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Chapter 1

Affine and projective algebraic
sets; rational normal curves,
finite point sets

Below, £ is an algebraically closed field of arbitrary characteristic, e.g. C, Q
or also IF,,, and A" is the n-dimensional affine space over k, i.e. k" as a set
(though we will want to make use of its vector space structure occasionally
as well).

Definition 1.1. For a k-vector space, P(V') denotes the set of 1-dimensional
subspaces of V, i.e. the projective space associated to V. For the vector
space k"1 with componentwise addition and scalar multiplication, we also
write P = P(k"1).

Equivalently, P" is the quotient of k"' — {0} by the equivalence relation:

(Xo,..., X)) ~ (X5, 0 XD), (Xoy oo Xn), (X5, ..., X)) € k™ — {0}

if there is a A € k* with \(Xo,...,X,) = (X{,...,X]). We denote the
equivalence class [(Xo,...,X,)] by (X : -+ : X,,) in that case and call the
X;’s homogeneous coordinates of the point in P".

Define a subset U; C P" by

Below we will often identify U; with A™ via the bijection (Xo : ---: X)) —

(@) ocjen = (X;/X,) (s0 2 = 1).
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Definition 1.2. 1. An affine algebraic set X C A" is the set of zeroes of
a family (fa)aca, of polynomials f, € klxy,...,z,]|. Since k[zq, ..., x,]
is Noetherian, we can assume |A| < oo without loss of generality.

2. A projective algebraic set Y C P" is the set of zeroes of a family of
polynomials (F,)aca with Fy, € k[X, ..., X,].

We have to say a few words what it means to be a zero in (2) above,
i.e. what is meant by F(p) = 0forap = (F :---: P,) € P*. This is so
because the homogeneous coordinates P; of p are not unique, and p being a
zero must be independent of the representative coordinate tuple. We do this
by defining

Flp)=0:«<— F(FR,...,P,) =0
for all (Py,...,P,) € k"™ — {0} with [(P,...,P,)] = p.

This leads to the conclusion that we can assume, without loss of gen-
erality, that the F,, in (2) of Definition are homogeneous, which means
the following: S = k[Xo,...,X,] is a graded ring, which means there is a
decomposition into k-vector subspaces

S =P S

m>0

where S, := (X7 . .- X2V, ag+. .. a, = m, such that Sy, S, C Sy tme-
Polynomials in S, are called homogeneous of degree m. Now, since k is
infinite, if F € k[Xo,...,X,] vanishes in p as above, then all homogeneous
components F}, of F' with respect to the preceding direct sum decomposition
vanish in p.

Remark 1.3. If Y C P™ is a projective algebraic set, then Y; = Y NU; C A" is
an affine algebraic set. To see this, consider for simplicity Yj; the argument in
the other cases being the same. If Y is defined by homogeneous polynomials

F, of degree d,, then Yj is the set of zeroes of polynomials f,(x1,...,z,),
xT; = Xi/X[), where

falzy, .o x) = Fou(Xo, ..., Xp) /X = Fo(1, 24, ..., ).

Remark 1.4. Every affine algebraic subset X; C A™ ~ U; C P" is the intersec-
tion of U; with a projective algebraic subset X C P". Again we show that for



Uy only since the other cases are only notationally different. If X is defined
by fa(x1,...,x,) of degree d, (of course not necessarily homogeneous now),
we can define a suitable X by

X X,
mawnxmex$@(l ).

?0,...,?0

We can summarize the preceding two remarks by saying that X C P" is
a projective algebraic subset if and only if each X NU; C U; ~ A" is an affine
algebraic set.

Example 1.5. 1. If W C k"™ is an (m+1)-dimensional sub-vector space,
then P(W) C P" is a projective algebraic set, called an m-dimensional
projective linear subspace (for m = 1: line, m = 2: plane, m =n — 1:
hyperplane).

2. Of course zeroes of a single homogeneous polynomial F' € k[ Xy, ..., X,]
(of degree d, say) are a projective algebraic set; this is called a hy-
persurface. We can assume F without multiple factors (note that
k[Xo, ..., X, is factorial). Then we call d the degree of the hyper-
surface.

3. For a more interesting example, let C' be the image of the map

v: Pt - P?
(X() : Xl) — (Xg : XgXl : X0X12 : X?) = (ZO AR Zg)

Then C' is contained in the three quadrics QQg, Q1, Q> defined as the
zero sets of

F()(Z) - ZOZ2 - Z12
F\(Z) =ZyZs— Z1Z,
Fy2Z) =2,Zy— 72

and those define C, i.e. the zero set of them is exactly C' (to see this,
note that if p € P2, p = (P : Pi : Py : P3) lies on Qo N Q1 N Q2, then
Py # 0 or P;3 # 0; in the former case, P = v((Fy : P)), in the latter
case, P =v((Py: P3)).
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We continue the study of (3) in the above examples a little: although we
haven’t introduced any notion of “dimension” yet into our geometric study of
algebraic sets, it is intuitively plausible that C' should be a one-dimensional
thing, a curve. It is called a twisted cubic curve. It is remarkable that two of
the above quadratic equations do not define ', more generally:

Proposition 1.6. For A = (A, A\, o) € k* — {0}, write
Fy = XMFo + A FL+ Moy,

the F; being as in Example (3). Denote the projective algebraic set that
Fy defines by Q5. Then for [u] # [v] € P?, we have that Q, N Q, is equal to
the union of C' and a line L, intersecting C' in two points.

Proof. C'is defined by the 2 x 2 minors of

Zy
Zy

and @, is the determinant of

Z
Zy

Zs
Zs

Zy Zy 4y
Zy Zy Us
T

where the tuple (ug, ), ) agrees with p after a signed permutation. So the
locus outside of C' where F}, and F), vanish, is the rank < 2 locus of

Zo 2y Z>
4y Ly Zs
o My fo
v, vy U

(where in addition the first two rows are independent). For [u] # [v], this
locus is the same as the one defined by

Zy 7y Zy Zy Zy Zs
det | po py py | =det | py py py ) =0,
o Y o Y

ie. Q,NQ, =CUL, where L,, is the line defined by the last two deter-
minants. The intersection of L,, with C' is then given by @, and the two

linear equations above where (Qx, Q,, @Qv) =

(Fy, F1, Fy). [l



Proposition 1.7. There ezists a homogeneous quadratic polynomial Q(Zy, . .., Z3)
and a homogeneous cubic polynomial P(Zy, ..., Z3) whose common zeroes are
precisely C.

Proof. One can take

P Zo Zy Zs
Q(Z) = det (ZO Zl), P(z)=det | 2, Zy Zs
ooz Zy Zs Zo

Namely, if the vector (Zy, Z1,Z,) and (Zy, Zy, Z3) are linearly dependent,
then these determinants vanish, and the converse holds as well: if the first
two rows of the matrix whose determinant defines P(z) are independent, and
the determinant vanishes, then the last row of the matrix must be a linear
combination of the first two rows. But then (Z5, Z3) is dependent on (Zy, Z7)
and (71, Z,), whence the rank of the submatrix consisting of the first two
rows would be 1 (taking into account Q)(z) = 0), contradiction. O

Thus we arrive at the curious fact that C', as a set, can be defined by
two polynomials, but if we look at the ideal I(C) C k[Xy,...,X3] of all
polynomials vanishing on C', this cannot be generated by 2 elements (since
dim I(C)s > 3, but dimI(C); = 0: clearly, C' does not lic in a hyper-
plane since X3, X¢ X, Xo X7, X3 are independent). One says that C'is a set-
theoretic complete intersection, but not a complete intersection in P3. There
are many open problems connected with these notions; e.g., one knows that
the union of two planes intersecting only in 0 is not a set-theoretic complete
intersection in A%, but one does not know if every curve in P? is a set-theoretic
complete intersection.

Let us consider the lines L, more closely:

Proposition 1.8. Every line L C P? connecting two points two points P, Q €
C occurs among the Ly, .

Proof. Choose R € L distinct from P, (). The three-dimensional vector space
of F)\’s contains a two-dimensional subspace consisting of those vanishing in
R; suppose F),,, F,, is a basis. But then the latter two polynomials vanish
on C, hence on P,(Q, R. Since they are quadratic, they are then identically
zero on L. Whence L, = L. O
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We call every algebraic set in P? projectively equivalent to C' a twisted
cubic curve. ILe., twisted cubic curves are precisely the images of maps P! —
P? given by [X] +— (Ag(X) : -+ : A3(X)] where the A;(X)’s are a basis of
k[Xo, ..., X3]3. Generalizing this, we make

Definition 1.9. Every curve in P? projectively equivalent to the image of

vg: Pt — P4,
(Xo: X1) = (X XXy 00 X

is called a rational normal curve in P?.

Remark 1.10. 1. To make sense of the above definition, remark that the
image of v, is really a projective algebraic set. One can take F;(Z) =
ZiZ; — Zi1Zjy1, 1 <1< j3<d-1, as aset od polynomials defining
the image. The word “curve” in the above definition so far has no
real mathematical meaning, but once we have introduced dimension, a
rational curve will indeed be 1-dimensional.

2. Every set of d + 1 points on a rational normal curve are linearly inde-
pendent (Van der Monde determinant).

Theorem 1.11. Through every set of d+ 3 points in general position in P?,
there passes a unique rational normal curve.

Here “general position” means that the assertions holds for tuples of
points in a nonempty subset of (P4)?*3 defined by some polynomial inequal-
ities.

Proof. We prove existence first. We can assume, after applying a projectivity,

that the first d+ 1 of the points, p1,...,par1, are (1:0:---:0),...,(0:---:
1) (coordinate points). Putting G(Xy, X;) = Z:i(kao — upX1) and

G(XO,XI)
(ViXO - /M’Xl),

Hi =
we get that the image of v, given by

(Xo: X1) = (Hi(Xo, X1) 0+ 1 Hyya (Xo, X1))

passes through the coordinate points, namely maps (y; : v;) € P! to the i-th
coordinate point. We can also assume (y; : v;) are different from (1 : 0) and



(0 : 1); then, given two general additional points pg o, pays in P¢, we can
always adjust the p;, v; so that (1 :0) maps to pgr2 and (0 : 1) maps to pgs.
This proves existence.

For uniqueness, note that every rational normal curve passing through the
coordinate points py, ..., pse1 is the image of a map given by polynomials H;
as above for certain (u;, ;). Applying a projectivity in the source, we can also
assume that (1 :0) and (0 : 1) map to pgy2, pars. Then such a rational normal
curve is given by polynomials H; as above, and moreover, the u; are fixed up
to simultaneous rescaling by a constant nonzero factor «, and so are the v;
up to a factor 3. Applying the projectivity (Xg: X1) — (a1 Xy : 71X}) in
the source, we see that the maps corresponding to different «, 8 all have the
same image. Hence this is the unique rational normal curve meeting all the
requirements. O]

Another example of projective algebraic sets are finite point sets I' =
{p1,...,pn} C P indeed, if ¢ ¢ T', there is a polynomial vanishing in T,
but not in ¢ (take a product of N linear forms). Hence I' is defined by
polynomials of degree < N.

It is known from courses in linear algebra that

1. Two ordered point sets (p1,...,Pni2); (G1,---,Gnr2) in general posi-
tion can be transformed into each other by a unique projectivity g €
PGL, 11 (k).

2. In P!, one can transform 4 = 1 + 3 ordered points in general position
into another ordered four points in general position if and only if their
cross ratios

(21 — 22)(23 — 21)
(21— 23) (22 — 2)

are the same.

So when can (n + 3) general ordered points (p1, ..., pyy3) in P™ be trans-
formed into another tuple (qi, ..., gnis) of (n+ 3)-points?By Theorem m
we can find rational normal curves through both sets of points. The maps
defining the rational normal curves allow us to interpret these point sets as
point sets

(Phs -+ > Pnya)s (@1 Ghys)

on P!. By the uniqueness property of rational normal curves, and since every
algebraic automorphism of P! is a projectivity (cf. all biholomorphic maps
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of the Riemann sphere are fractional linear), one gets that (p1, ..., pn+s) and
(q1,-.-,qny3) are projectively equivalent on P if and only if (p!,...,p,.3)
and (qi, ..., q, 3) are projectively equivalent on P'. The latter means that

crossratio(p, py, P, p;) = crossratio(qy, g, 43, 4;), Vi =4,...,n+3.



Chapter 2

The sheaf of regular functions;
algebraic varieties and regular
maps

We can equip our algebraic sets with a topology.

Definition 2.1. The Zariski topology of P (resp. of A™) is the topology
whose closed sets are the projective (resp. affine) algebraic sets; we equip
every projective (resp. affine) algebraic set X in P" (resp. A"™) with the
induced topology, and call this the Zariski topology of X.

Remark 2.2. 1. If & = C or another field with an interesting topology,
e.g. the p-adic numbers @Q,, then one can equip k"' with the corre-
sponding product topology, and P" with the quotient topology via the
map k"' — {0} — P". Then all algebraic sets carry another “strong”
topology, which is topologically more relevant. The Zariski topology is
just convenient to talk about sets where polynomials vanish or do not
vanish, but does not carry too much information otherwise.

2. In P, the sets Up := {F # 0}, where F' ranges over all homogeneous
polynomials, form a basis of the topology. In A", we have an analogous

basis Uy = {f # 0} with f ranging over all polynomials in k[z1, ..., ;).

Definition 2.3. An open subset U C X, X a projective algebraic set in P",
will be called a quasi-projective algebraic set.

9
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In what follows, we will define a notion of local functions on affine, pro-
jective, quasi-projective algebraic sets, equipped with the Zariski topology.
Our objects of study in the sequel, called algebraic varieties, will then
(formally) be triples

(X,%,0)

where X is an algebraic set of some sort, T the Zariski topology on it, and
O the local functions.

One may justifiably ask: why such complicated contortions to define the
notion of a variety, which is meant to be a geometric object associated to
a bunch of polynomial equations? Why is O necessary? Why is even T
necessary?

The answer is that experience has shown that once one studies objects
of a certain type in mathematics, which are often sets with an additional
structure, one should at the same time study “maps” between those objects
that preserve the given structure. Thus one studies vector spaces along with
linear maps, groups along with group homomorphisms, rings with ring homo-
morphisms, or topological spaces with continuous maps. To get a meaningful
and interesting notion of maps in our theory of zero sets of polynomials, we
will need O, and to define it, it is convenient to have T first.

For example, suppose you would take algebraic sets together with their
Zariski topology as the fundamental structured objects of your theory, and
forget (or never learn about) O. The structure-preserving maps are then con-
tinuous maps between those topological spaces. Now look more specifically
at irreducible curves in A% i.e. zero sets of a single irreducible polynomial
f(z,y) where f € Q[z,y] (we take Q for simplicity). Then all of these turn
out to be homeomorphic! Namely, as sets, all such curves have the same
cardinality, they are countable since Q is. Any bijection is even a homeo-
morphism since the nonempty proper Zariski open subsets are complements
of finite sets of points in this case (this uses the irreducibility of the f(z,y)).
But there are facts of an algebraic nature that strongly suggest that regard-
ing all irreducible curves in A? as essentially the same (isomorphic) is much
too coarse and crude: for example, consider the question whether there exist
nonconstant rational functions

(1), ¥(t) € Q1)

with
fle(t),¥(t) =0
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(i.e., a rational parametrization of the irreducible curve associated to f).
Then it turns out that the general curve of degree deg(f) > 2 does not admit
such a parametrization, but all degree 1 and 2 curves do. Moreover, there are
special irreducible curves of any degree that do admit such a parametrization.
We certainly don’t want to build our theory in such a way as to put all those
algebraically totally different curves in one bag! That is why we need O.

Definition 2.4. Let X be a topological space, k a field. For U C X open,
we denote by

Maps(U, k)

the set of all functions (continuous or not) of U to k. A sheaf of k-valued
functions on X is the datum, for any open U C X, of a subset

Ox(U) C Maps(U, k)

such that the following is true: if U C X is open and U = |J,; V; a cover
of U by open subsets V; C U C X, ¢ € I, I some index set, then a function
f € Maps(U, k) belongs to Ox(U) if and only if all restrictions f|y; belong
to Ox(V;) (for all i € I).

This may seem intimidating at first sight, but is totally simple really:
it just means that on any open set U in X we mark certain functions as
distinguished, by painting them red, say; we call these Ox(U). The condition
then means that being “red” is a local property: if we restrict one of our
functions to the open sets of a cover, and if it is red on every one of them,
then it is red globally.

Example 2.5. 1. Let X = R! with the Euclidean topology, and put for
U C Ropen, Ox(U) = {f: U — R | f continuous}. Then Oy is a
sheaf of R-valued functions. The property of being continuous is local.

2. For X asin (1), let Ox(U) ={f: U — R | f differentiable}. Then Ox
is a sheaf of R-valued functions. The property of being differentiable is
local.

3. Let X = A;LUA, be the disjoint union of two open discs in R?, with the
induced topology from R?. For U C X open, let Ox(U) ={f: U - R |
f constant}. Then Oy is not a sheaf: the property of being constant
is not local. For example, the function which is 1 on A; and 0 on A,
is constant locally, but not constant globally.
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4. Let X = R! again, Ox(U) = {f: U — R | f bounded}. Then Oy is
not a sheaf: the property of being bounded is not local. For example,
f(z) = exp(x) is bounded locally, but not globally.

Definition 2.6. Let X be a topological space with a sheaf of functions Oy,
and Y C X a subspace. Then put for V' C Y open:

(Ox) |y (V) ={f:V—=>k|VveVIU(v)C X open, Uv)> v,
3f, € Ox(UW)) : folu@wnv=f |U(v)m/}-

Then (Ox) |y is a sheaf of functions on Y, the sheaf induced by Ox on Y
by restriction.

Definition 2.7. Let (X,Ox) and (Y, Oy) be spaces with sheaves of func-
tions. A morphism
p: (X, 0x) — (Y, 0y)

is a continuous map ¢: X — Y with the property that for all U C Y open,
and for all f € Oy (U), one has p*(f) := fop € Ox(p 1 (U)).

We now define sheaves of functions on A™ and P"; by the construction
of Definition , we can turn all quasi-projective algebraic sets (with their
Zariski topology) into spaces with sheaves of functions.

Definition 2.8. For U C A" (Zariski-)open, put

O (U) :={f: U—>k:|V:JcEUEIV(x C U open,

x € V(x), Ipolynomials p, qek[xl,..., |, q(y) #0Vy € V(z)

)
q(y
such that : f |y(g) }

For U C P" open, put

Opn(U) :={f: U —k|V2xeU3IV(x) CU open,
x € V(x), 3homogeneous polynomials of the same degree p, g € k[Xo, ..., X,],

q(y) #0Vy € V(x) such that : f |[ym= g \V(x)} .

These define sheaves of functions on the respective spaces.
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This also looks complicated, but means only that the local functions are
those that can be written, locally, as quotients of two polynomials (homo-
geneous of the same degree in the case of P"), with the denominator non-
vanishing on the open under consideration.

Definition 2.9. Suppose X C A" is an affine algebraic subset, or X C P
is a projective or quasi-projective algebraic subset together with its Zariski
topology ¥. We define Ox as (Oan) |x resp. (Opn) |x. Then the triple
(X,%,0x) is called an affine/projective/quasi-projective algebraic vari-
ety. Moreover, slightly more generally, any topological space with a sheaf of
k-valued functions that is isomorphic, as a space with a sheaf of functions,
to an affine/projective/quasi-projective algebraic variety, will be called an
affine/projective/quasi-projective algebraic variety itself. If we use algebraic
variety without further qualification, we mean the most general class intro-
duced, a quasi-projective variety.

The elements in Ox (U) for U C X open, are called regular functions on U.
For a variety X, an open subset U C X as well as a closed subset Y C X are
varieties in their own right, the inclusions are morphisms. We call U an open
subvariety in this case, and Y a closed subvariety of X. Subvariety without
qualification will mean closed subvariety.

Remark 2.10. With these definitions, the natural projection A"*'—{0} — P"
becomes a morphism, and the natural bijections of the subsets U; = {X; #
0} C P" with A™ become isomorphisms, as it should be.

Definition 2.11. If (X, Oy) is a space with a sheaf of functions, z € X, put

Ox ., = {equivalence classes of pairs (f,U)
where U 3 zisopen, f € Ox(U), and
(f,U)~(g,V): <= IW CcUNVopen, z € Wsuchthat f |[w=g|w}.

We call Ox, the stalk of Ox in z; elements of Ox, are called germs (of
functions around x).

