2 1 3 5

3 4 2 4 6

5 6

(3.1)

In the matrix on the right 3 is in the second place, 5 in the third, 2 in the fourth
and 4 in the fifth. So the desired permutation is b2,3 = (3, 2, 4, 5) ∈ S6.

Since (G,⊗, e) is a symmetric monoidal groupoid, we can apply Proposition
2.22 and get that 1 is initial in the symmetric monoidal category UG.

As stated in the outline of these examples we consider now the category
UG. Our groupoid G has no zero divisors (mn = 1 ⇒ m = n = 1), and
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AutG(1) = {11}. Then applying Proposition 2.22 and Proposition 2.23 we have
that UG is a symmetric monoidal category and G its underlying groupoid.

The groupoid G satisfies cancellation (mn = ln implies m = l since n 6= 0),
and ∀n,m in G the map AutG(n)→ AutG(n⊗m) taking σ to σ⊗m is injective.
Then applying Theorem 2.27 we get that UG is a homogeneous category.

3.2.1 Powers of 2

The first example of Homological instability that we want to analyse was pointed
out by Peter Patzt in a brief note [13]. It’s the simplest example that we present
here, and also the inspiration for further generalizations that we will see later in
this chapter.

In the symmetric homogeneous category UG just constructed, consider the
stabilisation sequence associated to the couple (1, 2):

. . .
_⊗2−−−→ S2n

_⊗2−−−→ S2n+1
_⊗2−−−→ . . . (3.2)

Explicitly the stabilisation map Σ2 : S2n → S2n+1 takes the permutation
σ ∈ S2n into the permutation on 2n+1 elements which performs σ on the first
2n elements and σ on the remaining 2n elements (let’s indicate it by σ ⊕ σ). It’s
clear from this description that an element in the image of Σ2 must be an even
permutation, because an arbitrary decomposition of σ in transpositions, induces
a decomposition of σ ⊕ σ with double number of transpositions. For this reason
the map induced on the H1 is the zero map. Indeed as stated in Lemma 1.16,
to obtain the induced maps on the H1, we have only to take the quotient by
the commutator subgroup, and the commutator subgroup of S2n is A2n . So the
chain (3.2) doesn’t satisfy homological stability, even if it arises as a stabilisation
sequence in a homogeneous category.

Let also look at |Wn(1, 2)|. We have b−1
2,2 = (2, 3) ∈ S4, as shown in 3.3

b−1
2,2 = b2,2 =

1 2

3 4
(3.3)

so we can compute tn = 2n−2 ⊗ (2, 3) ∈ S2n . Using the matrix representation
we have four rows of 2n−2 elements and tn simply switches the second and the
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third row:

1 2 · · · 2n−2

2n−2 + 1 2n−2 + 2 · · · 2n−1

2n−1 + 1 2n−1 + 1 · · · 2n−1 + 2n−2

2n−1 + 2n−2 + 1 2n−1 + 2n−2 + 1 · · · 2n

Explicitly

tn = (2n−2 + 1, 2n−1 + 1) . . . (2n−1, 2n−1 + 2n−2) ∈ S2n .

This element can be decomposed into 2n−2(2n−2−1) transpositions, so for n ≥ 3
is an even permutation, and we have already noticed that S2n−1 ⊗ 2 is also made
by even permutations. Therefore for n ≥ 3, 〈tn,S2n−1 ⊗ 2〉S2n 6= S2n because
is contained in A2n , then applying Lemma 3.1, |Wn(1, 2)| is not connected for
n ≥ 3.

3.2.2 Powers of 3

In the same category UG we can consider the stabilisation sequence associated
to the pair (1, 3)

. . .
_⊗3−−−→ S3n

_⊗3−−−→ S3n+1
_⊗3−−−→ . . . (3.4)

where exactly as the previous example the map Σ3 : S3n → S3n+1 takes the
permutation σ ∈ S3n into the permutation on 3n+1 elements which performs
σ separately on the first 3n elements, the second 3n elements, and also on the
remaining 3n elements: Σ3(σ) = σ ⊕ σ ⊕ σ.

In this case the map induced on the H1 is an isomorphism. We have
H1(S3n) = S3n/A3n = Z/2Z, and in the image of Σ3 we have also odd permu-
tations (pick σ to be for example a single transposition).

