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Abstract. In this report we study Hilbert modular surfaces. In Section 2 these surfaces are

defined and an attempt is made to find equations for birational models. Section 3 focuses on an
application of Runge’s method to the Siegel modular variety and possible improvements in the

Hilbert case.
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1. Academic activities

Papers studied:

• K3 surfaces and equations for Hilbert modular surfaces, Noam Elkies and Abhinav Kumar
[2]
• Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields, Jose Ignacio

Burgos Gil and Ariel Pacetti [8]
• A“tubular” variant of Runge’s method in all dimensions, with applications to integral

points on Siegel modular varieties, Samuel Le Fourn [3]
• Modular Forms and Projective Invariants, Jun-Ichi Igusa [13]

Books studied :

• Hilbert Modular Surfaces, Gerard van der Geer [7]
• Diophantine Geometry, Marc Hindry and Joseph Silverman [11]
• Algebraic Geometry, Robin Hartshorne [10]

Courses for credit : Introduction to Schemes (TCC), Weil Conjectures (TCC), L functions (TCC)
Courses not for credit : Rigid Analytic Geometry (Oxford), Automorphic Forms and the Langlands
Program (MSRI Summer School 2017, watched online)
Seminars followed : Number theory seminar (terms 1 and 2), Number theory study group (terms
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1 and 2), Number theory group meeting (terms 1 and 2), Logarithmic geometry (term 1)
Talks given: Logarithmic geometry seminar, number theory study group term 2, postgraduate
seminar
Teaching : TA for Galois Theory in term 1 and Algebraic Number Theory in term 2.

2. Finding equations for birational models of Hilbert modular varieties

Elkies and Kumar ([2]) computed equations for birational models of all Hilbert modular surfaces

(without level structure) for the real quadratic fields Q(
√
D) with D a discriminant of size at most

100. In this section we attempt to do the same for Hilbert modular surfaces with level structure.
We obtain a method that works for sufficiently large D, where, however, the algorithm takes too
long to actually do the computations.

2.1. Parametrizing abelian surfaces with real multiplication. An abelian variety over a
field k is a projective algebraic group over k. Such algebraic groups are automatically abelian.

For each line bundle L on A, we define a map

φL : A→ Pic(A), x 7→ T ∗xL⊗ L−1,

where Pic(A) is the Picard group and Tx the translation-by-x map. In fact, Pic(A) can be given
the structure of a group variety on A and the image of φL lands in the identity component Pic0(A).
Moreover, Pic0(A) can uniquely be endowed with the structure of an abelian variety. We call it
the dual abelian variety of A and denote it by A∨. As the name suggests, there is a canonical
isomorphism (A∨)∨ ' A. If the line bundle L is ample, the morphism φL is an isogeny : it is
surjective with finite kernel. In that case, there is a dual map φ∨L : A ' (A∨)∨ → A∨ and if L is
also symmetric, meaning that [−1]∗L = L, then φ∨L = φL. A polarization is a map φL : A → A∨

such that L is ample and symmetric, where L is defined on A/k. The polarization is called principal
when it is an isomorphism. Note that elliptic curves come with a natural principal polarization
P 7→ (O)− (P ).

Definition 2.1. Let F be a totally real number field. A principally polarized abelian variety with
OF -multiplication is a triple (A, λ, ι), where A is an abelian variety of dimension [F : Q], λ is a
principal polarization on A and ι : OF → End(A) an embedding such that for all α ∈ OF , we have

λ ◦ ι(α) = ι(α)∗ ◦ λ.

Again note that elliptic curves trivially have multiplication by Z.
When k = C, the above definitions can be described in a much more concrete way. Each abelian

variety over C is a torus Cg/Λ, where Λ ⊂ Cg is a lattice. Conversely, a torus is an abelian
variety precisely when it can be embedded (analytically) in projective space. Such embeddings
in projective space correspond to (analytic) divisors. When D is an effective divisor on Cg/Λ, its
pull-back to Cg must be the divisor of some entire function θ. Being a pull-back, θ must satisfy

θ(z + λ) = egλ(z)θ(z) for each λ ∈ Λ, z ∈ Cg,
where gλ is a holomorphic function. We call this the functional equation of θ. If gλ is affine for all
λ, meaning that gλ(z +w) + gλ(0) = gλ(z) + gλ(w), then θ is called a theta function relative to Λ.
All theta functions relative to Λ with the same functional equation together define a morphism

(θ0 : . . . : θn) : Cg/Λ→ Pn(C).

On the other hand, using the affine functions gλ, one can define a Riemann form: a Hermitian
form H : Cg×Cg → C such that H(Λ×Λ) ⊂ Z. The Riemann form is positive-definite if and only
if the divisor D is ample.

Proposition 2.2. A torus Cg/Λ is an abelian variety if and only if it admits a positive-definite
Riemann form.

