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Functors of ∞-categories

De�nition 0.1. Let K ∈ sSet and C and ∞-category. Then a functor F : K → C is a

map of simplicial sets. A natural transformation f : f0 → f1 of functors fi : K → C,
i = 0, 1 is a map (of simplicial sets?)

f : K ×∆1 → C, such that f |K×{i} = fi

for i = 0 or 1.
We de�ne the Space of functors Fun(K, C) ∈ sSet de�ned by

Fun(K, C)• = mapsSet(K, C)• = homsSet(∆
• ×K, C).

We can use this to de�ne a category of ∞-categories QCat. Since N : Cat → QCat

is fully faithful we get that any functor in Cat gives rise to a functor in QCat. In general

when we make construction of this we know in ordinary category theory, in the setting

of ∞-categories, we want it to be compatible with the nerve functor. We see that our

naive de�nition of functors is the correct one due to the following result:

Corollary 0.2 (Groth, Lem 2.2). Let A and B be ordinary categories. Then there exists

a natural isomorphism of simplicial sets:

N(FunCat(A,B)) ∼= FunsSet(NA,NB).

Proof. Let [n] ∈ ∆. Then we have the following

N(FunCat(A,B))n ∼= homCat([n],FunCat(A,B))
∼= homCat([n]×A,B)
∼= homsSet(N([n]×A), N(B))
∼= homsSet(∆

n ×NA,NB)
∼= FunsSet(NA,NB)n.

Here the �rst equality is the de�nition, second isomorphism is due to the fact that

− × A : Cat → Cat is left adjoint to Fun(A,−), third isomorphism is because N is

fully faithful, the fourth is because it can be shown that N preserves products, the �fth

isomorphism is due to N([n]) ' ∆n and the last is the de�nition.
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Another thing we often want when making new construction is that is an invariant

notion, i.e. is again an ∞-category:

Theorem 0.3 (Groth Prop 2.5 (i)). Let K ∈ sSet and C ∈ QCat. Then Fun(K, C) is

again an ∞-category.

Main idea. Recall that a simplicial set C is an ∞-category i� there exist a lift in the

diagram

Λn
j C

∆n

Hence we wish to show that there exists a lift in

Λn
j Fun(K, C).

∆n

Due to the fact that −×K : sSet→ sSet is left adjoint to Fun(K,−) we get that this is
equivalent to showing that there exists a lift in the following diagram

Λn
j ×K C.

∆n ×K

We want functor categories to be equivalent to eachother when the input are equiv-

alent. So we will now consider the notion of categorical equivalence between �rst ∞-

categories and then extend this notion to simplicial sets.

Equivalence of ∞-categories

Here we are following Rezk's notion of categorical equivalences (section 18), but can be

shown to be equivalent Groth de�nition 1.35.

De�nition 0.4. A categorical inverse to a functor F : C → D between two∞-categories

is a functor G : D → C such that GF ' idC and FG ' idD.
We say that a functor F between∞-categories is an categorical equivalence if it admits

a categorical inverse. We call two ∞-categories categorical equivalent if there exists a

categorical equivalence between them.
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Proposition 0.5 (Rezk Lemma 18.5). Let F : C → D be a functor between∞-categories.

Then F is a categorical equivalence i� the induced functor

F ∗ : Fun(D, E)→ Fun(C, E)

is a categorical equivalence of ∞-categories for any E ∈ QCat.

Proof. ⇒: Let G : D → C denote the categorical inverse to F . Then G induces a

functor

G∗ : Fun(C, E)→ Fun(C, E),

by postcomposing with G. We see that G∗ is a categorical inverse to F ∗, since

η :⇒ idC  η∗ : G∗F ∗ ⇒ idFun(D,E)

θ :⇒ idD  θ∗ : F ∗G∗ ⇒ idFun(C,E),

which are natural isomorphisms.

⇐: Assume

F ∗ : Fun(D, E)→ Fun(C, E)

is a categorical equivalence for any E ∈ QCat, with G∗ the categorical inverse.

Since a natural transformation F ⇒ G : C → D induce natural transformation

h(F )⇒ h(G) : hC → hD, we get that

hF ∗ : hFun(D, E)→ hFun(C, E)

is an equivalence of ordinary categories.

Write C' ⊂ C for the subcategory of C with obC' = obC and with all isomorphisms.

Then π0C' are the isomorphism classes, hence π0C' ' π0hC, since f : X → Y ∈ C'
i� hf : hX → hY ∈ hC'. So we get that F ∗ induces a bijection

hF ∗ : π0hFun(D, E)'
∼−→ π0hFun(C, E)'

which gives us

F ∗ : π0Fun(D, E)'
∼−→ π0Fun(C, E)'.

Set E := C
F ∗ : π0Fun(D, C)' ∼−→ π0Fun(C, C)'.

Then there exists G ∈ π0Fun(D, C)' which saties�es F ∗(G) ' GF ' idC in

Fun(C, C)1 (since F ∗ is postcomposing with F ).

Set E := D:
F ∗ : π0Fun(D,D)'

∼−→ π0Fun(C,D)'.