These definitions are very slick and smooth, and leave us with a beautiful
category of algebraic varieties, but the drawback is that it takes quite a
while to develop an intuition for what they mean and to work with them.
For example, what is Opn(A") or Opn(P™")? Here is a useful example of a
morphism.



14 CHAPTER 2. ALGEBRAIC VARIETIES AND REGULAR MAPS

Example 2.12. Let X,Y, Z be homogeneous coordinates in P2, and C' the
plane cubic curve given by

C:72Y? = X(X*-7?%.

Let Pp = (0:0:1) € C. For a (variable) point P € C, let [ be the line
through Py and P and «(P) the third intersection point of I with C'. Then
the assignment P +— «(P) defines an automorphism of C' of order 2, o = id.

To see this, first note that « is well-defined as a map of point sets: the
polynomial defining C' restricted to [ ~ P! factors, and will have one zero (p,
corresponding to Py, one zero (p corresponding to P, and a third zero (y(p)
determining a(P) uniquely, when we take into account multiplicities.

Consider Cy := CN{Z # 0} and take coordinates » = X/Z, y =Y /Z
on A2~ Uy :={(X:Y:Z)€eP?|Z+#0}. Then Cz has an equation

v = x(2* —1).

If P = (a,b) € Cz, then the line | through P, and P is given by x = at,
y = bt. Substituting yields

V1?2 = at(a*t* — 1)
= at(t — 1)(a* + 1)

So we get the third intersection point for ¢ = —1/a?, whence

However, this is not a well-defined map of Uz ~ A? into itself because the
formula makes no sense for (a,b) = (0,0). However, (draw a picture!) the
point (0, 0) should map to P, = (0: 1:0), the unique point at co on C' with
respect to the coordinates x,y! To prove that a is a morphism, we must
rather cover C' with various open sets as follows: put

P = (0:1:0),
PQZ (001)<:P0),
Q= (1:0:1),

Q2 = (=1:0:1)



From

Then
1.
2.

3.

15

the geometric definition, a exchanges P, P, and (01, (2. Put
Uliz O—{Pl,PQ}
Uy := C—{P,Q1,Q2}
U3: C_{P27Q17Q2}
‘/12: C—{Pl}:CﬂUZ:OZ

Vo= C—{P,Q1,Q:} =CN{Y #£0} =CnNUy =Cy.

Uy, Us, Us is an open cover of C'.
V1, V4 is an affine open cover of C.

We have
Oé(Ul) - ‘/1, Oé(UQ) C ‘/2, a(Ug) c V.

Let x,y be coordinates in Uy (resp. V;) as above, and s = X/Y, t = Z/Y
coordinates in Uy (resp. V3). Then

(A)

The map «a |y, : Uy — V; is given by

Note that the right hand side are polynomials in a,b,1/a and that
z,y,1/z € Oc(Uy), so a |y, is a morphism.

To describe the map « |y,: Uy — V4, let us compute the image under
a of a point (z,y) = (a,b) € Uy (z,y are also coordinates on Uy C V))
in terms of the coordinates s,t on V5; since

§ = g, t= y_l
Y
we get
2
s(a(a,b) = Hala,b) = -

and since b*> = a(a? — 1), this can be rewritten as

oz|U2:(a,b)r—>(s,t):( b ab >

a2—1 a2—1
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Note that z,y,1/(xz? — 1) € Oc(Us) and the right hand side of the last
displayed equation is a polynomial in a,b, 1/(a* —1), 50 a |, : Uy — Vs
is a morphism.

(C) Finally, consider « |y, : U3 — Vi. We have to compute the image of a
point with coordinates (s,t) = (¢,d) in Us in terms of the coordinates
x,y on Vp: since

we get

I
<
—~

Q
—~
o

~

SN—

SN—
|

|

r(afs, 1) = 2
and since d = ¢(c? — d?)
alu,: (s,t) = (¢,d) = (z,y) = (& = &, d(® —d*) — ¢) .

The right hand side are polynomials in ¢,d and s,t € O¢(Us), so
a |y, Us — Vi is a morphism.

Hence « is a morphism itself.

This example shows that, because the requirement of being a morphism is
local, checking this in practice may require passing to suitable covers by open
sets and finding formulas for the map locally in terms of rational functions
of the local coordinates that are suitably regular in the open sets under
consideration.

We will see later that there are instances where it is easier to check that
something is a morphism differently.



Chapter 3

Hilbert’s Nullstellensatz,
primary decomposition and
geometric applications

To understand varieties, their morphisms and regular functions better, we
need a little more background in commutative algebra.

An affine subvariety X C A™ in A" is given by the zero set of a family
of polynomials (fo)aca, f € A = klz1,...,x,]. We write I for the ideal
generated by the f, in A and X =V (I), V for “Verschwindungsmenge”, the
German for zero set, or vanishing set. For any ideal J C A, we thus use the
notation

V(J)={(z1,...,2,) € A" | f(x1,...,;2,) =0V f €I}
Definition 3.1. We write
I(X)={g€A|g(x,...,2,) =0V(21,...,2,) € X}

for the ideal of all polynomials vanishing on X. We call it the ideal of X for
short.

Theorem 3.2 (Hilbert’s Nullstellensatz). We have
I(V(I)=VI:={fecA|3n: frel}.
Here \/T is called the radical of the ideal I.

17
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Proof. It is clear that /I c I(V(I)), so it suffices to prove the opposite
inclusion.

Step 1. We prove that if V(1) = ), then I = A. Suppose by contradiction
that I C A. Then I C m for some maximal ideal in A. Now Step 1 will be
complete once we can show that every maximal ideal of A is of the form

m=(r1—ay,...,T, —ay)

for some a; € k. Indeed, then V(I) will contain the point (as,...,a,), hence
not be empty. Now the assertion that every maximal ideal is of the form
above is equivalent to the claim that the quotient field

L:k[l'l,...,l'n]/m

is isomorphic to k via the inclusion £ C L, and since k is algebraically closed,
this is in turn equivalent to showing that L is algebraic over k. We can
assume that xq,...,x; € L are algebraically independent over k£ and that
Ty41, ..., T, are algebraic over k(zq,...,2;) C L.

Lemma 3.3. Let R be a Noetherian ring, S O R a finitely generated R-
algebra. If T'C S is an R-algebra such that S is a finitely T-module, then T
is a finitely generated R-algebra.

Let us first indicate how the Lemma allows us to finish the proof of Step
1. Apply it with R = k, S = L, T = k(xy,...,2;). The hypotheses are
then satisfied, hence we would get that k(zy,...,x;) is a finitely generated
k-algebra, which is absurd unless [ = 0: if rational functions z1,..., 2y

Pi(xy,... 1)
Qi(xh S ,371)

Zi =

were generators, and if f € k[zry,..., 7] is irreducible, then 1/f must be
a polynomial in the z; with coefficients in k. But then f would have to
divide one of the Q; since A = k[zy,..., ] is a UFD, leading to the absurd
conclusion that there are only finitely many (monic) irreducible polynomials
in A.

Proof. (of Lemma Let &1,...,§, be R-algebra generators of S and let
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S1,...,8, be T-module generators of S. Thus 3¢,,, t/,_, € T such that
§ = tusn (3.1)
S, S = Rz:timsk. (3.2)
A

Let T be the R-sub-algebra of 7" which is generated by the t,, t/_, over R.
Then S is finitely generated as a To-module (clear because of formulas (3.1)
and (3.2)), and then T is finitely generated as a To-module: indeed, Tj is
Noetherian since R is, and a sub-module of a finitely generated module over
a Noetherian ring is finitely generated. Hence the claim. [

Step 2. Having completed Step 1, let us show how it quickly implies the
entire assertion of the Nullstellensatz. We have to show that if f € I(V (1)),
then for some integer m > 0: f™ € I. Put

J = <I,5L‘n+1'f(l’1,...,$n>—1> - k[$1,...,$n,l’n+1]

(the brackets indicate to take the ideal generated). Then V(J) = (), thus by
Step 1, J = k[z1,...,2,41]. Thus if

B :=kl[z1,...,x01]/(xp1 - f— 1),

then I - B = (1), so there is an equation 1 = ) g;a; with g; € I, a; € B in
B. Hence in the ring B we get an equation

1 =ho+hixpir + -+ hpay'y, hi € 1.
Thus in the ring A = k[xq, ..., z,] we have
fm"=f"ho+ -+ hy
and this is in /. O

We can use the above to describe rings of regular functions in several
cases more simply:

Corollary 3.4. We have

Opn(A") >~ K[xq, ..., 2y)
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and more generally: if X C A" is a closed subvariety and I(X) is prime (we
will shortly interpret this simplifying hypothesis geometrically), then

One customarily calls k[xy, ..., x,]/1(X) the affine coordinate ring of X.

Proof. Suppose f € Ox(X). By definition, this means that there is an open
cover {U,} of X such that

ha

[ .= "

lve, ko #0onU,, ha, ke € klxy,. .., 2,
Since every Zariski open set on X is a union of the sets U, = {z € X |
g(x) # 0}, g € klxy,...,x,], and since the fact that a set of U, covers is
equivalent, by the Nullstellensatz, to the ideal generated by the g, being the
unit ideal in k[z1, ..., z,]|/I(X), we can assume that U, = U,,_, some finitely
many g, € klzy,...,x,). So o € A, A an index set with |A| < oo.

The ideal (k,) has no zero on X, hence, by the Nullstellensatz again,
(ka, I(X)) = (1). Thus there is an equation (which can be viewed as an
algebraic partition of unity, if you are familiar with partitions of unity from
Differential Topology)

1= ok in Efz1,... 2,/ 1(X).

a€cA

Put P;:= )" lyhs. Then

koPr = lahaks =Y lahgka = hy

acA a€cA
on Ug, since

h h
— = 28 in Quot(klzy,...,z.]/1(X)),
ko ks
where Quot(k[zy,...,x,]/I(X)) is the quotient field of k[xy, ..., z,]/1(X).
Namely, hoks — hgk, vanishes on the open U, N Uz in X, hence is in 1(X),
since 1(X) is prime. O

Remark 3.5. The statement of Corollary also holds without the assump-
tion that I(X) is prime, but the proof is a bit messier then and we omit
it.
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Corollary 3.6. We have Opn(P") = k.

Proof. Because of Corollary , we have in A" ~ Uy = {X, # 0} C P™ that
an f € Opn(P") can be written as

Xl Xn

f p(X07 7X0)7p€ [xla ,SE]

As a rational function in k(Xy,...,X,), f is the quotient r/s of two ho-
mogeneous polynomials 7, s of the same degree with the denominator not
vanishing identically on Xy = 0; hence

X X,
7anleg(p) _ Xéieg(p)p (Yl’ o f) s,
0 0

but X, does not divide s and X{®® divides the polynomial
X X
Xy (2L 2
0 b XO’ ) XQ
only when p is constant. O]

The same method of proof even shows that Opn (P" — H; N Hy) = k where
Hy, Hy are two different hyperplanes in P".

Corollary 3.7. Let X C A", Y C A™ be closed affine subvarieties. FEvery
morphism f: X =Y is of the form

f=(xy, .o mn), oy fnl(r, - x))
with f; € klxy, ..., x,].

Proof. This follows from Corollary (and Remark since Tj o f, T} the
j-th coordinate function on A™, is regular on X. ]

Theorem 3.8. Fvery radical ideal I C A = klxy,...,x,] is a finite intersec-
tion of prime ideals p; with p; ¢ p; for i # j, unique up to reordering.

Proof. Let Iy be a maximal element in the family of all radical ideals I C A
which are not a finite intersection of prime ideals.Then [ is clearly not prime
itself. Pick a,b € A with a,b & I such that ab € I,. Put

L =/(Io,a), I,=+/(Io,b).
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By construction, I, I are finite intersections of prime ideals. But Iy = I;N 15,
contradiction. (To see that really Iy = I} N Iy, take f € I} N I5; then there
are integers m,n > 0 with f™ € (Iy,a) and f™ € (ly,b) whence [ € I
because ab € Iy. Consequently, f € Iy).

Thus we have proved existence of a representation of any radical ideal as
an intersection of prime ideals; uniqueness is easy under the above irredun-

dancy hypothesis: if
I= ﬂ P = m qj,
¢ J

then clearly for all i we have p; D ﬂj q;- Then q; C p; for some k. Vice
versa, we also have p; C qi for some [. By irredundancy, p; = p; = qx. So
there is a one-one correspondence between the p’s and ¢’s. O

Definition 3.9. A variety X is called irreducible if for all closed subvari-
eties Y, Z C X with X =Y U Z, we have Y = X or Z = X. Otherwise, X
is called reducible.

Remark 3.10. An affine subvariety X C A" is irreducible if and only if 7(X)
is prime. Indeed, if Y C X and Z C X are proper subvarieties, there is an
fellY), fI1(X)and thereisage [(Z), g & [(X). If X =Y UZ, then
fg € I(X), so I(X) is not prime. And conversely, if f, g are some elements
in klxy,...,x,) with fg € I(X), then X = V(I(X), f) UV (I(X),g). So if
I(X) is not prime, then X is reducible.

The preceding remark holds also for projective subvarieties X C P with
the following adjustments: first, putting S = k[zo, ..., x,], a graded ring, we
can consider

I(X)={FeS|F=0onX}

This is a homogeneous ideal in S = @, -, Sm, which means that if a is in I,
all its homogeneous components with respect to the direct sum decomposition
of S are. We call I(X) the homogeneous ideal of X. Then

S/1(X)

is another graded ring, the so-called homogeneous coordinate ring of X. It is
easy to see that X is irreducible if and only if 7(X) is prime (with the same
proof).

Because of Theorem we get immediately
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Theorem 3.11. Every (possibly reducible) variety X is a finite union of
irreducible subvarieties X; with X; C X for i # j, and in a unique way (up

=

to reordering). The X; are called the irreducible components of X .

This is a simply the geometric translation of Theorem [3.8, but to be sure
that everything works in the projective case as well one has to remark: if
I C S is homogeneous and radical, and

I=pin---Np,

a representation as an intersection of primes, then all the p; are homogeneous
ideals as well. For, I being homogeneous is equivalent to

I=1"={f(\zo,...,  z,) | f €I}

for infinitely many A € k*. This implies that for every ¢ there is a j with

pi = pj‘ for infinitely many A = Aj, Ag, ... since applying (—)* gives another

representation of I as an irredundant intersection of primes, and it is unique
-1

up to reordering. But then pj‘JAl = p; for all j, hence p; is homogeneous.

Remark 3.12. As an exercise, one should formulate and prove an extension of
the Nullstellensatz for projective varieties now. Moreover, one should verify
that

Oun(Uy) = klx1, ..., 2] (localization),

Opn(Ur) = k[zo, . .., 25] () (homogeneouslocalization)

where f € k[zy,...,x,] is a polynomial, F' € k[z,...,x,], and Uy C A"
resp. Up C P™ are the principal open subsets where f resp. F' do not vanish.
The same holds for any affine resp. projective subvarieties.

Corollary gives a nice characterization of morphisms between affine
subvarieties. We can do something similar for projective subvarieties.

Theorem 3.13. Let X C P, Y C P™ be projective subvarieties, and
f: X =Y a morphism. Then there is a N x (m + 1) matriz A = (Fj;) of
homogeneous polynomials Fi; € k[Xo, ..., X,] such that deg Fj; is constant
in each row,

rk(A(z)) =1 V]z] € X,

P(Im(A(z)") € Y for all [x] € X, and f([z]) = P(Im(A(x)")) for all [x] €
X. Conversely, every such matrix determines a morphism X — Y in the
preceding manner.
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Proof. Denote homogeneous coordinates in the target P™ by (g : --- : T3;,)
and U; = {T; # 0} ~ A™ C P™. The sets V; := f~(U;) are open and cover
X. We can write

Vi =J Xe,
j=1
Gy € k[Xo,...,X,] homogeneous, X¢,, principal open. Then f(Xg,) C
UNY Cc U; ~A™, whence

/] _<P0(X0,...,Xn)' . 'Pm(Xo,...,Xn))
. = -
wT\ o ¢t

(3.3)

with deg P, = deg(Gj;) - fu, and 1 is in the i-th position. This is so because
OX(XGij) = (k[X(b s 7X”]/I(X))(Gi]-) .

Clearing denominators in (3.3), we get one matrix row for A. Doing this for
all 7, j, we get A. O

Example 3.14. Let us illustrate the preceding Theorem |3.13|in one geomet-
ric situation. Suppose C' C P? is given by

X2+VY?2-22=0.

Then: the line Y — Z = 0 intersects C' in one point, namely P = (0:1: 1),
the line Y + Z = 0 intersects C' in one point (0 : —1 : 1), and we want
to consider the stereographic projection of that conic from P onto the line
Y =0:

f:C—{0:1:1)} =P
(X:Y:Z)—»(X:Z-Y).

Thus, geometrically, we construct the line through P and a point R € C—{P}
and let f(R) be the intersection of that line with the line Y = 0. Now
define f by f on C' — {P} and f(P) = (1 : 0) (the point at infinity on
P' ~ {Y = 0}. Then f is a morphism, which can be seen as follows: let
(S : T) be homogeneous coordinates on P!, with Us = {S # 0} ~ A,
Ur ={T # 0} ~ A'. Then

FHUs)=C={(0:1:-1)},
YU =C—{(0:1:1)}.
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Then f is regular on f~'(Uz), and on f~'(Us) f can be given by

(X:Y:2)» (Y +Z:X).

. X Z-Y
\Y+Z X
has rank 1 everywhere on C, and is a matrix defining f in the sense of

Theorem B.13

Now one can show that in this case

The matrix

f:C =P

cannot be defined by homogeneous polynomials Fy, F € k[Xo, X7, X5] of the
same degree without common zeroes on C. l.e., we cannot find a 1 x 2 matrix
as in Theorem defining f. To see this, assume by contradiction that
such Fy, F; would exist. Then note that

T A~ C—{(0:-1:1)}

via the inverse of the projection onto {Y = 0} from (0 : —1 : 1). We have
T(t) = (2t: —t*+1:¢*+1). Now

X B
a —_—
Z—y R

define the same rational function in k(t) on A! via 7 since X F} — Fy(Z—Y) =
0 on C. Now F vanishes in (0: 1: 1), but Fy does not, since (0: 1 : 1) maps

to (1:0). Now
S
"\Zz=v) 1

has a simple pole in 0 € Al. Hence the same must hold for

Fi(2t,—t>+ 1,12+ 1)

. [ Fo Fo(2t, —t> + 1,2 + 1)
(Lo
Fy

Consequently, Fy(2t, —t*+1,t?+1) is a polynomial in k[t] with a simple zero
at 0 and no further zero, since zeroes of Fy(2t,—t* + 1,¢* + 1) correspond
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bijectively to zeroes of F1(X,Y,Z) on C'—{(0: —1:1)} and (1:0) has only
one preimage under f there. Thus

F(2t, >+ 1,2 +1)=ct, c€k”

and then F;(X,Y,Z) — (1/2)X is a polynomial vanishing identically on C
since T (F1(X,Y,Z) — (1/2)X) = 0 in k[t]. So Fi(X,Y,Z) has the further
zero (0 : —1 : 1) on C, but this must also a zero of Fy(X,Y,Z) since (0 :
—1:1) — (0 : 1) under f. Hence Fy, F do have a common zero on C,
contradicting our assumption.

Besides morphism and isomorphisms, there is another type of “map” and
equivalence in algebraic geometry that is extremely important:

Definition 3.15. Let X and Y be irreducible varieties. A rational map
f: X --» Y is given by an equivalence class of pairs (fy,U) where U C X
is Zariski open and nonempty (hence dense) and fy: U — Y is a mor-
phism. Two pairs (fi7, U) and (fy, V) are considered equivalent if (fi;) |vnv=
(fv) lunv- A rational function on X is a rational map to A'. A rational
map f is called dominant if the image of fi; is dense in Y for any represen-
tative fy of f. Varieties X, Y are called birational if there exist dominant
rational maps
f:X-->Y, ¢g:YV--2X

such that go f =idy and f o g = idy as rational maps.

Thus a rational map f as above need not be everywhere defined on X,
which we indicate by the dotted arrow above. Hence it is not a “map”, but
this is consistent with the “red herring principle” in mathematical termi-
nology, which means that a red herring need neither be red nor a herring
in mathematics. Anyway, varieties with dominant rational maps do form a
category, so everything is perfectly fine.

For example, A% and P? are birational, but not isomorphic (for example
because P? has no nonconstant global regular functions whereas A2 has lots
of them).
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Segre embeddings, Veronese
maps and products

If X C A" and Y C A™ are affine subvarieties, clearly X x Y C A" x A™ ~
A™™ ig an affine subvariety. (But note that the product topology on X x Y
is in general strictly weaker than the Zariski topology!) What about
the same question for projective subvarieties X C P, Y C P™? The first
question is how to turn the set P" x P into a projective variety.