We are interested in understanding the behaviour of |Wn(1, 3)| in this case
where homological stability doesn’t fail at the level of H1. We will use the lemma
3.1, and the Remark immediately after, so it is useful to describe explicitly tn and
the subgroup 3⊗S3n−1 . First of all we have that b−1

3,3 = (2, 4)(3, 7)(6, 8) ∈ S9,
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since

b−1
3,3 = b3,3 =

1 2 3

4 5 6

7 8 9

Then tn = 3⊗n−2 ⊗ b3,3 ∈ S3n can be described in this way as a permutation
acting on 3n ordered elements: first of all divide the 3n elements in 9 consecutive
blocks of 3n−2 elements, and then do the permutation b3,3 using these 9 blocks
as elements. The Picture 3.1 represent the permutation tn, where we omit the
identities, and the unlabelled segments means that the elements of the up block
are sent in the elements of the bottom block with the same order.

Figure 3.1: The permutation tn

In the same way we can also describe the subgroup 3⊗S3n−1 ; given σ ∈ S3n−1 ,
the element 3⊗σ acts on 3n ordered elements in this way: divide the 3n elements
in 3n−1 consecutive blocks of 3 elements, and then do the permutation σ using
these 3n−1 blocks as elements.

Lemma 3.4. For n ≥ 3 |Wn(1, 3)| is connected.

Proof. We will prove it by induction on n. For the base case (n = 3) we can
simply use GAP: a system for computational discrete algebra available at https:

//www.gap-system.org/. As generators fo the group Sm, we can consider the
single transposition ym := (1, 2) ∈ Sm and the cycle cm := (1, 2, . . . ,m) ∈ Sm.
Using GAP we know that 〈t3, y9 ⊗ 3, c9 ⊗ 3〉S27 = S27, and by Lemma 3.1 we
obtain that |W3(1, 3)| is connected.

For the inductive step we have that n ≥ 4 and that 〈S3n−2⊗3, tn−1〉 = S3n−1 .
Using the Lemma 3.1, and the Remark immediately after we have only to show
that 〈3⊗S3n−1 ,S3n−1 ⊗3〉 = S3n . Let us show first that 〈3⊗S3n−1 ,S3n−1 ⊗3〉
contains the subgroup (S3n−1 ⊕ 3n−1 ⊕ 3n−1). Given σ ∈ S3n−2 , define

τ := σ ⊕ 3n−2 ⊕ 3n−2 ∈ S3n−1 . (3.5)

Dividing the 3n elements in 9 blocks of 3n−2 elements we have that τ1 ⊗ 3 ∈

https://www.gap-system.org/
https://www.gap-system.org/
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S3n−1 ⊗ 3 (shown in the middle row of Figure 3.2) simply performs σ in the
first, fourth, and seventh block, and is the identity on the other elements. The
computation

tn ◦ (τ1 ⊗ 3) ◦ tn = (σ ⊕ σ ⊕ σ)⊕ 3n−1 ⊕ 3n−1

= (σ ⊗ 3)⊕ 3n−1 ⊕ 3n−1,
(3.6)

shown in Figure 3.2 implies that we can generate (S3n−2 ⊗ 3) ⊕ 3n−1 ⊕ 3n−1.
Moreover since n ≥ 4, we also have the element

Figure 3.2: Computation of tn ◦ (τ1 ⊗ 3) ◦ tn.

tn−1 ⊕ 3n−1 ⊕ 3n−1 = (3n−3 ⊗ b3,3)⊕ 3n−1 ⊕ 3n−1

= (3n−3 ⊗ b3,3)⊕ (3n−3 ⊗ 32)⊕ (3n−3 ⊗ 32)

= 3n−3 ⊗ (b3,3 ⊕ 32 ⊕ 32) ∈ 3⊗S3n−1 ,

so we can use the inductive hypothesis and get

〈(S3n−2 ⊗ 3)⊕ 3n−1 ⊕ 3n−1, tn−1 ⊕ 3n−1 ⊕ 3n−1〉 = S3n−1 ⊕ 3n−1 ⊕ 3n−1.