Then there exists F ∈ π0Fun(C,D)' such that

F ∗(idD) ' F ' FidC ' FGF ' F ∗(FG).

Since F ∗ is a bijection, this implies that idD ' FG.
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We use this equivalent de�nition of categorical equivalence between ∞-categories to

extend the notion to simplicial sets.

De�nition 0.6. A map f : X → Y between simplicial sets is called a categorial equiva-

lence if for every ∞-category C, the induced map of ∞-categories

Fun(f, C) : Fun(Y, C)→ Fun(X, C)

admits a categorical inverse.

Proposition 0.7 (Groth proposition 2.5 (ii)). Let F : C → D be a categorical equivalence

between ∞-categories. Then Fun(K, C)→ Fun(K,D) is a categorical equivalence for any

K ∈ sSet.

Proof. Let G : D → C denote the categorical inverse to F . Then as earlier we can prove

that the induced map

G∗ : Fun(K,D)→ Fun(K, C)

given by precomposing with G, is categorical inverse to

F∗ : Fun(K, C)→ Fun(K,D).

This is actually an if and only if statement, since if the induced functor on the functor

spaces is a categorical equivalence for any simplicial set K, this inparticular holds for

K = ∆0, which implies

C ' Fun(∆0, C)→ Fun(∆0,D) ' D

is an equivalence of categories.

Joins

This is again a notion of ordinary categories, which we want to extend to ∞-categories.

De�nition 0.8. Let C,D be two ordinary categories. Then the join C ?D of C and D is

the category with ob(C ?D) = ob(C)
∐

ob(D) and with

HomC?D(x, y) =


HomC(x, y), x, y ∈ C
HomD(x, y), x, y ∈ D
∗, x ∈ C, y ∈ D
∅, x ∈ D, y ∈ C,

with composition such that the inclusions

C ↪→ C ?D, D ↪→ C ?D

are functors.
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Two important examples are the right join C/ := [0] ? C and the left join C. :=
C ? [0]. These are obtained by attaching a new terminal, respectively initial, object to

the category C.
We can make the same kind of de�nition for simplicial sets.

De�nition 0.9. Let X,Y ∈ sSet. Then we de�ne the join of X and Y as the simplicial

set X ? Y de�ned by

(X ? Y )n := Xn ∪ Yn ∪

 ⋃
i+j+1=n

Xi × Yi

 , n ≥ 0,

where we de�ne X−1 = Y−1 = ∗ a point.

First we note that we have canonical inclusionsX ↪→ X?Y and Y ↪→ X?Y by sending

Xn 7→ Xn ∪ Y−1 and Yn 7→ X−1 ∪ Yn. Again, as when we considered the construction of

functors, we see that our de�nition of join is compatible with the nerve functor.

Proposition 0.10 (Groth 2.13). Let cC and D be two categories. Then

N(C ?D) ' N(C) ? N(D).

Note that on the left hand side we have the join of categories and on the right hand side

it is the join of simplicial sets. Further note that the equivalence is of simplicial sets.

Proof. We want to construct a map N(C ? D) → N(C) ? N(D). First we note that an

object x ∈ N(C ?D)n is a functor [n]→ C ?D, where we can consider these as the strings

(or substrings within)

s0 → s1 → · · · → sn,

where each si ∈ C or D. Since there in the join C ? D is no map from an object in D
to an object in C, we get that the string of objects at most can 'jump' from C to D
once. Assume that the 'jump' happens at 1 < k < n , so we can consider the string

in N(C ? D) as a k-simplex A in N(C) and a (n − k − 1)-simplex B in N(D). Then

(A,B) ∈ N(C)×N(D)n since they are a point in

N(C)n ∪N(D)n ∪

 ⋃
i+j+1=n

N(C)i ×N(D)j


since k + (n− k − 1) + 1 = n.

This can be shown to be a bijection since we run through all possible strings which

go from C to D, and N(C)n are the case where all are in C and N(D)n is the case where

the entire string is in D.

Example 0.11. First we see that when considered as∞-categories, we get that the join

[n] ? [m] ' [n+m+ 1], since we take the n string and then attach the m string

0n → 1→ · · · → n→ 0m → 1→ · · · → m.
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This gives us

∆n+m+1 ' N([n+m+ 1]) ' N([n] ? [m]) ' N([n]) ? N([m]) ' ∆n ?∆m.

Example 0.12. The join of simplicial sets is not symmetric: Consider the case K =
∆0

∐
∆0, L = ∆0. Then

K ? L =
•

•
•

L ? K =
•

•
•

,

where the �rst diagram is an example of a right cone and the latter an example of a left

cone.

De�nition 0.13. Let K ∈ sSet. Then the right cone is the simplicial set K. := K ?∆0,

and the left cone is the simplicial set K/ := ∆0 ? K.

Theorem 0.14 (Groth 2.15). i) If C and D are two ∞-categories, then C ? D an

∞-category.

ii) If F : C → C′ and G : D → D′ are equivalences of ∞-categories, then the induced

map F ? G : C ?D → C′ ?D′ again an equivalence of ∞-categories.
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