Definition 4.1. We define a topology on the set P" x P™, which we call
the Zariski topology, in the following way: its closed sets are zero sets
V(fi,..., fn)in P" xP™ of polynomials f; € k[Xo, ..., X,, Y0, ..., Y] which
are homogeneous in the X’s and Y’s separately, i.e.

_ § ap an 1 bo bn
fi - c‘7»0 ----- an;bo,-., meO o XnnYO e Yn" .
ag+-+an=d,bo+:-+bm=e

Thus f; is “bi-homogeneous” of bi-degree (d, e).

Theorem 4.2. Let (Z;;)o<i<no<j<m be homogeneous coordinates in P ++m,
Let a be the homogeneous ideal in k[Z;;] generated by

Zijlw — ZyZkjy V1,7, kl
(s0 all 2 x 2-minors of the matriz (Z;;)). Then the map
Sum: P x P™ 5 V(a) ¢ Prmtntm

(Xo:--: Xp), (Yor- Vo)) = (Zy) = (XiY))

27
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is a homeomorphism and V (a) is an irreducible projective subvariety. One
calls Sy m the Segre embedding and V(a) =: ¥, ,,, the Segre variety.

Proof. Step 1. We show that s,, ,, is injective. Thus suppose that s, ,,(X,Y) =
Spm(X',Y"). It means that there is a nonzero constant A such that for all 7, j
we have X;Y; = AXY]. Moreover, X, Y representing points in projective
spaces, there is a tuple of indices i, jo with Xy, # 0, Y}, # 0. Thus both X,
and Y; have to be nonzero as well. Putting

Xi Y}o
W= 7
X{O

(whence A\ = uv), we calculate

X,Y;, = AXY! = wX!Y! = uXlY;,

L= Jo L= Jo

and thus X; = pX/ for all i. Thus X = X’ in projective space, and analo-
gously we get Y =Y.

Step 2. The map s, ,, is surjective. Suppose Z;; satisty Z;; Zy = ZyZy;

and not all Z’s are zero, Z;,;, # 0, say. Put
XZ' = —ZZ]O , Y7 = Zzoj .
Ziojo Ziojo

Then
(Zigjo )P XiY; = ZijoZin; = Zij Zinio

which means s(X,Y) = [(Z;)].

Step 3. The map s, ,, is a homeomorphism. Indeed, the topology we
put on P™ x P™ has a basis consisting of the sets

{(X,Y) | f(X,Y) #0, f bihomogeneous of bidegree (d,d)} .
For, by definition, the topology has a basis consisting of

{(X,Y) | f(X,Y) #0, fbihomogeneous of bidegree (d,e)} .
Suppose d > e (the opposite case being similar). Then

{(X.Y) | F(XY) #0) = [ {(0Y) [ (o N)(XY) # 0}

=0
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and de_ef has bidegree (d, d).

Now every polynomial f(X,Y’) which is bihomogeneous of bidegree (d, d)
can be written as F(..., X,Y},...) where F'is a homogeneous polynomial in
the Z;; of degree d. That means that the open set f # 0 in P" x P™ gets
mapped to the open set V(a) N (F # 0). Thus s, is a homeomorphism.

Step 4. The image V(a) is irreducible. This follows from a general
topological Lemma.

Lemma 4.3. Let X,Y be irreducible topological spaces. If on X XY a
topology is given which induces the given topology on {x} XY ~ Y and
X x{y} =X forallz € X and ally € Y, then X X Y is irreducible.

Proof. Let X xY = SUT be a decomposition into closed subsets. For all
x € X we have

(2} xY = [Sn{z} x V) UT N ({z} x V).

Since Y is irreducible, it follows that for all  we have {z} x Y C S or
{z} xY C T. Let s, be the map s,: X — X x Y given by s,(x) = (z,y).
Then

=) 5,(9) ={x| (x,y) € SVy} ={z | {x} x Y C S}.

yey

Clearly, S’ is also closed. Similarly,

T :=()s,(T) ={z | {a} xY C T}

Yy
yeyY

is closed. Since we saw that X = S’ U T, the irreducibility of X implies
X=5oX=T.  Thus X xY=Sor X xY =T. ]

Thus ¥, ,,, = V(a) is irreducible and this concludes the proof of Theorem
4.2 [

We now give P x P the structure of a projective variety, and every prod-
uct X x Y of (quasi-)projective varieties the structure of (quasi-)projective
variety that comes from identifying it with the image under s,, ,,.
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Example 4.4. The variety X 1 = s11(P! x P') C P? is the image of the map

(Xo:Xy), (Yo: Y1) = (XoYo: XoY1: XhYo: XaYy) = (Zo: 21 : Zy 2 Zs)

Zy Z1\ _
det ( 7 Z3> =0
in P3. In general, s,,, maps each P" x {y} and {z} x P™ onto projective

linear subspaces of P(*t1D(m+1)=1. iy this case this gives two families of lines
on X j, namely

i.e., the quadric

V(Zl == )\Zo, Z3 - )\ZQ))\ S Pl,
V(Z2 - )\/ZQ7 Zg - )\lzl))\/epl.

These are the loci where either the rows or columns of the above matrix
satisfy a linear dependency relation.

In fact, any line L C P? on ¥;; belongs to one of these two families:
suppose we write L as the image of a map P' — P3

(Aop) = (LA ) oo la(A 1)

where the [;(\, ) are linear forms. The condition that L lie on ¥, ; means

that W) L)
1A, 1 2(A, U _
det (zsu,u) lm,m) =0

Without loss of generality, after possibly interchanging rows or columns and
transposing, we may assume [; # 0 and [y, [ linearly independent. Then
lll4 = lng 1mphes that ll | l3 and ZQ ’ l4, hence lg = Cll and l4 = ClQ, some
c€k.

Remark 4.5. In coordinate free form, the Segre map can be given as

s: P(V)xP(W) —-P(VeW)
[v] X [w] = [v® w].
Remark 4.6. The product X x Y of varieties X, Y as we defined it is the

categorical product of varieties. This means that the projections pry: X x
Y — X and pry: X x Y — Y are morphisms, and for all varieties Z and
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morphisms «: Z — X, f: Z — Y there is a unique morphism « x §: Z —
X XY such that
A
laxﬁ
B
X

pry

* X

h<

Prx

X Y

commutes. To see this note that purely set-theoretically it is clear how we
have to define v x 3 if it is to exist at all. Then we just have to check that
a X ( is a morphism. To see this suppose ry € Z is a point with a(rg) = p,
B(rg) = q. Suppose p is in Xy # 0 in P". Then, in a neighborhood of 7y the
map « can be given by

re (1 fi(r) -0 fu(r)

with the f; regular in a neighborhood of ry. After possibly renumbering
coordinates Y; in the target P™ we can also assume that [ is locally around
ro given by

Br)=0:gi(r) - gm(r))
with the ¢’s regular in a neighborhood of ry. Then a x f is, locally around
ro, given by

ry (Lovees filr) ooee i gi(n) ooee s filr)g(r) o ...) € Prmtndm)

which is regular.

Remark 4.7. If f: X — Y is a morphism between projective varieties X C
P* Y C P™, then

Ipi={(z, f(x)) |ze X} X xY CP"xP"

is a (closed) subvariety. Indeed, by the preceding Remark , the map
fxidy: X XY =Y xY is a morphism, and

Ly = (f xidy) ! (Ay)

where Ay C Y x Y is the diagonal. But Ay = Apm N (Y X Y) is closed
because Apm can be defined by X;Y; — X,;Y; = 0.
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We turn to the subject of Veronese embeddings. Note that the homoge-
neous polynomials F' of degree m in the variables Xy, ..., X, form a vector

space of dimension
m-+n
)

This can be seen by the following count: decompositions
o+ ta,=m

of m into n + 1 nonnegative integers «; correspond bijectively to subsets of
n elements in {1,...,m + n} via

1<appy+l<ogpyt+a+2<---<ag+-4+a, 1 +n<m+n.

N = (m+n> —1
m

and for each decomposition into nonnegative integers ig + --- + i, = m,
introduce a symbol v;, ,,, and consider these as homogeneous coordinates in
PV . Then the m-th Veronese map is the map

Now put

Up s P — PV
Vig. iy i= uéo o uil”
where wuy, ..., u, are homogeneous coordinates in P". This is visibly a mor-
phism. The image v,,(P") C PV is called Veronese variety. Indeed, this
image is a projective subvariety of PV, which we check as follows:
For all points in v,,(P™) we have the relations

Vig.iinVjojn = VkokinVlo..dn V0 + Jo = ko +lo, .- in + Jn = kn + 1. (4.1)

If (4.1) holds, then we have vy gm0 0 7# 0 for m sitting in some position
in the multi-index. If this were not so, we could pick a v, ;, such that the
maximum of the indices [y, ..., [,, call it .y, is maximal among all indices
that occur in the coordinates vj, j, with vj, ;. # 0, and such that 1 <[, <
m — 1. But this would lead to a contradiction using the equations (4.1), for
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then there will be another index [ among the lo,...,L, with 1 <[ <m —1
and we can write

(Vi..1,)° = U a1 —1,0 Ve o =1, 01,
But thenv_, ., ;, isnonzero and has greater maximum index!
So we have get a vg___omo0..0 # 0. Suppose for simplicity of notation that
the m is in the first place: v, 00,.. 7 0. Then we can set

U = Um,0,0,., Ui = Um-10,.,0,10,., &> 2

where the 1 in the formula for u; is in the ¢-th position. This defines a regular
inverse map to v, on the open set v, . # 0. Thus we conclude that (1)
v (P™) is defined by the equations (4.1) and the map v,, : P* — v,,,(P") C PV
is an isomorphism onto the image.

For n = 1, we get rational normal curves v,,(P') € PY. The image of
vy: P? — PP is classically called the Veronese surface.

Of course we can also aplly v,, to any subvariety X C P" and get a
subvariety v,,(X) € PNY. X and v,,(X) are then isomorphic as varieties.
This leads to the following somewhat surprising result.

Theorem 4.8. Fvery projective variety X is isomorphic to an intersection of
a Veronese variety with a linear space. In particular, every projective variety
is isomorphic to an intersection of quadrics.

Proof. The zero set of a homogeneous polynomial F'(uy, ..., u,) of degree d is
the same as the zero set of all polynomials {u;F'};—¢ . ,. Hence we can assume
that X C P" is defined by homogeneous polynomials Fj(uy, ..., u,) = 0, all
of which have the same degree D. This means that Fj is a linear polynomial
in the monomials u ...u%, iy + --- + 14, = D, hence vp(X) C PV is an

intersection of vp(P") with a linear subspace. O
Of course not every X is isomorphic to a complete intersection of quadrics,

the homogeneous ideal of X in any embedding need not be generated by

quadrics. So the algebraic consequences of Theorem are not so strong.

Remark 4.9. We can also describe the Veronese map in a coordinate free
manner (for char(k) = 0) as
vg: P(V) = P(Sym?V)
[o] = [v].

If char(k) = p, the p-powers of linear forms in P(Sym”V’) are not a rational
normal curve, but lie on a line.
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Chapter 5

Grassmannians, flag manifolds,
Schubert varieties

We want to make the set Grass(p, V') of all p-dimensional sub-vector spaces
of an n-dimensional k-vector space V' into a projective variety (equivalently,
the set of all (p — 1)-dimensional projective linear subspaces of P(V)).

Definition 5.1. We call elements w € APV (the p-th graded piece of the exte-
rior algebra) p-forms. We call w completely reducible if there are vy, ..., v, €
V such that w = v; A -+ Aw,.

The k-sub-vector space of V'

Am(w)={veV |vAw=0}
is called the annihilator of w.

Theorem 5.2. Let wy resp. wo be completely reducible p— resp. q—forms.
Then:

1.
Ann(w;) D Ann(ws) <= Jw e APV 1w = w A wy
unless wp =0, w1 =e1 A--- Ae, for some basis e, ...,e, of V.
2.
Ann(w;) N Ann(wp) = {0} <= w1 Aws # 0.
3.

Ann(w;) NAnn(wy) = {0} = Ann(w;) + Ann(we) = Ann(w; A ws).

35
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Proof. For (1) we note that if v Aws = 0, then v Aw Aws = fwAvAwy =0,
thus <= holds. To prove the converse, consider some completely reducible

W=v1 N\ Ny

Ifvy,..., v, are linearly dependent then @ = 0. Suppose that they are linearly
independent, vy A -+ A v, # 0. Then we will show that

Ann(vy A+ Awp) = (01, ..., Up). (5.1)

What is clear is that D holds in the preceding formula. Let vy, ..., vy, Vpt1, ..., Up
be a basis of V. Then to show (5.1), it suffices to show

Zaivi € Ann(v; A---Av,) = a;=0VYi>p.
i=1

This is clear since

n n
0= <Zaivi> ANiA-Av) = ) awi Ava A A,
i=1

i=p+1

and v; Avy A--- Avy, p+1 <17 <mn, are linearly independent. Suppose now
Ann(wy) D Ann(ws), wy = v A= AUy, Wy = V] A=+ A U;' If w; = 0, the
conclusion of (1) is trivial, and if ws is zero, the annihilator of w; is the entire
space, hence w is zero or w; = e; A--- Ae, for a basis e, ..., e, of V; in the
first case, the conclusion of (1) holds trivially, in the second case it holds,
too. If wy # 0, wy # 0, we get by the above considerations

(U1,...,0p) D (v],...,v).
Thus we can choose a basis of Ann(w;) of the form (v,...,vp, v 4,...,0))
whence
wy = det(A)v] A Avg A AL,
where A is the base change matrix from (v}, ..., v;) to (vy,...v,). Thus there

exists w = £ det(A)v,; A... v, with wy = w A ws.

For (2) and (3), first note that

(VL A= Av) AV A Avg) #0
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if and only if vy, ..., vp,v],...,v] are linearly independent if and only if

(U1,.. ., vp) N (v, ... vp) = {0}

This shows (2), and (3) follows from what has been proven so far (in partic-
ular (5.1)). O

Corollary 5.3. The map
Ann: {Jw] € P(APV) | w completely reducible} — Grass(p, V)
15 bijective.

Proof. Every p-dimensional sub-vector space W C V is in the image since
if W = (v,...,vp), then W = Ann(v; A --- Av,). Theorem [p.2] (1) gives:
Ann(w;) = Ann(w;) = w; = w Awy with w € AV = k. O

Hence the map

ip := Ann"': Grass(p, V) — P(A?V)

is a bijection onto its image. This map ip; is called the Plicker embedding.
If W = (vy,...,v,) and A the p X n-matrix with rows the coordinates of
U1, ..., v, (with respect to some basis ey, ..., e, of V), then W gets mapped
under ip; to

whereM ™" is the minor of A belonging to the columns i, . .., %,. One calls

To check that Grass(p, V) C P(APV) is a projective subvariety, we have
to exhibit polynomial equations which characterize the completely reducible
p-forms.

Theorem 5.4. A p-formw € APV, w # 0, is completely reducible if and only
if dim Ann(w) = p. Otherwise we always have dim Ann(w) < p. Moreover,
Grass(p, V') C P(APV) is a projective variety.

Proof. From the proof of Theorem [5.2] we know that if w # 0 and w is com-
pletely reducible, then dim Ann(w) = p. Suppose conversely that dim Ann(w) =
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r (we will need the case r = p). Suppose that Ann(w) = (vy,...,v,) and
that (vi,..., 0, Vpt1,...,0,) is a basis of V. Write
w = Z wl-lmipvil VARSIV Uip-

1<i1 < <ip<n

The condition v; Aw = 0 for all 7 = 1,...,r translates into w;,.;, = 0 for
{1,...,7} ¢ {i1,...,4,}. This means that for w # 0, we get r < p and
w = (vy A -+ Av.)A(something). For r = p, we obtain the claim.

Now this implies that [w] € Grass(p, V') is equivalent to the rank of the
map
ew): V= ATV v wAw

being n — p (namely, ker(p(w)) = Ann(w)). Now rk(¢(w)) < n — p cannot
happen since always dim Ann(w) < p. Hence

[w] € Grass(p,V) <= rk(p(w)) <n—p. (5.2)
The map

®: APV — Hom(V, APTV),  w — ¢(w)

is k-linear, i.e. the entries of a matrix for ¢(w) are linear in the homogeneous
coordinates of P(APV'). The (n —p+ 1) x (n — p + 1)-minors of this matrix
define Grass(p, V). O

Remark 5.5. Actually the above equations are easy to produce but they do
not generate the homogeneous ideal of Grass(p, V).

Now consider the special case p = 2. We will study this in a little more
detail.

Theorem 5.6. Assume char(k) # 2. Then an element 0 # w € A?V s
completely reducible if and only if w A w = 0.

Proof. The direction = is clear, and for <= we do induction over
n =dimV, n = 2 being trivial. For the induction step, let (v1,...,v,41) be
a basis of V. Then we can write

W = Upg1 N W1 + wo

where wy is a linear combination of v;, 1 < i < n, and w, is a linear combi-
nation of v; Av;, 1 <7 < j <n. Now w A w = 0 translates into

WQAWQ+2Un+1 /\wl/\WQZO
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because (V41 Awi) A (Upe1 Awp) = 0 and we is in the center of A*V. Since
wy A ws does not contain v, in its expansion with respect to basis elements
in V| we have separately

wWoAwe =0 Vpy1 Awp Aws = 0.

By the induction hypothesis, this implies that wy is completely reducible.
Since w; A wy does not contain v, in its basis expansion, we conclude that
even wy A wp = 0, i.e., wy € Ann(ws). Thus dim Ann(w,) = 2 (by Theorem
and because we just proved that it is completely reducible), hence

we = Wi Aw

for some w], unless w; = 0 in which the case the proof is already complete
anyway. Then

W=V Awp + W Awp = (Vg1 +wi) Awy
is completely reducible. [

Corollary 5.7. The variety Grass(2,V) C P(A*V), n = dimV > 3, is an
intersection of quadrics.

Proof. Indeed, in a basis e, ..., e, of V, the condition that
W = E Wiiis€iq N €is
1<i1 <in<n

be completely reducible is, by the Theorem [5.6]

1<iy <iz<n 1<j1<ja<n

This is equivalent to

(FCIE B N
Zwilizwjlhsgn ki ko ky ky)

Thus we get one equation for each quadruple of indices 1 < k; < ko < k3 <
ks < n and the sum above then runs over those indices 1 < ¢; < i3 < n and
1 <71 < j2 < n with {il,ig,ig,i4} = {l{fl,]{ig, ks, ]f4} With sgn we mean the

sign of the permutation
ioly I3 U
kv ke ks ka)
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In particular, if n = 4, we can consider Grass(2, V) C P(A?V) ~ P given
by

WigWsy — WigWaa + wiawaz = 0.

This quadric is called the Plicker quadric. It parametrizes projective lines
in P3.

We can in general consider the subset

¥ (M) C Grass(p, V)

where M C V is an m-dimensional subspace, and ¥;(M) consists of those
p-dimensional W C V with dim(W N M) > 1.

Proposition 5.8. The subset ¥;(M) is a subvariety of Grass(p, V') C P(APV)
which is a section of Grass(p, V') by a linear subspace of P(APV).

Proof. Indeed,
(M) ={[w] € Grass(p,V) |[wAUvI A+ AVpy11 =0V 01, .., U131 € M},
This means that the span of W and M is at most p+m — [-dimensional. [J

Customarily, the ¥;(M) are called (special) Schubert varieties in Grass(p, V).

Forl1<a; <ay <--- <a <n consider the subset

Flag(ay,...,a; V) ={(Wq,...., W) | Wy C --- C Wy}
C Grass(ay, V) x -+ x Grass(az, V)

where the latter product is a projective variety via the Segre embedding.
Elements in Flag(ay,...,a:; V) are called flags of type (aq,...,a;) in V.

Proposition 5.9. The subset Flag(ay, ..., as; V) is a subvariety of Grass(aq, V') X
.-+ x Grass(at, V).

We call it the flag variety of flags of type (a1,...,a;) in V.
Proof. 1f

pr;;: Grass(a, V) x -+ x Grass(a;, V) — Grass(a;, V) x Grass(a;, V')
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is the projection, then

Flag(ay,...,a; V) = ﬂ pr;; (Flag(as, a;,V)),

1<i<j<t

so it suffices to show that some Flag(ay, as, V') C Grass(ag, V') x Grass(ag, V)
is closed.