As a consequence we obtain the single transposition y3n .
To conclude now, we have only to show that we can obtain also the cycle

c3n . To do so introduce this notation: dividing the 3n blocks into 9 blocks as
in Figure 3.2, indicate with ml the mth-element in the l-block. In this way for
example (12, 13) is the element in S3n which switches the first element in the
second block with the first element in the third block. Using this notation, we
are allowed to do the permutation (11, 12, 13), and we have already seen in Figure
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3.2 the effect of conjugating by tn:

tn ◦ (11, 12, 13) ◦ tn = (11, 14, 17).

So we can obtain the desired cycle with

(11, 14, 17) ◦ (c3n−1 ⊕ c3n−1 ⊕ c3n−1) = c3n .

3.3 Matrix Groups

Since the notation and results in this brief introduction to the section are
standard matters of linear algebra, we refer to an on-line resource [4].

Given a field K, denote Mn(K) the set of all n× n matrices with coefficients
in K. We will denote with In the identity matrix of Mn(K)(omitting the n when
it is clear), and eij the matrix whose (i, j)-entry is 1 and all other entries zero.

Definition 3.5. For every 1 ≤ i 6= j ≤ n and α ∈ K, we will call Eij(α) :=
I + αeij an elementary matrix.

We have that detEij(α) = 1, and Ei,j(α)−1 = Eij(−α).

Remark 3.6. If A ∈Mn(K), then multiplying A on the left by Eij(α) takes A
and adds on α times the jth row of A to the ith row of A. Similarly multiplying
A on the right by Eij(α) takes A and adds on α times the ith column of A to
the jth column of A.

Denote GLn(K) the group of invertible matrices in Mn(K), and SLn(K) the
subgroup of matrices with determinant 1.

Lemma 3.7. If n ≥ 3, SLn(K) is the commutator subgroup of GLn(K).

Proof. First of all [GLn(K) : GLn(K)] ⊆ SLn(K), since for any A,B ∈ GLn(K)
we have det(ABA−1B−1) = 1, and then [A,B] ∈ SLn(K).

To prove SLn(K) ⊆ [GLn(K) : GLn(K)], it suffices to show that every
elementary matrix is a commutator, since SLn(K) is generated by all elementary
matrices. To do so we will show that for every i, j, r distinct, and α, β ∈ K the
following holds:

Eij(αβ) = [Eir(α), Erj(β)].
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With a simple computation

[Eir(α), Erj(β)] = (I + αeir)(I + βerj)(I − αeir)(I − βerj)

= (I + αeir + βerj + αβeij)(I − αeir − βerj + αβeij)

= I + 2αβeij − αβeij = Eij(αβ).

As a consequence given an elementary matrix Eij(α) the condition n ≥ 3 ensures
that we can choose r 6= i, j and write it as a commutator:

Eij(α) = [Eir(α), Erj(1)].

3.3.1 General Linear Groups

Given a field K, consider the following groupoid G: for every nonzero natural
number n, the vector space Kn is an object of G, and morphisms AutG(Kn) =
GLn(K) if n > 1, simply the identity of K in the case n = 1 (we will often
indicate the object Km simply with m).

The usual tensor product over K: ⊗K endows our groupoid with a sym-
metric monoidal structure (G,⊗,K). Indeed we only have to choose a natural
isomorphism between Kn ⊗Km and Knm, and we do this choosing an order
for the standard base of Kn ⊗Km. We choose the isomorphism which sends
ei ⊗ ej 7→ e(i−1)m+j , (1 ≤ i ≤ n and 1 ≤ j ≤ m) where we denote with ei the
i-element of the canonical base of Kn. Again this is not as strange as it might
seems: simply put the element ei ⊗ ej in position (i, j) in a n×m matrix, and
now start no enumerate the elements from left to right starting from the first
row.

Remark 3.8. Here we are using the ordering which is opposite with respect to
the one made for the cartesian product n×m in the symmetric groups examples,
but this one is more natural in this context, as we will see later.

Under this identification between Kn ⊗Km and Knm, if A ∈ GLn(K) and
B ∈ GLm(K), we have an explicit element A⊗B ∈ GLnm(K), which is simply
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a blocks matrix: with n× n blocks AijB, each one of dimension m×m:

A⊗B =


A1,1B . . . A1,nB
...