Step 1. We first describe local charts on Grassmannians. For Grass(p, V),
V o~ k", consider the sub-vector space I' = (ey11,...,€,) where ej,..., e, is
the standard basis of V' = k™. Consider

U :={W € Grass(p,V) | WnNT = {0}}.
If W is spanned by the rows of

w11 ... Wip

Wp1 .. Wpn
then W € U if the minor (=Pliicker coordinate of W)

wip ... Wy
det

Wp1 .. Wpp

is nonzero. Thus U C Grass(p, V) is open in Grass(p, V') and isomorphic to
AP(=P): £ see the last statement it suffices to consider the map

Mat(p x (n —p)) ~ AP"P) - U
which associates to a matrix

ari ... QAip—p

A=
ap1 - App—p

the Pliicker coordinates of the subspace W of k™ which is spanned by the
rows of the p x n matrix

1 ... 0 11 ... QAip—p

0 ... 1 ap1 ... apnyp
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If instead of I above we take

Fil...in,p - <ei17 s 76in7p>7 1 S 7:1 <. < Z"n,—p S n,
then the construction runs analogously: the subspaces W with WnNI';, ;=
{0} form an open subset U;, ~ AP("=P) of Grass(p, V'), where (ji, ..., j,)

7777 jp_

are the indices complementary to (iy,...,in—p) in {1,...,n}, and U}, is
then given by
wljl e wljp
det : TR #0.
wpm e ijp
The Uj, .. ;, form a cover of Grass(p, V') by affine spaces.
Step 2. Consider now
Flag(ay, a2, V) C Grass(ay, V) x Grass(ag, V) C P(A"V) x P(A®V).
The open sets
Uj1...ja1 > Ull...la2 ~ A (n—a1) o paz(n—az)
1< <+ <oy <n, 1 <l <0 <y < n, cover Grass(ap, V) x

Grass(ag, V'), and it suffices to show that
Flag(ay,as, V) N (Ujl,,.jal X Ull...la2)

is closed in A®(=a) x A®2(n—a2)  Without loss of generality we can assume
{li,. . la,} =A{1,...,a2}. An M € Ul .1, is given by a matrix

1 ... 0 my1r ... M1 n—as

0 ... 1 mga .. Magp—a,

Moreover, S € Uy, .. j,, is given by a matrix

.....

51,1 A S1n

Sa1,1 P Sal,n



43

and the columns corresponding to ji,...,Jq, form the unit matrix. Then
S C M means that the matrix

S11 - Sin

Sai, 1 -e e e Sai,n
1 N 0 mia N Min—as
0 ... 1 mg1 .. Mayn—as

has rank < ay, i.e., all (ay + 1) X (a2 + 1)-minors vanish.This finishes the
proof. ]

Remark 5.10. The subset G = GL, (k) C A" is open, hence a variety. What
is more, the group composition and inverse map are morphisms. The varieties

Grass(p, V) and Flag(ay,...,a;, V)

are homogeneous spaces for G, which means that G acts transitively on them
and the obvious group actions

G x Grass(p, V) — Grass(p, V),
G x Flag(ay,...,a:, V) — Flag(ay,...,a;, V)

are morphisms.
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Chapter 6

Images of projective varieties
under morphisms

If f: X — Y is a morphism of varieties, is it true that the image f(X) C Y
is a quasi-projective subvariety? ILe., is it locally closed? Unfortunately (or
fortunately), things aren’t quite as simple:

Example 6.1. Look at the morphism
f:A* = A?
(z,y) = (z,2y).

Then Im(f) = {(a,b) € A% | a # 0} U {(0,0}. This is not open in its closure
A2,

However, everything is nicer when the source is projective.

Theorem 6.2. Let X be a projective variety and Y any variety, f: X —Y
a morphism. The f(X) CY is closed.

Proof. The graph T’y C X xY is closed by by Remark[d.7jand f(X) = pr,(T'y)
where pry: X XY — Y is the projection onto the second factor. So it suffices
to show:

If Z C X xY is closed and X is projective, then pry(Z) C Y is closed.

Now if X C P™ then Z is also closed in P" x Y and pry(Z) is equal to the
image of the projection P" x Y — Y. Thus we can also assume X = P".

45
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Now let Y = J,.; U; be a finite cover of Y by affine open subsets. Then

iel
XxY=JxxU, zZ=JznXxUy),
el
pry(Z) = UPTQ (ZN (X xU)),
i€l

so it suffices to show that pr, (Z N (X x U;)) is closed in U;. Hence we can
furthermore assume that Y is affine, Y C A™. Moreover, it is then X x Y
closed in X x A™ and pry(Z) equal to the image of Z under the projection
X x A™ — A™, so we can even assume Y = A™.

Thus let Z C P™ x A™ be closed. Because of Theorem [£.2] Z can be
defined by equations

F(Ty, ..., Tutr, ..., tp) =0, i=1,... N

where F; € k[Ty,..., T, t1,...,tn] is a polynomial which is homogeneous,
of degree d;, say, in the coordinates Ty,...,T, on P" (but of course not
necessarily in the coordinates ty,...,t, on A™). For all a = (ay,...,a,) €
k™ ~ A™ put

Zo={(Ty: - :Ty) €P" | Fy(Ty,..., Tp,a1,....am) =0Yi=... N}

(which can be thought of as the fiber of Z over a point a € A™). Then Z, is
empty if and only if (0,0, .. .,0) is the only solution (in A"™!) of the equations
Fi(To,...,Th,a1,...,a,) =0Vi=...,N. This in turn is equivalent, by the
Nullstellensatz , to the fact that the radical v/, of the ideal I, generated
by the F;(Ty, ..., Ty, a1,...,ay) in k[Ty, ..., T,] is equal to (Ty,...,T,). We
can also phrase this as

Z, =0 = (Ty,...,T,)° C I, for some s > 0.
Thus we get the characterization
pry(Z) ={a € A™ | Z, # 0}
=(HacA™ [ (Ty,.... T.)" ¢ L}.

s>0

Thus it is sufficient to show that each set

Y, = {a €A™ | (Ty,...,T,)° ¢ I}
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is closed in A™. Now remark that (7y,...,7,)* C [, if and only if every
homogeneous polynomial of degree s in k[T, ..., T,] can be written as

N
ZE(Tm s 7Tn7a17 s 7am)Qi(T07 s 7Tn)
i=1

for some Q;(Ty,...,T,) € k[Tb,...,Tn)s—q;- This leads us to consider the
k-linear map

N

va: KT, ... Toloma, = K[To, ... Tuls
=1
N
=1

and to reformulate once more: a € A™\Y; if and only if ¢, is surjective,
thus @ € Y if and only if rk(p,) < dimk[Ty,...,T,]s =: d. But then the
d X d-minors of any matrix representing ¢, are polynomials, with coefficients
in k, in the aq, ..., a,,, which then define Y. ]

Corollary 6.3. If f: X — Y is a morphism, and X is projective and irre-
ducible, and 'Y is affine, then f is constant.

Proof. Suppose Y C A™ and let z;: A™ — A! be the i-th coordinate func-
tion. Then the composition

f

X g Am T Al P!

is a morphism from X to P! whose image is closed in P! by Theorem
A closed subset of P! is either the whole of P!, which is not the case in the
present situation since f maps into A™, or a finite point set. Since X is
irreducible, this has to consist of exactly one point. Since this holds for all
1 =1,...,m, the assertion follows. ]

Let f: X — Z, g: Y — Z morphisms of (quasi-)projective varieties. Let
X xzY ={(z,y) e X xY [ f(z) = g(y)}.

Since this is the preimage of the diagonal Ay C Z x Z under the morphism
XxY = ZxZ, (x,y)— (f(z),g(y)), this is a quasi-projective variety. We
call it the fiber product of f: X — Z and ¢g: Y — Z.
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Definition 6.4. A morphism f: X — Z of varieties is called proper if for
all varieties Y and for all morphisms ¢g: ¥ — Z and for all closed subsets
W C X xz Y, the image of W under the projection X xz Y — Y is closed
inY.

Theorem 6.5. If X is projective, then every morphism f: X — Z to another
variety Z 1S proper.

Proof. In the proof of Theorem [6.2| we saw that, in the situation and notation
of Definition [6.4], the projection X x Y — Y maps closed sets to closed sets.
But X xz Y is closed in X x Y, and W is closed in X Xz Y, hence also in
X xY. m

How does the image of a morphism of general varieties f: X — Y look
like?

Remark 6.6. If X is not necessarily projective, one can still show that the
image of f: X — Y in Y is always a constructible set (this is a theorem
due to Chevalley). Here the constructible sets in Y are the smallest family
of subsets in Y which (1) contains all the open subsets, (2) is stable under
finite intersections, and (3) stable under taking complements.

As applications of the fore-going theory, the reader may try to prove the
following assertions for herself or himself:

1. Consider k[Xo, ..., X,]qs as an affine space

+d
AN N=(" .
="

Prove that the subset of reducible polynomials is closed.

2. Prove that for n > 1, the varieties
A" — {point}, P" — {point}

are isomorphic neither to affine nor to projective varieties. (To show
that A™ — {(0,...,0)} is not affine, compute the global regular func-
variety Z, a proper ideal I C Oz(Z) defines a non-empty subset by the
Nullstellensatz).
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3. If X C P" is a projective subvariety which is not a finite point set, and
Y C P" is a projective subvariety defined by a single (non-constant)
homogeneous polynomial F' C k[Xy, ..., X,], then X NY # (.

4. Let n > 2 and f: P* — P! a morphism. Show that f is constant.
(Note that the projective closure of the zero set of a polynomial p in
A™ is defined by the homogenization of the polynomial).
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Chapter 7

Finite morphisms, Noether
normalization

In this Chapter and Chapters 8,9 (on dimension theory and its applications),
all varieties are tacitly assumed to be irreducible unless explicitly mentioned
otherwise. This is more a matter of convenience than necessity, but it will
simplify some proofs.

Let B D A a ring extension. We assume A and B Noetherian. Then
b € B is called integral over A if there is an equation

bk+a1bk_1+'--+ak:0, a; € A, somek > 1.

Moreover, B is called integral over A if every element in B is integral over

A.

Remark 7.1. If B is a finitely generated A-algebra, then B is integral over A
if and only if B is a finite A-module.

To see this, it is sufficient to prove that: b € B integral over A <= AJD]
is a finitely generated A-module. Now the direction = is clear. To show
<=, assume that A[b] is a finite A-module, and let wy, ... ,w, be A-module
generators. Then if ¢ € A[b] is arbitrary, we get equations

r
CW; = E AWy, izl,...,r, aijGA.
j=1

o1
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We can rewrite this as

%1
(CId - M) = 0, M = (aij).

Wy
Multiplying through with the adjoint of cIld — M we obtain
det(cld — M)w; =0, i=1,...,r

Since 14 = 1p can be linearly combined from the w;, we see that det(cld —
M) = 0 is an integrality equation (monic equation) for ¢ over A.

Definition 7.2. Let X, Y be affine varieties, and f: X — Y a morphism
with f(X) =Y. Then f is called finite if

[ Oy (Y) = Ox(X)

is an integral ring extension.

Remark 7.3. If f is finite as in Definition[7.2] then f has finite fibers: indeed,
suppose X C A™ and let ¢1,...,t, be the coordinate functions on A”. Then
t; assumes only finitely many values on the fiber f~'(y), y € Y, since we
have a monic equation

tf—l—altf*l—l—'--%—ak:O a; € Oy(Y)
and if x € f~1(y)

ti(2)" + a(y)ti(@) ™ + -+ anly) =0
has only finitely many roots ¢;(x).

Theorem 7.4. If f: X — Y is a finite morphism between affine varieties,
f(X) =Y, then f is surjective.

Proof. Let y = (y1,...,yn) € Y C A" with m, C Oy (Y) the maximal ideal
ofy, my = (t—y1,...,tn,—y,). The variety f~'(y) has equations f*(t;) = vy,
t=1,...,n. Thus by the Nullstellensatz |3.2

In other words, the fiber is empty if and only if m,-Ox(X) = Ox(X). Hence
the assertion follows from Lemma [7.5] below. O
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Lemma 7.5. Suppose B D A is finite. Then, if a C A is an ideal, we have
the implication
aCA = aBCB.

Proof. B contains 14, thus for every a € A with aB = 0, we have a = 0. On
the other hand, if a # A, then 0 ¢ 1+ a. Thus Lemma in turn follows
from Lemma [7.6] below. O

Lemma 7.6 (Nakayama’s Lemma). Suppose M is a finite A-module, a C A
an tdeal. Suppose that for every a € 1+ a, the equation aM = 0 can only
hold if M = 0. Then aM = M implies M = 0.

Proof. Suppose M is generated by wq,...,w, as an A-module. Then the
hypothesis aM = M translates into the existence of a matrix T" with entries

in a such that
Wi

W@-7)|: | =o0.

Wy

Multiplying by the adjoint matrix again, we obtain that det(Id —7") € 1+ a
annihilates M, which by hypothesis implies M = 0. [

Corollary 7.7. Every finite morphism as in Theorem [7.] maps closed sets
to closed sets.

Proof. 1f Z C X is closed (and, without loss of generality, irreducible), the

map f |z: Z — f(Z) is finite. Hence Theorem [7.4]yields f(Z) = f(Z). O
Finiteness is a local property:

Theorem 7.8. If f: X — Y is a morphism of affine varieties, and if every
y €Y has an affine open neighborhood U > y such that V = f~Y(U) is affine
and f g1y V = f71(U) = U is finite, then f is finite.

Proof. We can assume that U is principal open and cover Y with finitely
many U, with g, € Oy (Y). That those cover means

(ga) = OY<Y)
by the Nullstellensatz. Then

Vo = [T (Ug) = Upe(ga)
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is principal open, and

Ox(va):Bga, BZZ Ox(X),
Oy (Uy,) =A,,, A:=0y(Y).

The hypothesis says that B[1/g,] is a finite A[1/g,]-module, generated by
clements w; o, say. We can even assume w; , € B after clearing denominators.
We claim that all the w; , taken together form a generating system for B/A:
indeed, every b € B has a representation for all « as
A5 o
b= Z ——Wj o, some n, € N.

Na
— gn

But (g2~) = 1 since the g7* have no common zeroes on Y, hence there are
ho € A with ) _ gi*h, = 1. Thus

b=bY gihe=3_ Y tiaheWia-

Thus we can define:

Definition 7.9. A morphism f: X — Y of (quasi-projective) varieties is
called finite if for all y € Y there is an open affine neighborhood V' 5 y such
that f~(V) =: U C X is affine and f |y: U — V is finite.

Theorem [7.§] tells us that “finite” in this new sense coincides with the
notion of “finite” introduced in Definition

Remark that we immediately obtain that for finite f in the sense of Def-
inition , it continues to be true that all fibers f~!(y) are finite, and every
such f is surjective.

Theorem 7.10. If f: X — Y is a morphism of varieties and f(X) C Y is
dense, then f(X) contains an open subset of Y.

Proof. We can assume X, Y affine (and irreducible). Via f* we have an
inclusion of coordinate rings Oy (Y) C Ox(X). We introduce notation for
quotient fields:

K(X) = Quot(Ox (X)), k(Y) = Quot(Oy(Y))



95

and put r := tr.deg(k(X)/k(Y)). Suppose that uy,...,u, € Ox(X) are
algebraically independent over k(Y’). Then we have the inclusions

Ox(X) D) Oy(Y)[ul, c. ,Ur] = O(Y X Ar) D) Oy(Y)
which means we can factor f as f = g o h where
h: X Y xA", g=pr: Y xXA" =Y.

By construction, every element v € Ox(X) is algebraic over O(Y x A"),
thus av is integral for a suitable a € O(Y x A"). Let vy, ..., v, be k-algebra
generators of Ox(X) and a; € O(Y x A") such that a;v; is integral over
O x A"). Put F =a;-----a,. Now, by construction, the functions v;
restricted to {h*(F) # 0} C X are integral over O(Y x A")[1/F], i.e.,

h | ge(ryzoy s {R*(F) # 0} = Up CY x A"

is finite. Thus by Theorem [7.4] h({R*(F) # 0}) = {F # 0}. In other words,
Ur C h(X). It remains to show that g(Ur) contains an open subset of Y.
But ¢ is just a projection! So if F' = > F,(y)T*, T a tuple of coordinates
on A", F, € Oy(Y), then g(Ur) D |JUk,. O

Theorem [7.10| may look unspectacular at first sight, but it really expresses
a very fundamental and remarkable property of morphisms between varieties.
For example, an analogue of it does not hold in the differentiable category
(think of a “dense wind” R' — T'= R?/Z?, z + (x,+/2z) mod Z?).

Theorem 7.11. Let X C P" be a projective variety. Let L C P" be a
d-dimensional (projective) linear subspace with LN X = (). Let

7 X — Pl

be the projection with center L; this means that if L is given by linear equa-
tions Lo =---= L,_q_1 =0, then

mr(x) = (Lo(x) : -+ Lp_g_1(x)).
Then m:=mp: X — 7 (X) is finite.

Before embarking on the proof we state and prove a few corollaries.
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Corollary 7.12 (Noether normalization). For every irreducible projective
variety X, there is a finite morphism f: X — P™ for some n € N.

Proof. Suppose X C PV. If there is a point # € PN\ X, then we project to
P¥=1 from x, and by Theorem [6.2| the image is closed, and the projection is
finite onto its image. If the image is not yet the entire PV~ we continue in
the same manner. O

Corollary 7.13. If X is affine, then there is a finite morphism f: X — A"
for some n € N.

Proof. Suppose X C AN C PV, and let X C PV its closure. If X # AV, we
can project from x € PM\AN z ¢ X. Then X gets mapped into AN~ C
P¥=1 and we conclude by the same pattern as in the proof of Corollary
(12 ]

Corollary 7.14. If Fy, ..., Fs € k[ Xy, ..., X,]m are homogeneous polynomi-
als of degree m > 0 without common zeroes on a projective variety X C P",
then

f=(Fy::Fy): X — f(X)

is finite. Thus morphisms which can be defined by “one row” in the sense of
Theorem |3.15 are finite.

Proof. This follows from Theorem [7.11]since f is the composition of the m-th
Veronese embedding of X and a linear projection. O

Proof. (of Theorem [7.11)) Let yo, ..., Yn—q—1 be homogeneous coordinates in
P"=4=1 5o that 7 is given by y; = Lj(z), j=0,....,n—d—1, 2 = (z¢: -+ :
z,) € X. Put

U, =71 (AZZ;%*I) NX
the affine open subset of X given by L; # 0. We show that

m: U — AZ;%*I N7(X)

is finite. Every function g € Ox(U;) is of the form

Gi(zo, ..., xp)
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where G; is homogeneous of degree deg G; = m. Consider the map
7 X — P

T (200t 2nea), 2= (Lj(@)", j<n—d—1, z,_q:= G;(x).

It is a morphism since the L; have no common zeroes on X. So by Theorem
, 7(X) c P* 4 is closed. Suppose Fi,..., F, are homogeneous equations
for 7(X). Since the L; have no common zeroes on X, the point (0:---:0:
1) € P"~? is not in #(X), which means

= =tpaa =P = =F =0
has no solution in P"~¢. By the Nullstellensatz , we get
(20, Znd—1, F1, ..., Fy) D (20,..., 2n—q)® somek > 0.

In particular, we have an equation

n—d—1

d s
= Y Hiz+) PBF

j=0 J=1
for some polynomials H;, P;. Then

n—d—1
D(z0, -5 2n—a) Z H(k 1Z]_OOH7T(X)

j=0

where H J(k_l) is the homogeneous component of degree £ — 1 of H;. This can
be rephrased by saying that

O(Ly',...,L" 4 1,G;) =00on X.

Then dividing by L™ we get an integrality equation for g over O(AZ #% 'n
m(X)).
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Chapter 8

Dimension theory

In Definition [3.15] we defined a rational function on an irreducible variety X
as a rational map to A'. This means that the totality of all rational functions

can be described as
HX)= g Ox(U)

UCX open,U#0

and k(X) is a ring. In the following Remark we summarize some properties
that are immediate from the definition.

Remark 8.1. 1. Not only is k(X) a ring, it is a field: if [(f,U)] € k(X),
and f # 0, then [(1/f,U — {f = 0})] is its inverse.

2. If X is affine, then k(X) = Quot(Ox(X)).

3. If X is projective, then

k(X)= {g | f,9 € k[Xo,...,X,]/1(X), f,ghomogeneous of the same degree, g # O} .

4. If U C X is open and nonempty, then k(X) ~ k(U).

Definition 8.2. Let X be an irreducible variety. Then we define its dimen-

sion by putting
dim X := tr.deg,k(X).

If X is reducible, we set dim X := max; dim X; where X; is an irreducible
component of X. If Y C X is a (closed) subvariety

codimyY :=dim X —dimY

29
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is called the codimension of Y in X. Irreducible varieties of dimension 1,
2, 3... are called curves, surfaces, threefolds, ...

In the sequel all varieties will be irreducible unless otherwise stated.

Remark 8.3. 1. If X is projective resp. affine, and f: X — P" resp. A" a
finite morphism (which always exists by Corollaries and , then
n = dim X. Namely, in those cases k(X)) is a finite algebraic extension
of k(T1,...,T,). This also shows that our definition of dimension is
intuitively reasonable.

2. If U C X is open and nonempty, then dim U = dim X.

3. dim X = 0 (and X possibly reducible) <= X is a finite point set.
Namely, <= is clear. For the direction = assume without loss of
generality that X is irreducible, affine, X C A™. Then the coordinate
functions ¢; on X are algebraic over k, hence can take only finitely
many values.

4. For varieties X, Y, dim(X x Y) = dim X + dim Y. Indeed, it suffices
to show this for X € A™ Y C A" affine. Let dim X = d, dimY = e,
X1y ey Ty Y1,y - - -, Yp affine coordinates on A™, A™ such that x1,..., 24
are algebraically independent in C(X), y,...,¥. are algebraically in-
dependent in C(Y).

Now Oxxy (X xY) is generated by z1, ..., Tm, y1, - - - , Y Which are alge-
braically dependent on xq, ..., x4, 41, ..,Ye. Thus dim(X xY) < d+e.
Let us show that xq,...,24,91,...,y. are algebraically independent on
X x Y, which will prove dim(X x Y) > d + e. Suppose

F(z1,...,2q,y1,---,Ye) =0on X x Y.

Since this means that for all # € X we have F(Z,y,...,y.) = 0 on
Y, the algebraic independence of the y’s implies that every coefficient
a;(xq,...,2q) of F' (viewed as a polynomial in yi, ..., %) is zero on X.
Since x1, ..., x4 are also algebraically independent, it follows that each
a; must be the zero polynomial.

5. It is dim Grass(r,n) = r(n —r) since Grass(r, n) is irreducible (because
GL, (k) is irreducible and acts transitively on Grass(r,n)) and since
Grass(r,n) contains open subsets isomorphic to A"™™") as we saw in
the proof of Proposition [5.9
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A good dimension function should decrease on proper subvarieties:

Theorem 8.4. If X, Y are not necessarily irreducible varieties, X C Y
closed, then dim X < dimY. IfY s irreducible, then dim X = dimY hap-
pens only if X =Y.

Proof. Tt suffices to prove that for X, Y affine and irreducible, X C Y C AV
closed. Suppose ti,...,ty are coordinates on AN and dimY = n. Thus each
n—+1out of the ¢y, ...ty are algebraically dependent on Y, whence the same
holds for X and

tr.deg,k(X) < tr.deg,k(Y).

If dim X = dimY = n, then after reordering we can assume that ¢1,...,t, are
algebraically independent on X. These are then also algebraically indepen-
dent on Y. Let u € Oy(Y), u # 0. Then there is a polynomial p(t1, ..., t,, u)
with

p=ao(ty,...  to)uf +-- +au(ty,...,t,) =0onY.

We can assume ag(t1, . . . , t,,) not identically zero on Y by assuming p(t1, ..., t,, u)
of smallest degree in u. Suppose that u vanishes on X. Then a(t,...,k,) =
0 on X, and by the algebraic independence of the ¢1,...,t, on X, we have
ap(ti,...,t,) = 0 on all of A" hence on Y, a contradiction. So u does not
vanish on X if it does not vanish on Y. This means X =Y. ]

Theorem 8.5. FEvery irreducible component of a hypersurface (=the zero
locus of a single nonzero polynomial, homogeneous in the projective case) in
A™ (or P") has codimension 1.

Proof. Suppose without loss of generality that X C A™ is given by an irre-
ducible polynomial F' # 0. After reordering the coordinates ty, ..., t, we may
assume that ¢, occurs in F'. Then t,...,t, 1 are algebraically independent
on X, for G(t1,...,t,—1) =0 on X would imply, by the Nullstellensatz that
F would divide a power G', some [ > 0, and this is only possible if G is the
zero polynomial. Hence, dim X = n — 1, using Theorem (dim X =n is
impossible because then X = A”". O

In fact, we have a converse to the latter result.

Theorem 8.6. If X C A" is a closed subvariety all of whose irreducible com-
ponents have codimension 1, then X is a hypersurface and Ix is a principal
ideal. The same holds in the case of a projective X C P™.
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Proof. Again it suffices to do the proof for X C A" affine and irreducible.
Since X # A", there is a polynomial F' # 0 in k[zy,...,z,| with F' =0 on
X. Since X is irreducible, one irreducible factor of F', F’ say, also vanishes
identically on X. Let Y := {F’ = 0} C A™. Then Y is irreducible: indeed,
GH = 0 on Y implies, by the Nullstellensatz, F’ | (GH)!, some [ > 0, thus
G=0or H=0onY. But X C Y. Hence Theorems and imply
X =Y. Now Ix is generated by F” since by the Nullstellensatz Ix = /(F")
and (F”) is a prime ideal, hence radical. O

The next result says that the dimension function does not drop too much.

Theorem 8.7. If X C PV is an irreducible projective variety, F € k[Xo, ..., Xn]m
with m > 0 and F # 0 on X, then for the intersection dim(X N {F = 0}) =
dim X — 1, i.e. (X N{F =0} contains at least one component of dimension
dim X — 1.

In particular, a projective variety contains subvarieties of any dimension
< dim X. Also we immediately get the following “combinatorial” character-
ization of dimension:

Corollary 8.8. One can define the dimension of a projective variety as the
maximal integer n such that there is a chain

o212 2V, #0
of irreducible subvarieties Y; C X.

Proof. (of Theorem [8.7) For every projective variety S C PV, reducible or
not, one can find a homogeneous polynomial G(Xo, ..., Xy) (of every degree
m > 0) which does not vanish identically on any component of S (for exam-
ple, pick a point in every component and take a power of a linear form which
does not vanish in any of those points).

Now suppose X C PV and F # 0 on every component of X. Then
Theorem implies

XW .= Xn{F =0}

has dimension strictly smaller than dim X. Now pick a homogeneous poly-
nomial F}, of degree deg F', which does not vanish on any component of X,
Continuing in this fashion we get a chain of subvarieties (possibly reducible)

X =X0 > xO 5 ... 5 x0+) . x© N{F; = 0},
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Fy = F, dim XD < dim X® as long as X@ is nonempty. If dim X = n,
then XY is empty. This means that Fy = F,...,F, have no common
zeroes on X. Now, if X is irreducible, we get by Corollary that

f: X =P
fX) = (Fo(X) : -2 Fu(X))

is finite onto its image f(X) C P". Hence dim X = dim f(X) = n, and
by Theorem [8.4] f(X) = P". Now, if, arguing by contradiction, we had
dim XM < n—1, the already X would be empty. Le., already Fy, ..., F, 1
would have no common zeroes on X. But then (0:---:0: 1) wouldn’t be
in the image of f, a contradiction. [

This leads to a third way of characterizing dimension which is more geo-
metric:

Corollary 8.9. The dimension n of a projective variety X C PV is equal to
N — s — 1 where s is the mazimal dimension of a linear subspace L C PN
with X N L = 0.

Proof. If L is of dimension s > N — n, then L can be defined by < n
equations, so Theorem gives dim X NL > 0,s0 X N L # (. On the other
hand, if in the proof of Theorem we take the Fj equal to Ly, ..., L,, then
(Lo="---=L,=0)= LsatisfiesdimL =N —n—1and X NL=0. O

We can also regard Theorem as giving a strong existence result for
solution sets of polynomial equations:

Corollary 8.10. The zero set of r homogeneous polynomials Fi, ..., F, with
deg(F;) > 0,i=1,...,r, on an n-dimensional projective variety has dimen-
ston > n — r; so in particular, if r < n, then solutions exist.

This implies for example that in P?, any two curves intersect since by
Theorem [8.6] these are defined by one equation; this is false on P! x P'.
Lines of the same ruling do not intersect. This proves also that P? is not
isomorphic to P! x P! although the two are birational.

We can also use Corollary to see that any curve of degree > 3 in P?
has an inflection point, and for many similar geometric existence results.

We now prove a strengthening of Theorem [8.7]



64 CHAPTER 8. DIMENSION THEORY

Theorem 8.11. Let X be an irreducible projective variety X in PV, and F a
homogeneous polynomial of positive degree which does not vanish identically
on X. Then every irreducible component of X N {F = 0} has dimension
dimX —1=:n—1.

Proof. We go back to the set-up we produced in the course of the proof of
Theorem [8.7 there we produced a chain of (possibly reducible) subvarieties

X:)((O)QX(l)2...2)((%1):)((@')(]{3:0}

with Fpy, ..., F, homogeneous polynomials of the same degree m without
common zeroes on X, Fy = F. Then we saw that

f: X =P xw— (Fy(x): - Fu(x))

is finite onto its image f(X). Let A, , C P" be the standard affine chart,
and U; C X its preimage under f. This is open and affine (the latter since
we can realize f as the composition of a Veronese embedding with a linear
projection).

Now it suffices to prove that every component of (X N{F = 0}) N U; has
dimension n—1 (for all 7). The latter set is the zero set, in U;, of the function

F

Put U := U;. Then f restricted to U gives a map

f:U—=A" z— (fi(x),..., fu(x))

which is finite onto its image, and f; = f is the dehomogenization of F'. We
have to show that every component of {¢o = 0} in U has dimension > n — 1.
To do this we will prove that fs, ..., f, are algebraically independent on every
component of ¢ = f; =01in U. Let P € k[ty,...,t,]. To prove that if P is
not the zero polynomial, then R := P(fs,..., f,) # 0 on every component
of p =0, it suffices to show

VQ e Oy(U): RQ=00on(p=0) = Q=0o0n(p=0). (8.1)

For, if
fueU|puw)=0y=UVu...uu®
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is the decomposition into irreducible components and, for example, R = 0
on UM, then we could take a @ which vanishes on U® U ---UU®, but not
on UM, Then we would have RQ =0 on (¢ = 0), but Q # 0 on (¢ = 0), a
contradiction.

By the Nullstellensatz, condition (8.1) is equivalent to

¢ | (RQ) somel >0 = ¢ | Q" some k > 0. (8.2)

Thus Theorem 8.11] follows from the next Lemma. n

Lemma 8.12. Let B = k[T},...,T,] and A D B an integral domain which
is integral over B. Let x := Ty, and suppose B > y = p(Ty,...,T,) # 0.
Then for all w € A we have that

z | (yu)'in A forsomel >0 = = | u" for some k > 0.

Proof. This uses that x,y are relatively prime in B. In fact, replacing y' by
z and u! by v, it suffices to show: if x, z are relatively prime in k[T, ..., T}],
then

r|zwin A = x| v"somek > 0.

This means, intuitively, that the property that z,z are relatively prime is
“inherited” in a certain sense by the overring A D B, which is integral over
B

Put K = Quot(B) = k(T1,...,T,). If t € A is integral over B, then t is
algebraic over K. Let F(T), T = (T3,...,T,), be the minimal polynomial
(with leading coefficient 1) of ¢ over K. Then

t integral over B <= F(T') € B[T].
Indeed, to see = , <= being trivial, remark that if G(f) = 0 for a
G € B[T] with leading coefficient 1, then G(T") = F(T)H(T) in K[T]. But

B is factorial, whence by Gauss’s Lemma, F(T), H(T) € B[T).
Now if zv = zw, v,w € A, let

F(T)=TF+b6,T" "+ + 1y

be the minimal polynomial of w, b; € B. Then the minimal G(T) of v =

(zw)/z is o
E)r (7).
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namely,
b kb
GT) =T+ 227+ . T8 (8.3)
z z
Since v is integral over B, .
Zbi )
“ieB Vil
ZZ
But then, since z, z are relatively prime, z° | b;, and substituting v for T in
(8.3) yields z | v*. O

Corollary 8.13. Let X C PV be an irreducible quasi-projective variety, and
F % 0 a homogeneous polynomial of positive degree such that F # 0 on X.
Then every irreducible component of X N {F = 0} has codimension 1.

Proof. 1t suffices to apply Theorem to the closure X C PV, and remark
that X N{F =0} = (X N{F=0})nX. O

The next result also follows directly from Theorem [8.11| now.

Corollary 8.14. If X C PV is irreducible and quasi-projective, dim X = n,
and Y C X 1s the zero set of homogeneous polynomials of positive degrees
Fy, ..., F,, then every component of Y has dimension > n — m.

Theorem 8.15. Let X,Y C PV be irreducible, quasi-projective varieties,
dim X =n, dimY = m. Then every component Z of X N'Y has dimension
>n+m—N. If X and Y are projective and n+m > N, then X NY # ().

Proof. To prove the first assertion, it suffices to consider the case when
X,Y C AV are affine. Then

XNY =~ (X xY)NAyw

and the diagonal Ay~ C A2V is defined by N equations. Then the first asser-
tion follows from Corollary[8.14l The second assertion follows by considering
the affine cones over X, Y and applying the first assertion. n

We can also say that

T '
codimpn ﬂ X; < Z codimpn (X;)
I=1 i=1
for any finite number r of irreducible quasi-projective subvarieties X; C P".
The next theorem describes how the dimensions of the fibers of a mor-
phism can vary and has very many applications.
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Theorem 8.16 (Theorem about the (Upper-Semicontinuity of) Fiber Di-
mension). Let f: X — Y be a morphism of irreducible varieties, and suppose
that f(X) =Y, dimX =n, dimY =m. Then we have m < n and

1. for every component F' of a fiber f~'(y), y € Y, we have dim F > n—m,

2. and there is a nonempty open subset U C'Y with dim f~(y) =n —m
forally e U.

Proof. The assertions are local on Y, so we can assume Y C AM closed affine.
Since dimY = m, we can find a chain of subvarieties

yO 5y® 5.0 o yim

where Y is purely i-codimensional in Y so that Y™ is a finite point set,
and Y™ =Y NZ where Z C AM is defined by m equations. We can assume
that y € Z. After shrinking the affine open which we work on we can assume

ZNY = {y}. Suppose that Z is defined by g; = - - = g,, = 0; then f~(y) in
X is defined by f*(g1) = --- = f*(gn) = 0. Thus (1) follows from Corollary
814

For (2) we can again replace Y by an affine open W and X by an affine
open V C f~Y(WW). Since V is dense on f~(W) and f is surjective, we have
that f(V') is dense in W. Hence there is an inclusion

of coordinate rings. Let Ow (W) = klwy,...,wy], Ov(V) = klvy,...,vN]
where the w; resp. v; are k-algebra generators. Now k(1) has transcendence
degree n — m over k(W). We can assume after reordering that vy, ..., v,
are algebraically independent over k(W'), and the other v; are algebraic over
kE(W)[v1,. .., Un—m]. Thus we have equations

Fi(vivr, . Up—mywy,...,wpy) =0, i=n—m+1,...,N

where Fj is a polynomial in the variables v;, vy, ..., v,_, with coefficients in
klwy,...,wyl. Let Y; the subvariety of W defined by the vanishing of the
leading term of F;. Then U = W\ |, Y; is open and nonempty (the leading
terms are nonzero). If y € U, then none of the polynomials

E(T'HTM R >Tn7m;w1<y)7 s 7wM<y>)
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is identically zero, whence the functions v; |;-1(,)ny are algebraically depen-

dent on the functions vy |f-1)Av: .- Vpem |f-1@)nv- Since the vy |p-1¢)nv
s UN |1y generate O(f~1(y) N'V), we obtain dim f~'(y) < n —m,
and with part (1), equality. ]

Corollary 8.17. In the situation of Theorem [8.16the sets Yy, := {y € Y |
dim f~Y(y) > k} are closed in'Y .

Proof. By (1) of Theorem , Y,_,» = Y, and there is a closed subset
Z C Y such that Y, C Z for k > n —m by (2) of that Theorem. If Z; are
the irreducible components of Z, then dim Z; < dimY’, and the claim follows
considering f |s-1(zy: f~'(Z;) = Z; by induction on dim Y. O

The following is an often useful criterion to prove irreducibility.

Theorem 8.18. Let f: X — Y be a surjective morphism of projective vari-
eties where we assume that Y 1s irreducible, but a priori we do not assume
irreducibility of X ; if then for all y € Y the fibers f~1(y) are irreducible and
of the same dimension, then X is irreducible.

Proof. Let X = [J X, the decomposition into irreducible components; then
Y = f(X;); note that f(X;) is closed in Y since X is projective, and since
Y is irreducible, Y = f(X;) for some i. Put n := dim f~!(y). By Theorem
for all 4 with f(X;) = Y there is U; C Y open and dense such that
dim((f |x,) *(y)) = n; for some n; € N and all y € U;. For indices j with
f(X;) #Y, put U; = Y\f(X;). Let y € ), U;. Since f~'(y) is irreducible,
we have f~1(y) C X;, for some ig. Then

FUw) C (flx,) " ()

and the reverse inclusion being trivial we get equality

o) = (fIx,)” )

and n = n,,. By construction, f Xx,, 1s surjective, hence for all y € Y, we

have that the subset ( fl Xi)fl (y) € f~Y(y) is nonempty and of dimension
> n;, = n by Theorem [8.16, Thus, since f~!(y) is irreducible and always of
dimension n = n,;,, we have

) =(f |Xl-0)71 (y) VyeY.
This means X = Xj,. ]

It is easy to construct examples (exercise!) that show that the hypothesis
of equidimensionality of the fibers in Theorem [8.18 cannot be dropped.



Chapter 9

Lines on surfaces, the
associated form of Chow and
van der Waerden, and degree

Let X C IP" be a hypersurface given by the vanishing of a homogeneous poly-
nomial F' of degree d. We consider k-dimensional projective linear subspaces
A =P(L) C P" which are contained in X, i.e. L € Grass(k + 1,n+ 1) with
P(L) C X.

Definition 9.1. Put PV = P(k[zo, ..., z4]a), N = ("19) — 1, and define
=0 ={([F],A) € PV x Grass(k+1,n+1) | A C X = {F =0}}.

Lemma 9.2. The subset ® C PV x Grass(k + 1,n + 1) is a subvariety.

Proof. Let U = U; ~ A*+Dm=F) he the open subset of Grass(k+1,n+1)

1ol

where the Pliicker coordinate w;, ;, is not equal to zero, some 1 < 4; < -+ <
ir41 < n. We show that ® N (PN x U) is an algebraic subvariety.
Without loss of generality we can assume that ¢y = 1,... i1 = k+ 1.
Elements in U are matrices
1 ... 0 aiq a1 p—k
A= :
0 ... 1 Ak+11 -+ Qgtin—k

whose rows are a basis of L € Grass(k + 1,n+1). If

_ E 10 2
F = Cio...i"Xo e Xn"
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is an equation for X, then A = P(L) C X = {F = 0} is equivalent to the
following condition: if a; denotes the i-th row vector of A and A; € k, then

F(Aay + -+ Mep1apq1)

vanishes identically as polynomial in the A’s. This means that the coefficients
of all monomials in the A’s must vanish, and those are polynomials in the a;;
and Cig..ip - Il

We will now consider more closely the case of lines on surfaces in P?, i.e.
® = &3 5,. We have two projections

)
N
PN Grass(2,4)

where N = (d'g?’) — 1 and Grass(2,4) is the Pliicker quadric in P°. We have
q(®) = Grass(2,4) since every line [ € P? lies on some (possibly reducible)
surface of degree d, for example we could take a union of d planes through /.
The next question is: what is dim ¢=*(1)? After applying a projectivity, we
may assume [ is given by Xy = X; = 0 in P2. Then any surface of degree d
containing [ is given by an equation of the form

F= X(]G‘i‘ XlH, G,H € k'[XO,Xl,XQ,X:g]d,l

and any such equation defines a surface containing /; thus the fibers of ¢ are

all projective linear subspaces of PV of dimension (the same for all /)

d(d+1)(d+5)
6

To see that this is the dimension of ¢71(I), use the exact sequence (where
S - k[XO; Xl; X27 X3D

dim ¢ (1) = -1

=\ —x, (X, X,
0 Sd—2 Sa—1 D Sa—1 ( ) Sq

which gives

dimq¢ (1) +1= dimim(a) = 2dim Sg—1 — dim Sy

- d—1+3 d—2+3\ _ 2(d+2)(d+1)d—(d+1)d(d—1)
- 2( 3 )_( 3 )“ 6
(d+5)d(d+1)
B —
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By Theorem [8.18] it follows that ® is irreducible. By Theorem [8.16

dim ® = dim Grass(2,4) + dim ¢ (1)
_ d(d+1)(d+5)

= N+ 3 —d.