. . .
...

An,1B . . . An,nB

 ∈ GLnm(K)

Possibly one can take this as the definition of the bifunctor ⊗ in our groupoid
G forgetting that this is the usual tensor product of vector spaces, and then
verify that this bifunctor is symmetric monoidal with unity the object K (the
symmetry given by the usual symmetry Kn ⊗Km ∼= Km ⊗Kn seen under the
two isomorphisms with Knm, which gives simply a permutation bn,m ∈ GLnm(K)
of the variables of Knm). Again thinking about the base elements ei ⊗ ej of
Kn ⊗Km as disposed in a n×m matrix, we have an easy interpretation of the
symmetry bn,m. Simply transpose the matrix and renumber the base elements
according to this new matrix (from left to right starting with the first row), to
get the desired permutation of the variables bn,m ∈ GLnm(K).

The groupoid G has no zero divisors: if Ka ⊗Kb ∼= K then the dimensions
must be equal: ab = 1, and so a = b = 1. Therefore we have forced AutG(K) =
{id} in order to apply Proposition 2.23 and Proposition 2.22 and obtain that G
is the underlying groupoid of the symmetric monoidal category UG.

Exactly as in the previous examples the groupoid (G,⊗,K) satisfy also
cancellation. Indeed if Ka ⊗ Kc = Kb ⊗ Kc, then the dimensions must be
equal: ac = bc, and so a = b, since c 6= 0. Moreover ∀Ka,Kb in G the map
AutG(Ka) → AutG(Kb ⊗Ka) taking A ∈ GLa(K) to Ib ⊗ A is injective, since
Ib ⊗A has only b blocks equal A on the diagonal, and zeros elsewhere:

A
Ib⊗_7−−−→


A

. . .

A

 ∈ GLab(K).

Then applying Theorem 2.27 we obtain that UG is also homogeneous.

Remark 3.9. In this category we will work with homogeneous conditions and
stabilisation maps tensoring with the stabilisation object X to the left and not
to the right as usual. This means for example that the stabilisation map will be

ΣX : AutUG(X⊗n ⊗A) X⊗_−−−→ AutUG(X⊗n+1 ⊗A),
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which is more easy to visualize.

Consider now the stabilisation sequence associated to the pair (K,K2):

. . .
I2⊗_−−−→ GL2n(K) I2⊗_−−−→ GL2n+1(K) I2⊗_−−−→ . . . (3.7)

The stabilisation map ΣK2 : GL2n(K)→ GL2n+1(K) takes the matrix A into a
matrix with two copies of A on the diagonal, and zeros elsewhere

A
I2⊗_7−−−→

(
A 0
0 A

)
,

so its determinant is (detA)2.

Remark 3.10. If A ∈ Ma(K) and B ∈ Mb(K), let us denote with A ⊕ B ∈
Ma+b(K) the matrix (

A 0
0 B

)
.

In this way I2 ⊗A = A⊕A.

Recall from Lemma 3.7 that for n ≥ 2, SL2n(K) is the commutator subgroup
of GL2n(K). Then if we quotient by the commutator subgroup, in the same range
of n, we have that the class of a matrix is obtained by taking the determinant.
If the field K contains an element x ∈ K∗ which is not a square, we can easily
see that the map induced on the H1 cannot be surjective. Indeed it cannot
reach matrices with determinant which is not a square. This implies that the
family of groups (3.7) doesn’t satisfy homological stability, even if it arises as a
stabilisation sequence into a symmetric homogeneous category.

Let also look at |Wn(K,K2)|. Since

b−1
2,2 = b2,2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ∈ GL4(K), (3.8)

we can compute tn = b−1
2,2⊗I2n−2 ∈ GL2n(K). For n ≥ 3 this element has determi-

nant 1 and we also already have noticed that I2⊗GL2n−1(K) is made by matrices
with a square determinant. Therefore for n ≥ 3, and with the assumption of
the existence of a non square element x ∈ K∗, 〈tn, I2 ⊗GL2n−1(K)〉GL2n (K) 6=
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GL2n(K) because it cannot reach matrices with a non square determinant. Then
applying Lemma 3.1, |Wn(K,K2)| is not connected for n ≥ 3.