(d+3)(d+2)(d+1)

Now by Theorem , p(®) C PV is closed. Also by Theorem , clearly
dim p(®) < dim ®. Thus, if dim ® < N, then dimp(®) < N and by Theorem
, p(®) # PN. This conclusion means that there is a nonempty Zariski
open subset in PV such that the corresponding surfaces do not contain any
lines (in other words, a “general” such surface does not contain lines).

The numerical condition for this, dim ® < N translates into d > 3. Hence
we have proven:

Theorem 9.3. If d > 3, then a general surface of degree d in P* does not
contain any lines.

There remain the cases d = 1,2,3. The case d = 1 corresponds to planes
and is trivial, these contain an abundance of lines. For d = 2 we get N =9
and dim® = 10. By Theorem [8.16 we have dimp~([Q]) > 1 where Q is
a homogeneous quadratic polynomial defining a quadric. This corresponds
to the fact that every quadric contains infinitely many lines. However, this
case illustrates nicely the jump phenomenon described in Corollary 8.17 the
fiber dimension can jump up on closed subsets of the base. Indeed, if the
quadric is irreducible, dimp~*([Q]) = 1: the fiber consists of two disjoint
P'’s corresponding to the two rulings if ) is not a cone, and is one P! if @ is
a cone. But if () is reducible, it splits as two planes or a double plane, and
then dimp~1([Q]) = 2.

The case d = 3 is that of cubic surfaces. Here dim ® = N = 19. Moreover,
there exist cubic surfaces with finitely many lines on them, for example it is
not hard to find all lines on

X§+ X7+ X3+ X35 =0.

Thus there is a point in P over which the fiber of p has dimension 0. By
Theorem we get dimp(®) = 19, whence p(®) = P®. Thus we have

proven:
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Theorem 9.4. Every cubic surface in P? contains at least one line. There is
a nonempty Zariski open subset in P such that the corresponding surfaces
contain finitely many lines.

However, there are cubic surfaces with infinitely many lines, e.g. cones
over cubics in P2. Hence here we observe again jumps in the fiber dimension.
Moreover, one can show that for “most” cubic surfaces with finitely many
lines, the number and configuration of the lines (i.e., their incidence graph)
are independent of the surface. The number is 27. More concerning this in

Chapter [11]

We start discussing the associated form of Chow and van der Waerden.

Let X ¢ P* = P(V), V an (n + 1)-dimensional vector space, be a pro-
jective variety all of whose irreducible components have dimension k& (X is
purely k-dimensional). Intuitively, we want to describe such X by “coor-
dinates”, i.e. parametrize them by the points of another variety (we have
already accomplished this in cases of hypersurfaces or if X is a linear sub-
space). Write (P")* = P(V*). Look at the incidence correspondence

[':={(p,Ho,....,Hy) |pe H; Vi} C X x (P")" x--- x (P")"

where the H; C P" are hyperplanes; here we identify a hyperplane with its
defining equation in (P")*. Clearly, I is a closed subvariety of X x (P")* x
-+« X (P™)* equipped with two projections

I
5N
X (P

Clearly, ¥(I') = X, and for p € X the set of hyperplanes containing p
forms an (n — 1)-dimensional projective linear subspace H, ~ P"~1 C (P")*.
Thus ¢~!(p) is irreducible of dimension (k + 1)(n — 1), and isomorphic to
P1 x ... x P*7! (k + 1 factors). By Theorems Theorem and I'is
purely k + (kK + 1)(n — 1) = (k + 1)n — 1 dimensional, with one irreducible
component lying over each irreducible component of X. Moreover, there
exist points

n)*)k+1 ‘

y = (Hy, ..., Hy) € ((P")")F!
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such that p(T') > y and ¢~ !(y) is a single point: by the same construction
as the one employed in the proof of Corollary [8.8] we can find a chain

k
X(O):XQX(U:XHHOQ---QX(’““):XﬂﬂHi:{p}
i=0

where p € X is a point, and the H;’s are hyperplanes; namely we can choose
the H;’s such that all of them pass through p, H; does not contain any
irreducible component of X for i < k, and Hj contains only p € X®*) and
none of the other finitely many points of X*). Then, by Theorem , we
obtain

dimp(T) =dimI = (k+1)n — 1,

i.e., () € ((P")*)" is purely 1-codimensional. Now Theorem [8.6{ remains
valid, with the same proof, in the multi-graded set-up:

Theorem 9.5. If Y C P x --- x P™ 4s an algebraic subvariety and if
all components of Y have dimension ny + --- + ni — 1, then Y is defined
by a single equation F = 0 where F' is homogeneous in each of the k set
of variables separately; F is unique up to a constant factor if we choose it
without multiple factors.

Thus we can make

Definition 9.6. The multi-homogeneous polynomial F'x without multiple
factors (unique up to a constant) which defines ¢(I') C ((P")*)"*! is called

the Cayley form of X or the associated form of Chow and van der Waerden
of X.

Remark 9.7. The variety X is determined by the datum of Fx:

VpeP":(pe X) <—
(VHO,...,HkG(]Pm)*WithpeHom"'ﬂHkiFx(Ho,...,Hk):O).

Indeed, = is nothing but the definition of Fx. To see <= , notice
that if p ¢ X, then, by the by now standard construction employed in the
proof of Corollary , there are hyperplanes Hy, ..., H, with p € (), H; and
X N, H; =0. Such H; are not in the image of ¢, i.e. Fx(Hy,...,H) #0.
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If ug, ..., u, are homogeneous coordinates in P" and

§=0
the equation of a hyperplane in the i + 1-th copy of (P™)* in ((]P’”)"‘)ILCH
we can take

, then

(véo) S vgo);...;vék) S vg‘:))
as coordinates in ((P")*)"*.
Remark 9.8. The Cayley form
Fx = FX(U(()O), RIS ;v(()k), ol

is homogeneous of the same degree, d say, in each of the sets of variables
o, oY) i =0,... k. This follows because p(I') € (P")* x -+ x (P")* is
invariant under permutations of the factors.

Definition 9.9. The coordinates of Fx with respect to the basis given by
monomials in k[v(()o), o ,UT(«LO); - ;vék), o ,vr(f)] are called the Chow coordi-

nates of X.

Thus attached to X we get a discrete parameter d and continuous pa-
rameters (the coefficients of monomials in Fx) which determine X C P".

In the rest of this Chapter we assume char(k) = 0 for simplicity, but the
results below continue to hold without this assumption.

Theorem 9.10. Let X be a projective subvariety of P* as above, and Fx
its Cayley form. Suppose Fx is of degree d in each of the sets of variables
vy s stn, @ =0,...,k. Then this d is equal to the mazimum number of
intersection points X N L of X with a linear subspace L C P™ of dimension
dim L = n — k whenever this number is finite.

We call this d the degree deg X of the projective subvariety X C P".

Proof. Let Hy, ..., Hy € (P")* be hyperplanes with | X N[, H;| < oo and

XﬂﬂHi: {20, 29, 2O =@y =1, ¢
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(such hyperplanes exist by the standard construction in the proof of Corollary
8.8]). Let Hy be a further hyperplane and write

= (Z UJ(-i)uj = 0) .
j=0

Now we want to think of the Hy, .. . {Ik as ﬁ(x;ed and of Hy as variable. Then
0 0

Fx is a polynomial of degree d in vy ', ..., v,  which vanishes if and only if
Z v](-o)uy) =0
j=0

for at least one [. This means that we get a factorization

FX(U(()O),... ©.H,, ..., H —aH (0) (l)

7’rL7
=1 3=0

Here « is a constant and r; > 1 some integers. In other words, ¢ < d and if
Fx (v(() ... vﬁlo), Hy, ..., Hy) does not have multiple factors, then ¢ = d.

Thus, to conclude the proof, it suffices to show that for suitable choice

of Hy,...,Hy, the polynomial FX(U(()O), ol Hy) does not have

multiple factors. We apply Lemma below which we leave as an exercise.

O

Lemma 9.11. Suppose char(k) = 0. If a polynomial

n

has no multiple factors (and at least some variable UEO)

there are special values

occurs in F), then

AR A0
for the vél), e ,v,(Lk) such that

A IR OFS A A Q)

has no multiple factors.

Corollary 9.12. Under the hypotheses of Theorem- 9. 10} there exists a nonempty
Zariski open subset of (Hy, ..., Hy) in (P")*)" such that

I XNH N---NHg| =d.
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Proof. The sets of (Hy, ..., Hy) for which FX(U(()O), o ,117(10); Hy, ..., Hy)
1. does not vanish identically

2. has no multiple factor

are both Zariski open and nonempty. Namely, let us first consider the set
in (1). It is nonempty since there are hyperplanes Hy, ..., Hy with X N
HonN---N H, =0, thus Fx(Hy,...,Hy) # 0. Tt is clear that it is open

(0) (0)
0 »

since otherwise the coefficients of all monomials in v, ..., vy occurring in

Fx (v((]o), e véo); Hy, ..., Hy) must vanish and this defines a closed subvariety
of (P™)*.

Now in the course of the proof of Theorem we saw that the set in (2)
is nonempty. It is Zariski open since the subset of homogeneous polynomials
F € klto, ..., ty)qa with a multiple factor is closed since the multiplication
map

P(k[to, ... tnla—ok) X P(k[to, .., ta]k) = P(k[to, ..., tnla)
(G, H) — GH?
is a morphism and we can apply Theorem to conclude that the image is

closed.
Now being in set (1) means that Hy, ..., Hy intersect X in finitely many

points, and being in (2) means that their number is d. O
The set of all forms F(vg), I ;’U(()k), . ,vr(f)) of degree d in each

set of variables forms a projective space P and by Remark [9.7] we get an
injection
c: {X Cc P" | X purely k—dimensional, deg X = d} — PV

Remark 9.13. We summarize some properties of the image of ¢ without proof.
It turns out that im(c) =: C,, x4 C PV is a quasi-projective variety. Hence in
this way one can parametrize purely k-dimensional subvarieties X of P" of
degree d by the points of another variety, similar to the situation for linear
subspaces and Grassmannians. We get a closed (projective) subvariety in
PV if we consider, instead of X’s as before, k-dimensional cycles of degree d
which are formal linear combinations

Zk:m1X1+"'+mep
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where X; C P" is irreducible of dimension k and d = m;deg X; + --- +
m,, deg X,,. For those one extends the definition of the Cayley form by

[— m1 my
Fy = F Py

In this way we obtain exactly the closure 6n7k7d of Oy k.4 in PV. Then Umk,d
is called the Chow wvariety of algebraic cycles of dimension k and degree d
in P*, and C,, ;4 is called the open Chow variety of purely k-dimensional
subvarieties of P" of degree d.

Both (), ;4 and 6n,k,d are thus parameter spaces for certain algebro-
geometric objects. In general it is unknown how many irreducible compo-
nents these Chow varieties have, even for curves in P2. Here are some known
results for C3 14, d = 1,2, 3:

1. Ford =1, 63,171 is the Pliicker quadric in P°, which is irreducible of
dimension 4.

2. Ford =2, 63,1,2 is reducible with two irreducible components, 63,1,2 =
C'"uU ", with dimC’ = dimC” = 8. Here (' parametrizes plane
conics, and C” parametrizes 2 lines in P2, They intersect in the locus
corresponding to two intersecting lines.

3. For d = 3 there is a decomposition into irreducible components
Cy15=CPYUuc®uc®uct

where all C® have dimension 12 and C") corresponds to unions of three
lines; points in C'® parametrize unions of a plane conic and a line; C'®
parametrizes plane cubics; and C'* parametrizes twisted cubics in P?.

A funny loose end in our approach to degree is that we still have to show
that the answer for hypersurfaces is as expected:

Theorem 9.14. If X is an irreducible hypersurface in P defined by
G(ug, ... ,up) =0
where G is a homogeneous irreducible polynomial of degree d, then deg X = d.

Proof. 1t is clear that deg X < d. Thus it suffices to show (after dehomoge-
nization): if
X NPy . o=HCA"
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is defined by an irreducible polynomial g € k[X}, ..., X,] of degree d, then
there is a line [ C A™ such that H N consists of exactly d points. We show
this directly as follows.

We search for such an [ in the parameter form

l={(x1,...,x.) + ANyt ..., yn) | X € Kk},
r=(r1,...,2,) EA", y=(y1,...,yn) € A™.

Let
9=9d+ ga-1+ -+ go
be the decomposition into homogeneous components, g; # 0. Then the

condition g(z + Ay) = 0 can be written as

n

ga(y) X! + ( ggg (y)x; + gd_l(y)> g =0, (9.1)

Now we want to determine x and y such that

1. ga(y) # 0 (this is O.K. since k is an infinite field)
2. and such that G(\) = g(z + \y) has degree d (O.K. by (1)) and is

coprime to

-, "9
G = 5 @+ M)y
i=1 ¢

If we accomplish (2) the proof is complete since then G(\) has d simple roots.
Let Y7, ...,Y,, U be further indeterminates. Expand
o =g(X, +UY,..., X, + UY,)
in powers of U:
0X;

gng(Xl,...,Xn)—l—< (Xl,...,Xn)-Yi> U4 4g4Yh, ..., Y,)UL

=1

We cannot have dg/0X; = 0 for all i = 1,...,n (g is nonzero irreducible).
Thus choose z € A" such that

n 89
—~ 0X;

g(x) #0, (x)Y; # 0. (9.2)
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Then
vY1,..., Y, U) i =g(xy +UYy, ..., 2, + UY,)

is irreducible in k[Y7,...,Y,,U]. To see this, assume by contradiction ¢ =
h1hs is a nontrivial decomposition. There are two possibilities now:

(I) At least one of the variables Y7,...,Y, occurs in h; and hy (it need not
be the same variable though). Then, for suitable u € k*, there would
be a nontrivial decomposition of

VY1, ..., Y, u) =gz +uYy, ..., x, +uYy,)

in k[Y7,...,Y,]. This is a contradiction to the irreducibility of ¢ in
k[X1,...,X,] since it will remain irreducible after the substitution

(IT) Either h; or hy (or both) are polynomials in which none of the Y’s
occurs. Suppose that it is A; without loss of generality. But then, since
g(x) # 0, by our choice in (9.2), h; is not divisible by U and there exists
au € k* such that hy(u) = 0. But then also g(z1+uYs,. .., x,+uY,) =
0, contradicting (9.2).

Thus ¢ is irreducible and 0v/0U # 0 because of the second inequality in
(9.2). Hence
%

¥ ou
are coprime. Thus there exist polynomials § € k[Yy,...,Y,]\{0}, a,b €
k[Y1,...,Y,, U] such that 5
v

d=ap+0b i
since ¢ and 9v¢/OU are coprime also in k(Y7,...,Y,)[u] by Gauss’s Lemma,
and then we can use the Euclidean algorithm solved backwards to find a
representation as before. Now choose y € A" such that

9a(y) #0, 0(y) #0. (9.3)

Then 3
G(U) = ¢(?Jl> <oy Yn, U) = g(xl + le: ceey Tyt ynU)

is of degree d since g4(y) # 0 and coprime to

9

G~’/(U) = %@1, .

Yn, U)
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since 0(y) # 0. Hence | = {z + Ay | A € k} is a line with the desired
properties. O

One vexing point in the theory of Cayley forms as we have been developing
it so far is that we do not know how to compute them explicitly! We can
now say what happens in the case of a hypersurface.

Corollary 9.15. Under the hypotheses of Theorem[9.1]] the Cayley form of
X ={G(up,-..,u,) =0}

is
FX(’U(()O), YIS ;v(()n_l), )
=G(Ao, ..., Ap)
where (—1)'A; is the minor of the matrix
WO
V= : . :
LD

obtained by deleting the i-th column (numbering the columns starting with
zero).

Proof. 1f Hy, ..., H, 1 intersect in a point, then it is given by

(Ag -+ Ay).
Hence G(Ao,...,A,) vanishes on a Zariski open dense subset of Fx = 0.
Thus Fx divides G(Ay,...,4,), but according to Theorem Fx has
multi-degree d, the same as G. O]

One can make Cayley forms more explicit using resultants, but we don’t
go into this.
We state the following important result about degree without proof.

Theorem 9.16 ((Weak) Bezout’s Theorem). Let X andY be two closed sub-
varieties i P™ which are pure dimensional. Suppose that X and Y intersect
properly, i.e. dim(X NY)=dim X +dimY —n. Then

deg(X NY) <deg X -degV.

In fact, by assigning appropriate integers, called multiplicities, to the
irreducible components of XNY', one can even turn the inequality in Theorem
into an equality.



Chapter 10

Regular and singular points,
tangent space

Let X C P" be a quasi-projective variety. For z € X, we want to define
the tangent space T,X of X in z. Clearly, X ¢ X C P, and if z € X, we
will want to define T, X = T, X, thus we start with a projective X C P".
After reordering the coordinates we can assume that x is in the affine chart
Uy = {Xo # 0}. Consider Xy = X NUy C A" and let I(Xy) = (F1,..., F,),
F; € k[zy,...,x,] be the ideal of X,. We can also assume, after an affine-
linear coordinate transformation, that = = (0,...,0) = 0.

For a line L C P" through = we want to define the intersection multiplicity
mult, (LN X) of L and X in x. Then Ly = L N Uj is given by

Lo={Xa| A€k}, aecU)\{0}.

Put
FQ) = ged(Fi(Aa), ..., Fn(ha)) = [ (A = ai)™.

Here the A = «; correspond to the intersection points of Xy with L if these
are finitely many. Then we put mult, (X NL) := multiplicity of the zero A = 0
of f(A), i.e. the highest power of A\ which divides all F;(\a). If F;(Aa) =0
for all 4, we put mult,(X N L) = +o0.

This is independent of the choice of the F; since f(A) = ged{F(\a) | F €
I(Xo)}, and it is also independent of a choice of affine chart containing x
since we can alternatively define mult, (X N L) as follows: if

L = {{popo + upr] | (po = 1) € P, [po, [p1] € P}

81
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and if the homogeneous ideal of X is

I(X) = (®,...,0)

and p = [,u(()o)po +u§0)p1], then mult, (X N L) is the highest power of (ugo)uo -

18 11) which divides all ®’s.

Definition 10.1. A line L is called a tangent to X in z if
mult, (X NL)> 2.

Since Xg 2 0, in the notation above no F; has a constant term. Let its
linear term be L; and write F; = L; + G;, i =1,...,m. Then

Fi(Aa) = ALi(a) + G;(\a), M| Gi(Xa).

Thus A\? divides Fj(Aa) if and only if L;(a) = 0 for all 4; thus Ly is tangent
to X in 0 if and only

Definition 10.2. Let us make A" ~ U, into a vector space with origin x = 0
by componentwise addition and scalar multiplication. The sub-vector space
of all points a € A" which lie on tangents to X in x is called the (embedded,
affine) tangent space of X in x, denoted by T, X. Its closure in P" (i.e. the
locus of points in P™ which lie on tangents L to X in z) is called (embedded,
projective) tangent space, denoted by T, X.

Definition 10.3. The local dimension of X in z is defined by
dim, X := max{dim Z | Z irreducible component of X through x}.

Definition 10.4. A point x € X is called regular if dim, X = dimy T,X
(=dim T, X). A point x € X is called singular if dimy T, X > dim, X. X is
called reqular or nonsingular if all points of X are regular.

At the moment it is not a priori clear that X is equal to the union of its
regular and singular points, or that the singular points form a proper closed
subvariety. We will see this later.
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Theorem 10.5. If X C P" is a projective variety, I1(X) = (Fa)aca, Fa
homogeneous, then T, X C P" is defined by

"\ JF,
i=0 9X;

((L’)XZ = O, a € A,

where (Xg : -+ : X)) are homogeneous coordinates in P".
If X C A" is affine, I(X) = (Gs)pep, then for v € X, the tangent space
T.X C A" is defined by

S %% Gt — ) =0, B e B,

i=1 Ot
where (t1,...,t,) are coordinates in A", and T,X is an affine linear space
through x = (x1,...,x,) € A", which we can make into a vector space by

choosing x = 0.