Remark 3.11. The matrix bK2,K2 induces exactly the permutation b2,2 (the
symmetry of the examples with symmetric groups) on the coordinates. And also
the corresponding tn are related in the same way. This follows because in these
two examples the braiding is constructed exactly in the same way in these two
examples, and is given by switching the two dimensions.

3.3.2 The F2 case

In the previous example the presence in the field K of a non-square element
yields to homological instability for the stabilisation sequence associated to the
pair (K,K2), and the non connectivity for the spaces |Wn(K,K2)| with n ≥ 3.
A natural question that arises now is what happens if K does not admit a non
square element. The simplest case that we can consider is K = F2.

We remain in the same symmetric homogeneous category of the previous
example with K = F2: (UG,⊗,F2). Exactly as in (3.7) consider the stabilisation
sequence associated to the pair (F2,F2

2):

. . .
I2⊗_−−−→ GL2n(F2) I2⊗_−−−→ GL2n+1(F2) I2⊗_−−−→ . . . (3.9)

where as before the stabilisation map ΣF2
2 : GL2n(F2)→ GL2n+1(F2) takes the

matrix A into a matrix with two copies of A on the diagonal, and zeros elsewhere.
As stated in Lemma 1.16, to obtain the induced maps on the H1, we have

only to take the quotient by the commutator subgroup. But for Lemma 3.7
we have [GL2n(F2) : GL2n(F2)] = SL2n(F2) for n ≥ 2, and also GL2n(F2) =
SL2n(F2), since the only element in F2 different from zero is 1. As a consequence
H1 GL2n(F2) is trivial for n ≥ 2, and so the maps induced at the level of H1 are
isomorphisms in the same range.

Looking at the spaces |Wn(F2,F2
2)|, we can compute tn from (3.8), which is

simply a block matrix with blocks 2n−2 × 2n−2:

tn = b−1
2,2 ⊗ I2n−2 =


I2n−2 0 0 0

0 0 I2n−2 0
0 I2n−2 0 0
0 0 0 I2n−2

 ∈ GL2n(F2). (3.10)
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Remark 3.12. If A ∈ GL2n(F2), thinking about A as a 4 × 4 blocks matrix,
with blocks 2n−2×2n−2, the matrix tnA is obtained from A switching the second
and the third block rows. While Atn is obtained from A switching the second
an the third block columns.

Lemma 3.13. For n ≥ 3 |Wn(F2,F2
2)| is connected.

Proof. We will prove it by induction on n. For the base case (n = 3) we
can use again GAP: a system for computational discrete algebra available at
https://www.gap-system.org/. As stated in [16] we can use as generators for
GLm(F2) the two matrices

Ym :=



1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .

0 0 0 1


, Zm :=



0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

0 0 1 0


.

Using GAP we know that 〈t3, I2⊗Y4, I2⊗Z4〉GL8(F2) = GL8(F2), and by Lemma
3.1 we obtain that |W3(F2,F2

2)| is connected.
For the inductive step we have that n ≥ 4 and that 〈I2⊗GL2n−2(F2), tn−1〉 =

GL2n−1(F2). Using the Lemma 3.1, and the Remark immediately after we have
only to show that 〈I2 ⊗GL2n−1(F2),GL2n−1(F2)⊗ I2〉 = GL2n(F2).

Let us show first that 〈I2 ⊗GL2n−1(F2),GL2n−1(F2)⊗ I2〉 contains the sub-
group (GL2n−1(F2)⊕ I2n−1). Given A ∈ GL2n−2(F2), and recalling Remark 3.12,
from the computation

tn(I2 ⊗ (A⊕ I2n−2))t−1
n = tn(A⊕ I2n−2 ⊕A⊕ I2n−2)tn

= A⊕A⊕ I2n−2 ⊕ I2n−2

= (I2 ⊗A)⊕ I2n−1 ,

we get that

tn(I2 ⊗ (GL2n−2(F2)⊕ I2n−2))t−1
n = (I2 ⊗GL2n−2(F2))⊕ I2n−1 . (3.11)

So we can generate (I2 ⊗ GL2n−2(F2)) ⊕ I2n−1 . Moreover since n ≥ 4 we also
have the element

tn−1 ⊕ I2n−1 = (b−1
2,2 ⊗ I2n−3)⊕ (I2n−2 ⊗ I2)

https://www.gap-system.org/
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= ((b−1
2,2 ⊗ I2n−4)⊕ I2n−2)⊗ I2 ∈ (GL2n−1(F2)⊗ I2).

Combining these two observations and using the inductive hypothesis we get the
desired subgroup

〈(I2 ⊗GL2n−2(F2))⊕ I2n−1 , tn−1 ⊕ I2n−1〉 = GL2n−1(F2)⊕ I2n−1 .

As a consequence we get the element Y2n , since it can be written as Y2n =
Y2n−1 ⊕ I2n−1 ∈ (GL2n−1(F2)⊕ I2n−1). In the same way we can also obtain the
subgroup I2n−1⊕GL2n−1(F2): in (3.11) use the subgroup I2⊗(I2n−2⊕GL2n−2(F2))
to obtain

tn(I2 ⊗ (I2n−2 ⊕GL2n−2(F2)))t−1
n = I2n−1 ⊕ (I2 ⊗GL2n−2(F2)).

Since we also have the element I2n−1 ⊕ tn−1, we obtain I2n−1 ⊕GL2n−1(F2).
To conclude now we have only to show that we can get also Z2n . The

matrix Z2n performs the cycle c2n on the elements of the standard base of
(F2)2n . Dividing the 2n vectors of the standard base in two blocks of 2n−1

vectors, and given σ ∈ S2n−1 , the subgroup GL2n−1(F2) ⊕ I2n−1 contains the
matrix that performs σ into the first block of 2n−1 elements, and keeps fixed
the elements in the second block. Analogously the subgroup I2n−1 ⊕GL2n−1(F2)
contains the matrix that performs σ into the second block, and keeps fixed the
elements in the first block. As a consequence we have only to show that in
〈I2⊗GL2n−1(F2),GL2n−1(F2)⊗ I2〉 we have a matrix that only switches a single
base vector from the first block, with a single base vector from the second, since
in this way we obtain every permutation of the 2n elements. But if we consider

A =


1
...

1
0 1
1 0

1
...

1

 ∈ GL2n−1(F2),

recalling Remark 3.12, the matrix tn(A⊕ I2n−1)tn provides the desired permuta-
tion.
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3.3.3 Projective General Linear Groups

In the groupoid that we have constructed with general linear groups, we have
forced the automorphism group of the unity K to be the trivial group, instead of
GL1(K). In this way we were able to apply Proposition 2.23 which guarantees
that the automorphisms groups remain unchanged after applying Quillen’s
construction. A natural question that arises now is what happens if we do not
change the automorphisms of the unity, and so AutG(K) = GL1(K) = K∗.

First of all if [Kx, φ] ∈ AutUG(Kn) we must have Kx ⊗Kn = Kn, so x = 1
and every automorphism of the generic object Kn can be written in the form
[K,A] with the unit object K as complement, and A ∈ GLn(K). Moreover recall
that we have [K,A] = [K,B] ∈ AutUG(Kn) if and only if ∃λ ∈ K∗ = GL1(K)
such that A = B ◦ (λ ⊗ Ia) ∈ HomG(K ⊗Ka,Ka). Since λ ⊗ Ia is the scalar
matrix in GLa(K) with λ on the diagonal and zeros elsewhere we obtain that
AutUG(Kn) is the quotient of GLn(K) by the subgroup of the scalar matrices
(isomorphic to K∗), so

AutUG(Kn) = P(GLn(K)) = GLn(K)/K∗.

Therefore studying homological stability in this groupoid is exactly the same as
studying it in the following groupoid G, which has as objects the nonzero natural
numbers, and morphisms AutG(n) = P(GLn(K)).

Using the tensor product pointed out in the previous example of general
linear groups, we have a well defined symmetric monoidal structure (G,⊗, 1).
On the objects this is simply the multiplication of natural numbers, while given
[A] ∈ P(GLn(K)) and [B] ∈ P(GLm(K)),

[A]⊗ [B] := [A⊗B] ∈ P(GLnm(K)).