Proof. Let us prove the affine case first. Put y; = t; — x;,

Gﬁ<y17 cee 7yn) = G,@(yl + X1, Yn +xn)

In the special case when X C A" is a hypersurface with I(X) = (F), 0 € X,
and if ' = L 4+ G with L the linear part, then 75X = {L = 0}. But

" OF
L= 0)y;
2 8%( )y
and
oF OF(yr+ o1, Y +2) . OF(ty,... 1)
whence
"\ OF

at, (z)(ti — x4),

i=1
so the formula is valid in the hypersurface case.
In the general case, according to Definition [10.1] we have

T.X = ﬂ T,H

HDX hypersurface
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which concludes the proof in the affine case.

If X C P"is projective, we can assume without loss of generality that x €
{Xo # 0} ~ A" C P" where t; = X;/Xo,...,t, = X,/ X are coordinates in
A" If X is a hypersurface with Iy = (F'), then

f(tla- .. ,tn) - F(l,tl,. .. ,tn)
generates the ideal of X N A", thus by the the first part,

where z; are affine coordinates of x, defines the affine tangent space T, X
and, by definition, T, X = T, X. Thus

— —~ OF
i=1 '

But since F' is homogeneous, of degree d say, we have the Euler relation

" OF

X, =d-F
0x; d

1=0

and F(1,z1,...,2,) =0, whence

(1,1’1, e ,l'n) . (-flle(]) = —(1,1’1, e ,l’n)Xo.

In other words, if . = (Fy: ---: B,), x; = P,/ Py, then

S "\ OF
T,X = {(XO;---:Xn)|ZaX'(P0,...,Pn)Xi:O}.

=0

This settles the hypersurface case, and the general case follows again by
remarking that
T, X = N T, H.

HDX hypersurface
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Remark 10.6. One must be careful that in Theorem [10.5 one has to take the
F, (or Gj) as ideal generators, i.e. defining equations that do not generate the
respective ideals may lead to a different answer. In other words, if X = (), H;
where the H; C A™ are hypersurfaces, then in general T, X # (T.H;. To
see this, take for example

H ={y—2>=0}, Hy,={y=0}inA%
Then TOH1 N TOH2 = x—axis, but T()(Hl N HQ) == {O}

Now consider X C A" affine again, t,...,t, coordinates on A". Any
polynomial F' € k[t1,...,t,] has a formal “Taylor expansion” around a point
r=(x1,...,2,) € A" ie., we can write

F(tl,,tn):F(.Z')+F1(t1—$1,,tn—ﬂjn)—i——i—Fk(tl—xl,tn—xn)

where F; is homogeneous of degree i. Then we call

k= dxF:i

i=1

OF

8_ti<ti — ;)

the differential of I in x. For the differential we have the rules

dy(F + G) = d,F + d,G, (10.1)
d,(FG) = F(2)d,G + G(z)d, F. (10.2)

We can view d,F' as a linear form on A" if we give it a linear structure with
x as origin. Moreover,

T,X ={d,F =0| F € I(X)}.

Ifge Ox(X)=FEk[t1,...,t,)/I(X), G € k[t1,...,t,] such that G |x= g, then
clearly d,G |1, x is independent of the choice of G.

Definition 10.7. The linear form
d.q :=d,G |TIX€ T,X*
is called the differential of g € Ox(X) in z.

The rules (10.1) and (10.2) continue to hold. Moreover, d,c = 0 for
c €k C Ox(X). Let M, C Ox(X) be the ideal of z € X. Then d, kills
elements in M2 by (10.2).
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Theorem 10.8. The map
dy: My /M2 — T,
s an isomorphism of k-vector spaces.

Proof. Clearly, the map d, is well-defined and k-linear. We have im(d,) =
T% , since every linear form [ € T% , extends to a linear form [ € (A")* and

Let us show that ker(d,) = 9M2: we choose coordinates such that = =
(0,...,0); suppose g € M, is such that d,(g) = 0 and suppose g is repre-
sented by some polynomial G € k[t1,...,t,], g = G |x. Thus we assume
d,G |r,x= 0, in other words,

d,G = Md, Fy + -+ + \pdi Fy, where I(X) = (Fy, ..., Fp).

Put G = G—MF,—---—\,F,,, thus dwé = 0. This means G € (t1, ... tn)?,
whence .

G ‘X:g S (tl ’X7"'7tn |X)2
Butmz:(tl |X;---7tn |X) ]

Theorem 10.9. If m, C Ox, is the maximal ideal of x in the local ring
Ox . of v € X, then there is an isomorphism

TX@ = (mx/mi)*

Proof. For f € Ox, we can find a representation F'/G, with F, G € k[t1, ..., t,],
G(z) # 0, and define the differential

F) Iz = G(z)d,F — F(x)d,G

d,f=d, [ = a .
/ (G G(x)’ s

In just the same way as above one can show that this is well-defined, sat-
isfies the computational rules (10.1) and (10.2), and gives a k-linear map
dy: my/m2 — T . The same proof that we used for Theorem m then also
shows that it is an isomorphism. ]

Corollary 10.10. The tangent space T, X to a quasi-projective variety X
in a point x € X is an isomorphism invariant and isomorphic to (m,/m2)*
where m, C Ox, is the mazimal ideal.
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Proof. If ¢: X — Y is a morphism, ¢(z) = y, then it induces a pull-back
map ¢*: Oy, — Ox, such that

80* (mY,y> C mx ., @*(m%y) C mg(,:t'

Hence it induces a k-linear map

*

dop: (mxq/mk,) — (my’y/miyy) .
If ¢ has an inverse v, this linear map is an isomorphism. O

Definition 10.11. The vector space (mx,z/m‘%(,x)* is called the Zariski tan-
gent space to X in x. Moreover, for ¢: X — Y a morphism as in the proof
of Corollary [10.10} the linear map d,¢ is called the differential of ¢ in z.

Note that for morphisms ¢: X — Y ¢:Y — Z we have
dx(d’ © 90) = d o dyp, dx(idX) = idr, x.

Corollary [10.10] sometimes gives an answer to certain embedding prob-
lems:

Corollary 10.12. The union X of the three coordinate azes in A3
X={z=y=0U{r=2=0U{y=2=0}

with 1(X) = (xy,yz,xz) is not isomorphic to any subvariety of A? (in par-
ticular not isomorphic to the union of three lines through a point in A?).

Proof. Indeed,

]

We now want to study the loci of regular and singular points in a variety
X.

Theorem 10.13. Let X be an irreducible variety. The set of reqular points
r € X, defined by dimT, X = dim, X, is open and Zariski dense in X.
The set of singular points, by definition those where dimT, X > dim, X, s
exactly the complement of the reqular points. In particular, we always have
dim 7T, X > dim, X.
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Proof. The proof will be divided into several steps.
Step 1. Without loss of generality we can assume X C A" affine and
irreducible. Look at the incidence correspondence

T :={(r,a) e X xA"|aeT, X} C X x A",

lﬂ

X

This is an algebraic subvariety of X x A" by Theorem and 7(7T) = X,
7~ }(z) = T,X. For this reason one calls T the (total space of the) tangent
bundle in the case when X consists entirely of regular points. In general one
may call it the tangent fiber space.
By Theorem [8.16|and Corollary[8.17], there is an s € N such that dim 7, X >
s for all z € X and
{ye X |dimT,X >s} C X

is a proper closed algebraic subvariety; here s = min,cx dim 7, X. Thus it is
sufficient to show s = dim X.

Step 2. We show that s = dim X holds for a hypersurface X C A™ with
ideal I(X) = (F'). In this case,

“~ OF

ot;

(z)(ti —2:) =0

=1

defines T, X C A", and s = dim X = n — 1 if and only if not all the partials
OF'/0t; vanish identically on X. Now if char(k) = 0, the contrary means that
F is constant, a contradiction, or if char(k) = p > 0, this means that we can
write ' = G(t],...,t"); since k is algebraically closed and in char(k) = p
the binomial theorem takes the form (a + b)? = a? + bP, we conclude that
F is then a p-th power, a contradiction because then I(X) would not be

generated by F'.

Step 3. We reduce to the case of a hypersurface. We claim: for X C A"
irreducible, there exists a hypersurface Y C A™ and open, nonempty subsets
UcC X,V CY and an isomorphism ¢: U — V. Indeed, this claim follows

from Theorem and Theorem[10.15 below. Now the subset s C Y of
regular points is open by Step 2, and

dim7,)Y =dimY =dimX Vy € Y,
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whence, by Corollary [10.10, we have for all points z € ™} (Ve NV) C X
(which is open) that dim 7, X = dim X. O

Theorem 10.14. FEvery irreducible subvariety X C A" s birational to a
hypersurface.

Proof. We can find a transcendence basis 1, . . ., 2, of k(X) such that k(X) D
k(xy,...,x,) is a separable algebraic extension (this needs k perfect, which is
O.K. since our k is algebraically closed). Then the Theorem of the Primitive
Element says that there is a y € k(X) such that k(X) = k(y,z1,...,2,).
Now y satisfies a polynomial equation over k(zy,...,z,). Hence there is an
irreducible nonzero polynomial

f(xlv"wxray) =0
which defines a hypersurface in A" with function field k(X). O

Theorem 10.15. Let X,Y be irreducible and affine. Suppose that X andY
are birational to each other. Then there exist a nonempty open U C X and
a nonempty open V-CY such that U and V are isomorphic.

Proof. Suppose that X C A™ with coordinates x; and Y C A" with coordi-
nates y;. Without loss of generality, we can assume that X and Y are not
contained in any hyperplane. Let

be an isomorphism. Viewing y; as an element of Oy (Y) C k(Y'), we can con-
sider i(y;), j = 1,...,n. These are not identically zero on X, and there is an
affine open subset W7 C X on which all the i(y;) are regular. Then ¢ defines
an inclusion Oy (Y) < Oy, (W;) corresponding to a dominant morphism

p: Wy =Y.

1

Applying the same reasoning to i~*, we also get a dominant morphism

'(ﬂl W2—>X,

Wy C Y affine open, such that ¢ o ¢ = id, ¢ 0¥ = id (as rational maps).
Now consider
e ' (W7 (W) C e (W) C W C X,
b (W) C oTH (W) C W,
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Then v o ¢ is defined on p~!(WWs,) and ¢ o 1) is defined on ¥~ (W),

Yoy lpimy=1d, 9ot [y-1my)= id.

If we put U := o (=Y (W), V := o~ (o7 (Wy)), then U ~ V via ¢ and
. O

As a corollary of Theorem [10.5] and Theorem [10.13] we get

Corollary 10.16. Let X C P" be an irreducible projective variety. Then it
singular locus Sing(X) can be described as

Sing(X) = {rk (%) < codim(X) — 1} nx.

J



Chapter 11

Cubic surfaces and their lines

Let S C P? be a nonsingular cubic surface given by f(x,y,2,w) = 0 where
f = f3 is an irreducible homogeneous polynomial of degree 3, and z,y, z, w
are homogeneous coordinates in P3.

By Theorem we know that S contains at least one line. The next
Proposition states some facts about lines on S which use that S is nonsin-
gular.

Proposition 11.1. Let S C P? be a nonsingular cubic surface as before.

1. There are at most three lines passing through a point p € S. If they are
three, they lie in a plane.

2. Every plane E ~ P? C P? intersects S in one of the following:

(a) an irreducible cubic curve in E;
(b) the union of an irreducible conic and a line in E;
(c) three distinct lines in E.

In other words, the intersection E' NS does not contain a line counted
with multiplicity > 1.

Proof. To show (1) notice that if [ C S is a line, then Tl =1 C T,,S, hence
all lines through p lie in the plane 7,5 (this is a plane since S is nonsingular).
It will follow from the proof of (2) that there are at most three such lines.

For (2) we can assume without loss of generality that £ = {w = 0} and
[l ={z=w=0} C E. We have to show: f |g does not have the equation of

91
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[ as a double or triple factor. If so, we would have
f=2"Lz,y, 2,0) + wQ(x,y, 2, w)

with L linear and () quadratic. But then S would be singular in a point
where z = w = @) = 0, i.e. in the zeroes of () on the line /. O

The following Theorem gives us some first picture of the configuration of
the lines on S.

Theorem 11.2. Given a line I C S, there are exactly five pairs of lines
(I;,11), 1=1,...,5, on S which intersect | and such that

1. foralli=1,...,5, lUl; Ul lie in a plane;

2. for alli # j one has (I; UI;) N (; UL5) = 0.

Proof. Let E D I be a plane in P. Then by Proposition [I1.1] (2), EN S is
one of the following:

(A) a nonsingular conic union a line;
(B) a triangle of lines;

(C) three planar lines through a point.

Now Theorem (2) follows from Proposition (1) once the remaining
assertions have been proven. Thus we only have to show: there are exactly

five planes E; D [ in which the intersection with S looks like (B) or (C).
After a coordinate change we can assume [ = {z = w = 0} whence

f=A2>4+ Bay+Cy* + Dz + Ey+ F

where A, B,C € k[z,w],, D, E € k[z,wl]y, F € k[z,w|3. This defines a conic
with coefficients in k[z, w]. It is singular if and only if the discriminant

A(z,w) = 4ACF + BDE — AE? — B*F — CD? = 0.

In other words: every plane E through [ is of the form E = {uz = \w},
(u:A) €PL If u+# 0, then we can scale p to be 1, and the equation for £
becomes z = Aw. We can take (z : y : w) as homogeneous coordinates on F
and write

f le= w(A\, 1)2*+ B\, Day+C(\, 1)y*+D(A\, Dwa+E(\, Dwy+F (X, 1)w?).
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In the same way, if A # 0, then we scale A to 1, w = pz, and use (z : y : 2)
as coordinates on E and have

fle=2(AQL, w)a*+B(1, way+C(L, p)y*+D(1, p)za+E(L, p)zy+F (1, p)z*).

Thus we see that £'N S splits as a union of three lines exactly for zeroes of A,
which is a homogeneous quintic; we have to prove (using the nonsingularity
of S) that A(z,w) has no multiple zeroes.

Suppose, after a change of coordinates, that z = 0 is a zero of A, and
FE = {z = 0} the corresponding plane. We have to show that 2% does not
divide A. Now E'N.S consists of three lines such that (i) they do not all pass
through one point, (ii) or they do pass through one point.

Then we can choose coordinates (z : y : w) in E such that in case (i) the
lines are

l={w=0} 1 ={x=0} 1] ={y=0}
and in case (ii) the lines are

l={w=0}, )L ={x =0}, ] ={z =w}

In case (i) the equation f of S takes the form f = zyw + zg, g quadratic.
Since
f=Az*+Bay+Cy*+ Dz + Ey+ F

we get B=w +az, a € k, and z divides A,C, D, E, F'. Hence looking back
at the equation for A we find

A = —w?F (mod 2?).

But p=(0:0:0:1) € S and the nonsingularity of S in p means that F
contains zw? with coefficient # 0. Thus 22 { F' and 2% A.
In case (ii) we can write

f=z(x —ww+ zg
with g quadratic. Then it follows that
A=w+az, D=—-w’+zl

where @ € k, [ is linear. Thus z | B,C,E,F, z4 D. The nonsingularity of S
in (0:1:0:0) implies C' = ¢z, ¢ # 0. But

A(z,w) = —CD? (mod 2?)

in this case, so we are done since 2% { A here as well. ]
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Corollary 11.3. There are two disjoint lines on S and S is birational to P2.

Proof. The first assertion follows from Theorem [11.2] (2).
For the second assertion take two disjoint lines [, m C S and define

0: S -3 I xm~P! x P
Vv:lxm~P xP--» 8

as follows: if p € P3\(I Um), then there is a unique line n through p which
intersects [, m. This defines . If conversely (Q,R) € I x m, n = QR C P3
the line passing through them, then Theorem m (1) implies that there are
only finitely many lines on S intersecting [, and the same holds for m, in
other words, in general, n intersects S in three points {P, @, R}. One then
defines (@, R) = P. Then ¢ and ¢ are clearly dominant rational maps
inverse to each other. O]

Let us now try to describe the number of lines on .S and their configuration
more precisely. We need

Lemma 11.4. Let I, 1y, 15,14 C P be disjoint lines. Then

1. either all of the l; lie on a nonsingular quadric Q) and then there exist
infinitely many lines intersecting ly, ..., l4

2. or the l; do not all lie on a quadric and there are exactly one or two
lines which intersect 1y, ..., 4.

Proof. 1t is easy to see as an exercise that [, l5, [3 always lie on a nonsingular
quadric @ C P3. In suitable coordinates, Q = {zw —yz =} ~ P! x P1. Every
line which intersects all of l1, [5, 3 lies on Q). If I, does not lie on @, then it
has 1 or 2 intersection points with (). The lines intersecting [, ..., 1[4 in this
case are those of the ruling on () to which [y, ls,l3 do not belong and which
pass through I, N Q.

If Iy C @Q, then all of [1, ..., belong to one ruling since they are disjoint,
and then the lines of the opposite ruling give infinitely many lines intersecting
all four. O]

Now let [ be a line on S, and let (I;,1)), i = 1,...,5, be as in Theorem

11.2] Every other line n C S intersects exactly one of the lines I;,[; for all
i=1,...,5: namely, n intersects E; = (I;,1}), and E;NS = [U[;Ul.. Because

(2

of Proposition [I1.1] (1), n cannot intersect both /; and .
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Now let [, m be disjoint lines on S. Then by the preceding m intersects
exactly one of the lines [;, [} for all i = 1,...,5. Let us number the lines such
that m always intersects [;, © = 1,...,5. We denote the five pair of lines
intersecting m by (1;,1), i =1,...,5. Remark that /; and [; do not intersect
for i # j so that in each of the pairs of lines which meet m, exactly one [;
occurs.

Now Theorem (2) applied to m gives: for i # j, the line I’ does not
intersect ;. But as we just saw, every line on S intersects [, l; or ;. Thus [/
intersects [ for i # j.

Thus we now have 17 distinct lines on S: [;, [5, 17, 1, m.

Lemma 11.5. 1. Ifn C S is a line which is distinct from these 17 lines,
then n meets exactly three out of the lines Iy, ..., 5.

2. Conversely, for every choice of 3 indices {i,7,k} C {1,2,3,4,5} there
is a unique line L, C S which meets ;, 1}, 1.

Proof. We prove (1) first. To begin with, four disjoint lines on S do not all lie
on a quadric () since otherwise ) C S, contradicting the irreducibility of S:
indeed, the equation of S gives a polynomial of bidegree (3, 3) on P! x P! ~ @
and if this vanishes identically for four values of one of the sets of variables,
it is identically zero. Now if n intersects > 4 of the [;, then we can conclude
by Lemma that n = or n = m, a contradiction.

If, on the other hand, n intersected < 2 of the [;, then it would intersect
> 3 of the [} since each line # [ intersects one of /; or [;. That is, we could
assume without loss of generality that [}, (5,1}, I5 or Iy, 15,13, 15. But [ and [
are then two lines which intersect the disjoint lines 15, l5, 1}, l5 and [;. Thus
under our assumption that n intersects > 4 of those, Lemma [11.4] implies
n =1or n=1[{, a contradiction.

To prove (2), we note that by Theorem there are 10 lines on S
which intersect [; only four of which we have given names to so far, namely
[,l3,m,l{. By part (1), each of the remaining 6 lines must intersect two

out of ly,...,l5. Moreover, every line n (not equal to [,; or I%) is uniquely
determined by which of the lines [; or [ it intersects by Lemma m (2).

4

2) choices, and all of them occur. O

Thus there are exactly 6 = (

Thus we now know all the lines on S (even by name!):

{l> m, li> l/ l// lijk}?

1) V)
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in total .
1%—1%—5%—5%—5+—(3) = 27.

We can summarize what we have seen so far in

Theorem 11.6. Every nonsingular cubic surface S C P3 contains exactly
27 lines {l,m, 1;, 1,17 L}, i € {1,...,5}, i, 5,k € {1,...,5} withi < j <k,

R A]
as above. The incidence graph I' of those, whose vertices are lines and edges
denote intersections, can be described as follows:

1. Uintersects ly, ..., l5, 11, ..., lk;
2. 1y intersects I,m, I}, and ly;, for 6 choices of {j,k} C {2,3,4,5}.

8. 1y intersects 1, 11,17 (for 4 choices of j # 1) and lyj), (for 4 choices of
{i,j.k} C {2,3,4,5}).

4. Iy intersects m, 1y, (for 4 choices of j # 1) and ly, (for 4 choices of
{2,3,4,5}).

5. l123 intersects ll, 127 lg, l145, l245, 1345, lﬁl, l/5, ZZ, Zg
The other intersection relations follows by symmetry.

One can treat the lines on S a bit more symmetrically, and we explain
this now.

Definition 11.7. Define a Z-module A(S) by picking as generators the 27
lines on S and relations

ll + l// + l/// — m/ + m// + m///

whenever I',1”, 1" and m/, m”, m" are coplanar lines, i.e. they form triangles
on S.

Proposition 11.8. The module A(S) is free of rank 7, i.e., a lattice A(S) ~
Z". As a basis we can choose ly,. .. 1y, 15,12 5.

Proof. The triangles {+1;+1;, i =1,...,5, contain [, thus [+1; 41, = | +15+1]
fori=1,...,5, and we get
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Considering the triangle which contain m yields in the same way
V=1Is+1 -1, i=1,...,5. (11.2)

Now [; + 15 + o is a triangle if {ij, k, 0, p} is a permutation of {1,2,3,4,5},
hence

lkop =1+ 1; — l;-’. (11.3)
But [ 4 l123 + 1145 is also a triangle; thus

I+ +1 =11 + l123 + l1s5
=L +24+1L-UE+1-10
and thus

Then (11.1), (11.2) and (11.3) show that the elements in the statement of
Proposition [11.8| generate. That they are independent will be shown in

Proposition [11.10] below. O]

Before we can finish the proof of Proposition [11.8] we need a further
definition.

Definition 11.9. Define a bilinear pairing
A(S) x A(S) = Z
in the following way:

1. for two different lines [, !’ we put I’ = 0 or [’ = 1 depending on whether
they are disjoint or intersect;

2. for all lines [ we put I = —1;

3. we put [(m+m/+m”) = 1 for every line [ and every triangle m-+m’+m”.

This is well-defined by (1) and (2) alone: A(S) is generated by lines,
and we know that if [ is distinct from m,m’, m”, it intersects exactly one of
m,m',m”, hence (3) follows; if on the other hand [ = m, say, then Im' =
Im” =1 and [? = Im = —1 by (2), hence (3) follows as well. So the bilinear
pairing descends to the quotient and is well-defined.
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Proposition 11.10. If

co=ls+I5+15, er=Ul,ea=1y, e5=13 €4 =1y,

/ "

then
ee=1, e=-1,i=1,...,6, ee;=0i#j.
In particular, e, ..., e are a basis of A(S).
Proof. Remark that ey =11,...,e4 = ly,e5 =[5, e = [ are six disjoint lines,

and the first four are also disjoint from [5; this implies everything except
e2 = 1. To see this remark that

6065:€0l/5: (l5+l/5+lg)lé =1—-14+0=0
and similarly epeq = eplf = 0. Thus

€g:€0<l5+l/5+lg) :€0l5
=(l+l+E)l=-1+1+1=1

]

Proposition 11.11. If h is the class of a triangle in A(S), then h? =3 and
hx = 2% (mod 2) for all x € A(S)

Proof. It h =1+1'+1" is a triangle, then h? = h(I+1'+1")=1+1+1=3.

Now for all lattices the function A — Fy, x + 22 (mod 2) is linear because
(z+y)* = 2*+y? (mod 2). Thus it suffices to prove the second assertion for
generators of A(S). But A(S) is generated by lines [, and for those hl = 1,
?=—1. O

To summarize: S has an associated lattice A(S) ~ Z” with a nondegen-
erate bilinear pairing which we can diagonalize (in the basis ey, ..., eg) to
(1,—1,...,—1). Moreover there is a class h € A(S) with h? = 3 and hx = 2?
(mod 2) for all x € A(S). Indeed, one can show that these conditions char-
acterize the pair A, h uniquely up to isomorphism.

One also calls A(S) the Picard group of S and the bilinear pairing the
intersection pairing for reasons that will become clearer in the next Chapter.

The advantage of A(S) is that one can show that the lines on S are exactly
the solutions of the equations hl = 1, [ = —1 in A(S). This is a bit messy
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to do directly by hand; it is easy to see once one knows adjunction and the
genus formula. This gives a symmetric description of the lines.

We also mention without proof that there is a striking connection to the
root system of type Fg: namely, h* C A(S) is the (negative of the) root
lattice, (—FEg).
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Chapter 12

Local parameters, power series
methods, divisors

Let X be a (not necessarily irreducible) variety, * € X a regular point,
dim, X = n.

Definition 12.1. Elements py,...,p, € Ox, are called local parameters (or
local coordinates) in z if p; € m, C Ox, and the residue classes pi, ..., pn
form a basis of the k-vector space m,/m? = T% . An equivalent condition is
that the differentials d,p1, ..., d,p, are independent linear forms on 7, .X.

Choose U > open affine such that py,...,p, € Op(U). Let H; := {u €
U | pi(u) =0} and let I(H;) C Oy(U) its ideal. Assume that U C AN closed
and let P;(t1,...,tx) be a polynomial in the coordinates on A™ such that
P; |y=p;. Then (P, 1(U)) C I(H;), thus

T.H; C {veT,U|d,P(v)=0}.

Since the d,ps,...,d.p, are linearly independent, we get that dim 7T, H; <
n — 1. But because of Theorem and Theorem [10.13] we have

dimT,H; > dim, H; >n —1,

hence dimT,H; = n — 1 and z is regular on H;. In a neighborhood of x the
intersection of the H; consists of x alone, for otherwise d,p; = --- = d.p, =0
wouldn’t have 0 as its only solution (but would vanish on the tangent space
of a component of the intersection of the H;’s passing through x). Thus we
obtain
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Theorem 12.2. Let py,...,p, be local parameters around x. Then x is a
regular point on every H; = {p; = 0} and [, T, H; = {0}
One also says that the H;’s intersect transversally at x.
Theorem 12.3. Local parameters generate the maximal ideal m, C Ox .

Proof. The module M = m, over Ox, is finite. Now the residue classes of
the p; in m,/m2 generate that vector space, hence the submodule M’ C M
generated by the p;’s satisfies M’ + m, M = M, in other words

m - (M/M') = (M/M").
By Nakayama’s Lemma [7.6] we have M' = M. O

We will now consider power series expansions, also called Taylor expan-
stons of elements f € Ox,, given local parameters p,...,p,. AMong other
things, this will allow us to understand regular and singular points on X bet-
ter, in particular prove that the intersection of two irreducible components
must consist entirely of singular points.

Put
f(z) = 20
Then
fi=f—x9 €m,.
Since py, ..., P, generate m,, there are elements ¢y, ..., ¢, € k such that

f2=h _Zcipi = f — o —Zcipi € mi.
=1 =1

Now f, € m2, thus we can write fy = Ej gjh; with g;, h; € m,, thus there
exist elements d,;, e;; € k such that g; — >, di;pi € m2, h; — > . eipi € m2.
Defining elements fi in k by >, fupipr = >_;(32, digpi) (3, €ijpi) we obtain

fs=fa— Zflkplpk =[—0— Zcipi - Zkapzpk €m;.
i Lk

Continuing in this way we inductively obtain polynomials

F,i=0,1,2,..., F €klt,....tali



103

with

:
f—ZE(pl,...,pn) em Vi >0.

=0

Definition 12.4. The ring of formal powers series in variables ti,...,t,,
denoted by k[[t]] = k[[t1,. .., t,]], is the ring whose elements are formal sums

F=FK+F+F+...

(in other words, simply sequences (Fy, Fi, Fy, . ..)) where F} is a homogeneous
polynomial of degree ¢ in the ty,...,t,; and addition is defined component-
wise:

F+G:=(Fo+Go)+ (FL+Gy)+...

and multiplication
FG:H0+H1+H2+

is defined by formally imitating the Cauchy product rule:

Hq = Z FZG]

i+j=q
The leading term of a powers series F', It(F') is F;, where ig = min{i | F; # 0}.

It then follows that 1t(F - G) = 1t(F) - 1t(G), whence k[[t]] is an integral
domain.

Definition 12.5. An element F' € k[[t]] is called a Taylor series for f € Ox

(with respect to local parameters py, ..., p, if
k
f=> Filp,....p.) emi™, VEk>0.
=0

We have seen above that every f € Ox, has at least one Taylor series.

Theorem 12.6. If v € X is a reqular point and py,...,p, are local param-
eters around x, then every f € Ox , has a unique Taylor series.
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Proof. 1t suffices to show that if f = 0 in Ox,, then F' = 0 in k[[t]] for
every Taylor series F' for f; in other words, it suffices to show that for F}, €
Elt1,. .. talk

Fk(pl; o ,pn) € mI;H > Fk<t1, o 7tn> =01in k[tl, .. 7tn]k

Suppose by contradiction that Fy(ti,...,t,) # 0. The coefficient of t* in F},
is Fr(0,...,0,1) and there is a (¢y,...,c,) € k™ such that Fy(cq,...,c,) # 0.
Thus after a linear change of coordinates with (cq,...,¢,) — (0,...,0,1),
we can assume that the coefficient of t* is nonzero. Thus without loss of
generality

Fi(ty, ... ta) = ath + Gi(ty, . tnoa)th + -+ 4 Giltr, . tn1)

with o # 0 and G; € k[ty,...,t,_1];- Since the py,...,p, generate m, by
Theorem we can write Fy(py,...,p,) € mFTl as a homogeneous poly-
nomial of degree k in py,...,p, with coefficients in m, whence we get an
equality

Oépfl + Gn(pla s 72%—1)292_1 + -+ Gk(pl» cee 7pn—1)
= mpﬁ + Gi(p1, - - 7pn71)]?271 +- -+ Gr(p1,- -, Puo)

with m € m, and G; a homogeneous polynomial of degree i in n— 1 variables
with coefficients in m,. Then (o — m)pt € (p1,...,pn1) and a — m is
invertible in Ox, whence pf € (py,...,p,_1). But this means, putting H; =
(p; = 0), that

H,>DOHN---NH, ;4

and thus
T.H, DT, HiN---NT,H, ;.
Then
T.Hin---NT.H, # {0}
contradicting Theorem [12.2] O

Thus if z € X is regular, then we get a well-defined map
TZ OX,ac — k’[[tl, . 7tn]]

by associating to an f its unique Taylor series. Moreover, this is clearly a
homomorphism. We want to determine its kernel: 7(f) = 0 means f € m*
Vk >0,ie. f € ﬂkzo m~. We then use the following commutative algebra
result.
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Theorem 12.7 (Krull’s Intersection Theorem). Let A be a Noetherian local
ring with mazimal ideal m. Then

ﬂ m* = (0).

k>0

The proof is not overly complicated, but we omit it to continue with
the geometric consequences. Notice that Krull’s Intersection Theorem can
become false without the Noetherian hypothesis: for example it does not
hold for germs of infinitely differentiable functions around 0 € R! since there
are functions all of whose derivatives in 0 vanish, but the germ is nonzero.

Theorem 12.8. If x € X s a regular point on a variety, then we have an
inclusion
OX@ — k[[tl, . ,tn“

defined by associating to a germ its Taylor series with respect to some set
D1, - -5 Pn Of local parameters.

As a consequence we can now prove a result that complements Theorem

1015

Theorem 12.9. Let x € X be a reqular point on a variety X. Then x lies
on a unique irreducible component of X. In other words, intersections of two
irreducible components consist entirely of singular points.

Proof. Replacing X by some affine open subset containing z we can assume
that X is affine and all irreducible components of X pass through z. Then
Ox(X) C Ox, C K[[t1,...,t,]]. Since E[[t1,...,t,]] is an integral domain,
Ox(X) cannot have any zero divisors, hence X is irreducible. O

We will assume the following result without proof to proceed further.

Theorem 12.10. Let x € X be a reqular point on a variety X. Then the
local ring Ox 4 is factorial.

A proof can be found in almost any textbook on commutative algebra.
One approach is to use power series methods and the Weierstrass Preparation
Theorem to prove that kl[[tq,...,t,]] is a UFD, and then show that the UFD
property is inherited from Ox, C kl[[t1,...,t,])]. This would be perfectly
feasible with our current background, but is a bit lengthy and messy, so we
omit it.

We will assume that varieties X are irreducible in the sequel.



106CHAPTER 12. LOCAL PARAMETERS, POWER SERIES METHODS, DIVISORS

Definition 12.11. Germs of functions fi,..., f,, € Ox, are called local
equations for a subvariety Y C X if there is an affine open neighborhood

U >z with f; € Ox(U) for all i and [(Y NU) = (fi1,..., fm) C Ox(U).

Let Iy, C Ox, be the ideal of germs of functions in Ox , which vanish
on Y in an open neighborhood of z; if X is affine we have

Iy, = {f:%\u,UEOX(X), uwelY), v(x)#(]}.

Theorem 12.12. The elements f1,..., fm € Ox, are called local equations
for a subvariety Y C X <= Iy, = (f1,..., fm)-

Proof. Clearly = holds since if in an affine open neighborhood U of x we
have I(Y NU) = (f1,..., fm), then Iy, = (f1,..., fm) by what we remarked
immediately before the statement of the Theorem.

For <= assume Iy, = (fi,..., fm), and write I(Y N U) = (g1, ..., 9s),
g; € Oy (U) for some affine open U containing z. Since ¢; € Iy, we have
equations

gi:Zhijf]’, hij EOX@, izl,...,S.
j=1
All f;, h;; are regular on some small principal open subset V 3 z, V =
U—{g=0}, g€ Oy(U). Thus in Oy (V) we have

(91,--+,95) =1(Y NU)-Oy(V) C (f1,--, fm)-

Let us show that (Y NU)- Oy (V) = I(VNY). This will imply I(V NY) C
(f1,---, fm), hence the Theorem since f; € I(V NY) so that the reverse
inclusion is obvious.

Now it is clear that I(Y NU) - Oy (V) C I(VNY) Now let v = u/g' €
I(VNY),u € Oy(U),sou =vg'. Thenu € I(YNU) and since 1/g' € Oy (V)
it follows that v € I(Y NU) - Oy (V). O

Theorem 12.13. An irreducible subvariety Y C X of codimension 1 has a
local equation around any nonsingular point x of X.

Proof. We can assume that X is affine. Let f € Ox, be a germ with
[ € Iy,. Note that Ox, is factorial by Theorem [12.10] Decompose f into
prime factors in Ox ,. Since Y is irreducible, one of the prime factors g must
vanish on Y. We show that Iy, = (g). After shrinking X we can assume
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that g is regular on X. Then V(g) DY, V(g) = YUY’ If z € Y/, then
there exist regular functions h, h’ € Ox(X) with hh’ = 0 on (¢ = 0), but h
and h' are both not identically zero on (¢ = 0). By the Nullstellensatz |3.2
g divides (hh')" for some r where the divisibility holds in Ox(X); thus also
g | (hh)" in Ox,. Now since Ox , is factorial, we get g | h or g | h' since ¢
is prime. Hence h or b’ is zero on V(g) in a neighborhood of x. Shrinking X
we can assume from the beginning that all irreducible components of V(g)
pass through x. Thus we have a contradiction because we obtained that h
or h' is identically zero on V(g) but assumed the contrary at the beginning.

Thus V(g) =Y. If u € Ox(X) vanishes on Y, then the Nullstellensatz
implies that g | v®, some s, in Ox(X). Hence ¢ | ©* in Ox, and since the
latter is factorial, g | u. Thus Iy, = (g). O

Recall that a rational map f: X --» Y is an equivalence class of mor-
phisms f;: U — Y, U C X Zariski open dense; two being considered equiv-
alent if they coincide when they are both defined. It follows that there is
a largest open set dom(f) C X on which f is a morphism, namely the
union of all open sets U for representatives (fi,U) of f. The complement
Z; = X\dom(f) is called the indeterminacy locus of f. It is a closed subset
of X.

Theorem 12.14. Let X be a nonsingular variety, and f: X --+ P" a ratio-
nal map. Then the indeterminacy locus Zy C X has codimension > 2.

Proof. 1t suffices to prove the assertion in an affine neighborhood of a non-
singular point x € X. We can then find a representative of f in the form

f=0Uo:fn)

where f; € k(X), f; € Ox, for all i (we can clear denominators because the
target is a projective space) and the f; without common factor in Ox, (we
can divide by any common factor since the target is projective). Then no

irreducible codimension 1 subvariety Y can be contained in fy =--- = f, =0
since by Theorem[12.13|we would have Iy, = (g) and if f; vanishes on (g = 0),
then g | f; for all 4, a contradiction. ]

The following are immediate consequences of Theorem |[12.14]

Corollary 12.15. Fvery rational map f: C' --+ P™ from a nonsingular curve
C to P™ is a morphism.
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Corollary 12.16. Two birationally equivalent nonsingular projective curves
are isomorphic.

We proceed to discuss divisors of zeroes and poles of rational functions.
Let X be an irreducible nonsingular projective variety, f € k(X) a rational
function, ¥ C X an irreducible subvariety of codimension 1. We want to
define the order of zero or pole of f along Y. Let U C X be affine open,
UNY # ) such that I(Y NU) = (7) with 7 € Ox(U), which is possible by
Theorem [12.13]

For g € Ox(U), g # 0, there is a k > 0 with g € (7%), but g ¢ (7**1);
namely, if we had g € (,-,(7*), then we would have g € (1,5, m" where m
is the maximal ideal of the local ring of Y N U, i.e. the localization Oy (U),
where p = I(Y N U). But then Krull’s intersection theorem would imply
g = 0 in the local ring of Y N U, hence g would be identically zero on U.

Now we put k := vy (g). This is independent of the choice of an affine U
above: if V C U is affine open, V NY # (), then 7 gives a local equation of
YNV and v¥(g) = vy (g). In general, if U,V are open affine with UNY # 0,
V' NY # (), then there is an affine open W C U NV with W NY # (.

We call vy (g) the valuation of g in Y. We have

vy (9192) = vy (g1) + vy (92), (12.1)
vy (91 + 92) > min{vy (g1), vy (g2)} if g1 + g2 # 0. (12.2)
If fek(X), we can write
hy
f:h—7 hl,hQEOU(U).
2

Now (12.1) and (12.2) imply that if f # 0, then
vy (f) = vy (h1) — vy (hs)

is independent of the choice of representative h; /hs and (12.1), (12.2) remain
valid for all g1, g2 € k(X)\{0}.

If vy(f) = k > 0, then we say f has a zero of order k along Y. If
vy (f) =k < 0, then we say that f has a pole of order —k along Y.

There are only finitely many Y’s with vy (f) # 0: indeed, if U is affine,
f € Oy(U), then vy (f) = 01if Y is not component of (f =0). If f = g1/¢,
then vy (f) = 0 if Y is not a component of (¢ = 0) or (go = 0). In general,
X is a union of finitely many such U;.
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Definition 12.17. For smooth irreducible projective X let Div(X) the free
abelian group on all codimension 1 irreducible subvarieties. We call Div(X)
the group of (Weil) divisors on X. Any element in it is called a (Weil)
dwisor. For f € k(X)* we put

div(f) = Y _ vy(f)Y € Div(X)

YCX

where the sum runs over all irreducible codimension 1 subvarieties. A divisor
of the form div(f) (or the zero divisor 0) is called a principal divisor. The
principal divisors form a subgroup PrincDiv(X) C Div(X). The quotient

Pic(X) := Div(X)/PrincDiv(X)

is called the Picard group (or more accurately, Weil divisor class group) of
X.

The group Pic(X) is an important invariant of X.

Example 12.18. We have Pic(P") ~ Z. Every irreducible codimension
1 subvariety is defined by an irreducible homogeneous polynomial of some
degree k by Theorem [8.6] We have for U; = {X; # 0} C P" that I(Y NU) =
(F/XF). If

f=se

is a rational function, F', G’ homogeneous of the same degree k, F' =[], Hlk,
G=1]; L7 with H; and L; irreducible, then

div(f) = Zki(Hz’ =0) - ij(Lj =0)

which has degree 0 as an n — 1 cycle. If conversely, D = > k;Y; with
> kidegY; = 0, and Y; is defined by an irreducible H;, then f = HH’Zg
is an element in k(X) with div(f) = D.

Example 12.19. Using the Segre embedding, one can show that
Pic(P" x P™) =Z @ Z.

The proof is similar to the one in Example [12.18
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By these simple examples one should not be tempted to think that Picard
groups are always finitely generated or torsion-free: this fails in very simple
examples already, like that of plane cubic curves.

Instead of with codimension 1 subvarieties, leading to Pic(X), one can
work with higher-codimensional subvarieties as well, leading to the so-called
Chow groups of X. But these are generally much harder to compute.

We also point out that the power series methods we have started to de-
velop in this Chapter have much more far reaching consequences and develop-
ments, in particular in Zariski’s theory of formal functions and deformation
theory.
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