Everything we have shown for the groupoid with GLn(K) works equally
well in the quotient P(GLn(K)). We can take as symmetries the classes in the
quotient of the symmetries [bn,m]. We can apply Theorem 2.27 and Propositions
2.23, 2.22 and get that UG is a symmetric homogeneous category and that G is
its underlying groupoid. The only difference here is that now we have only the
identity as automorphism of the unity in a more natural way.

Consider as before the chain of stabilisation maps for the couple (1, 2)

. . .
[I2]⊗_−−−−→ P(GL2n(K)) [I2]⊗_−−−−→ P(GL2n+1(K)) [I2]⊗_−−−−→ . . . (3.12)
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The stabilisation map Σ2 : P(GL2n(K))→ P(GL2n+1(K)) takes the class [A]
into the class of the matrix with two copies of A on the diagonal, and zeros
elsewhere

[A] [I2]⊗_7−−−−→

[(
A 0
0 A

)]
. (3.13)

Let us look first at the map induced on the H1. A commutator in P(GLm(K))
is given by the class of a commutator in GLm(K), since [A][B][A]−1[B]−1 =
[ABA−1B−1]. For m ≥ 3 we have seen in Lemma 3.7 that the derived subgroup
of GLm(K) is given by the matrices with determinant the unity of K (SLm(K)).
Then [A] is a commutator in P(GLm(K)) if and only if ∃λ ∈ K∗ such that
λA ∈ SLm(K). Since det(λA) = λm det(A), this last condition is equivalent to
require that ∃y ∈ K∗ such that ym = det(A). Indeed if this is true we can set
λ = y−1. Denoting (K∗)m := {xm | x ∈ K∗} we have

H1(P(GLm(K))) = P(GLm(K))/[P(GLm(K));P(GLm(K))] ∼= K∗/(K∗)m,

where the isomorphism is given by sending [A] 7→ [det(A)] ∈ K∗/(K∗)m. At the
level of H1 the chain (3.12) induces

. . .
H1(Σ2)−−−−−→ K∗/(K∗)2n H1(Σ2)−−−−−→ K∗/(K∗)2n+1 H1(Σ2)−−−−−→ . . .

and remembering the form of the stabilisation map (3.13), we have that H1(Σ2)
sends [x] ∈ K∗/(K∗)2n to [x2] ∈ K∗/(K∗)2n+1 . We can also notice that H1(Σ2)
is injective, since the map x 7→ x2 in K∗ sends (K∗)2n into (K∗)2n+1 . Now
simply requiring again that our field K contains an element x ∈ K∗ which is not
a square, we can easily see that the map induced on the H1 cannot be surjective.
Indeed it cannot reach the element [x] ∈ K∗/(K∗)2n+1 . This implies that the
family of groups 3.12 doesn’t satisfy homological stability, even if it arises as a
chain of stabilisation maps into a locally homogeneous category.

Let also analyse |Wn(1, 2)|. In the previous example we have already com-
puted b−1

2,2 ∈ GL4(K) (3.8), and so [tn] = [b−1
2,2] ⊗ [I2n−2 ] ∈ P(GL2n(K)). For

n ≥ 3 tn has determinant 1 and we also know that I2 ⊗ GL2n−1(K) is made
by matrices with a square determinant. The determinant in not well defined
for the classes in P(GL2n(K)), but as we have already seen in a computa-
tion in the previous paragraph, it is well defined its class in K∗/(K∗)2n , and
so the property to have or not a square determinant. Therefore for n ≥ 3,
and with the assumption of the existence of a non square element x ∈ K∗,
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〈[tn], [I2] ⊗ P(GL2n−1(K))〉P(GL2n (K)) 6= P(GL2n(K)) because it cannot reach
classes of matrices with a non square determinant. Then applying Lemma 3.1,
|Wn(1, 2)| is not connected for n ≥ 3.

3.3.4 Changing the field in the chain

In all the previous examples about general linear groups the field was always
fixed and we obtained a chain of stabilisation maps increasing the dimension. We
present now an example where both dimension and field increase in the chain.

Take a sequence of fields (Ki)∞i=1:

K1 ( K2 ( · · · ( Ki ( . . .

where for every i ∈ N∗, Ki is a subfield of Ki+1 and Ki 6= Ki+1.
Consider the groupoid G with objects the natural numbers, and morphisms

AutG(n) = GLn(Kn), with the convention to have only 10 as automorphism of
zero. Define a monoidal structure ⊗ on this groupoid, which on the elements
n⊗m := n+m is simply the sum in N, while on morphisms is simply the block
sum operation. If A ∈ GLn(Kn) and B ∈ GLm(Km)

A⊗B :=
(
A 0
0 B

)
∈ GLn+m(Kn+m),

where everything is well defined since Kn and Km are both subfields of Kn+m.
In this way A and B can be thought with coefficients in Kn+m: A ∈ GLn(Kn+m)
and B ∈ GLm(Kn+m). As a consequence det(A⊗B) = det(A) det(B) ∈ K∗n+m.
We also adopt the convention 10 ⊗ A = A⊗ 10 = A for the unity 0. We have
that ⊗ is a well defined bifunctor, since

In ⊗ Im =
(
In 0
0 Im

)
= In+m ∈ GLn+m(Kn+m),

(A′ ⊗B′) ◦ (A⊗B) =
(
A′ 0
0 B′

)(
A 0
0 B

)

=
(
A′A 0

0 B′B

)
= (A′ ◦A)⊗ (B′ ◦B),

for A,A′ ∈ GLn(Kn) and B,B′ ∈ GLm(Km). Associativity for objects is simply



Matrix Groups 57

associativity of the sum, while on morphisms

((A⊗B)⊗ C) =

A 0 0
0 B 0
0 0 C

 = (A⊗ (B ⊗ C)). (3.14)

Define the braiding bn,m : n⊗m→ m⊗ n as

bn,m :=
(

0 Im

In 0

)
∈ GLn+m(Kn+m),

which simply takes the first n vectors of the canonical base of (Kn+m)n+m and
put them at the end of the base. In this way naturality and compatibility with
the associativity are quick to verify, and also the symmetric condition

bm,n ◦ bn,m = In+m.

So we have a well defined symmetric monoidal groupoid (G,⊗, 0).
As usual we consider now the category UG. The groupoid G has no zero

divisors (n+m = 0⇒ n = m = 0), and AutG(0) = {10} so applying Proposition
2.22 and Proposition 2.23 we have that UG is a symmetric monoidal category
and G its underlying groupoid.

The groupoid G satisfies cancellation (m+ n = l + n implies m = l), and the
map GLn(Kn)→ GLn+m(Kn+m) taking A to A⊗ Im is injective then applying
Theorem 2.27 we get that UG is also homogeneous.

Consider now the stabilisation sequence associated to the pair (0, 1)

. . .
_⊗1−−−→ GLn(Kn) _⊗1−−−→ GLn+1(Kn+1) _⊗1−−−→ . . . (3.15)

The stabilisation map Σ1 : GLn(Kn)→ GLn+1(Kn+1) takes the matrix A into
the matrix

A
Σ1

7−−→

(
A 0
0 1

)
.

Recall from Lemma 3.7 that for n ≥ 3, SLn(Kn) is the commutator subgroup
of GLn(Kn). Then H1(GLn(Kn)) ∼= K∗n in the same range of n, where the
isomorphism is induced by the determinant. Since det(Σ1(A)) = det(A) we
have that H1(Σ1) : K∗n → K∗n+1 is the inclusion K∗n ⊂ K∗n+1 so it cannot
be surjective. This implies that the family of groups (3.15) doesn’t satisfy
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homological stability, even if it arises as a stabilisation sequence into a symmetric
homogeneous category.

As usual let’s analyse also |Wn(0, 1)|, and prove that it is not connected using
3.1. From the definition of the braiding

b−1
1,1 = b1,1 =

(
0 1
1 0

)
∈ GL2(K2),

tn = In−2 ⊗ b−1
1,1 =

 In−2

0 1
1 0

 ∈ GLn(Kn).

The matrix tn has coefficients in K1, while every element in GLn−1(Kn−1)⊗1
has coefficients in Kn−1. As a consequence

〈tn; GLn−1(Kn−1)⊗ 1〉GLn(Kn) ⊆ GLn(Kn−1) 6= GLn(Kn)

and applying Lemma 3.1 we get non connectivity of the semi-simplicial set for
n ≥ 2.
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