See [11] Section A.5 for a proof.
Moreover, positive-definite Riemann forms are in canonical bijection with the polarizations on

the resulting abelian variety. The map is the obvious one: for an ample symmetric line bundle L
inducing the polarization, we choose an effective divisor D inducing L and we define the Riemann
form via the functional equation of the theta functions. The polarization is principle if and only
if the corresponding Riemann form satisfies H(Λ × Λ) = Z. This gives us a way of interpreting
polarizations: they can be viewed as a choice of (equivalence classes of) embeddings into projective
space.
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With this concrete description, it is not hard to parametrize the principally polarized abelian
varieties over C. We define the Siegel half space, denoted Sg, to be the space of symmetric matrices
g × g-matrices with positive-definite imaginary part. For each τ ∈ Sg, the pair (Aτ , Hτ ), where

Aτ =
Cg

Zg ⊕ τZg
and Hτ (z, w) = zt(Imτ)−1w,

is a principally polarized abelian variety. Two such pairs corresponding to τ, τ ′ are isomorphic if
and only if τ = γ(τ ′) for some γ ∈ Sp2g(Z), acting via fractional linear transformations:(

A B
C D

)
τ = (Aτ +B)(Cτ +D)−1.

This gives us the moduli space of g-dimensional principally polarized abelian varieties Ag :=
Sp2g(Z) \Sg called the Siegel modular variety of dimension g. Moreover, for each τ , we can define
a canonical theta function inducing H, namely

θτ (z) =
∑
n∈Zg

eπin
tτn+2πintz.

Now let F be a number field of discriminant D. For simplicity of exposition, we take [F : Q] = 2.

Proposition 2.3. The space SL2(OF ) \ H2 is a moduli space for the principally polarized abelian
surfaces with OF -multiplication.

Proof. The group SL2(OF ) acts naturally on H2 via(
a b
c d

)
· (τ1, τ2) :=

(
σ1(a)τ1 + σ1(b)

σ1(c)τ1 + σ1(d)
,
σ2(a)τ2 + σ2(b)

σ2(c)τ2 + σ2(d)

)
,

using the action of SL2(R) via general linear transformations. Here σ1, σ2 are the embeddings
F → C. Note that this is where we make crucial use of the fact that F is a totally real number
field. In order to obtain a principal polarization in the process to come, we make a slight change
of groups. Define O∗F = 1√

D
OF and

SL2(OF ,O∗F ) =

{(
a b
c d

)
∈ SL2(F ) | a, d ∈ OF , b ∈ (O∗F )−1 and c ∈ O∗F

}
.

This group acts onH2 in the same way as SL2(OF ) and in fact the map (τ1, τ2) 7→ (σ1(
√
D)τ1,−σ2(

√
D))τ2)

induces a natural bijection between SL2(OF ) \ H × H− and SL2(OF ,O∗F ) \ H2 when we assume

that σ1(
√
D) > 0 and σ2(

√
D) < 0.

Similar to the elliptic curve case, for each τ ∈ H2, we consider the lattice

L(OF ⊕O∗F ) := OF τ ⊕O∗F ⊂ C2,

where we consider OF as embedded in R2 via (σ1, σ2) and multiplication is coordinatewise. This
yields a complex torus C2/L, on which OF acts as α(s1, s2) = (σ1(α)s1, σ2(α)s2). In order to
define the Riemann form, define E on (OF ⊕O∗F )2 by

E((α1, β1), (α2, β2)) = TrK/Q(α1β2 − α2β1).

Notice that E has image in Z because O∗D is precisely the dual of OF with respect to Tr. We
now define E on L via its description in terms of OF ⊕ O∗F and we extend this R-linearly to
C2. This becomes a Riemann form H such that H(Λ × Λ) = Z that is compatible with the
OF -multiplication. One can show that we obtain all principally polarized abelian varieties with
real multiplication this way. Lastly, it is not hard to check that two abelian-varieties-with-real-
multiplication corresponding to τ, τ ′ ∈ H2 are isomorphic if and only if there is some element of
SL2(OF ,O∗F ) transforming z into z′. See Theorem 2.17 in [9] for the details. We conclude that
SL2(OF ) \ H2 is the sought moduli space. �

Note how this is much more similar to the elliptic curve case than the Siegel modular variety.
When Γ is a subgroup of SL2(OF ) of finite index we can look at Γ \ H2 and this can often

be given a moduli interpretation as the space parametrizing principally polarized abelian varieties
with real multiplication and some additional structure. For example, when n ⊂ OF is an ideal,
define

Γ(n) := {γ ∈ SL2(OF ) | γ ≡ Id mod n} .
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Then Γ(nOF )\H2 is the moduli space of tuples (A, λ, ι, α), where (A, λ, ι) is a principally polarized
abelian variety with OF -multiplication and α = (α1, α2) is an OF /nOF -basis of A[n] with Weil
pairing

wn(α1, α2) = e2πi/n.

Here the Weil pairing on A×A is defined as the natural pairing on A×A∨ via λ.
As is the case for the modular curves, these spaces Γ\H2 are in general not compact, but there is

a natural way of compactifying them by adding finitely many cusps: this is called the Bailey-Borel
compactification.

Definition 2.4. This compactification XΓ of Γ\H2 is called the Hilbert modular surface associated
to Γ.

There is a natural action of SL2(OK) on P1(K) by fractional linear transformations. The set
XΓ \ (Γ \H2) of cusps of XΓ is then Γ \P1(K). We note that the cusps of XSL2(OK) are in natural
bijection with the class group of K.

A priori this XΓ is merely a complex analytic space, but, using modular forms called Poincaré
series, one can embed XΓ into projective space to find that XΓ is in fact a projective algebraic
surface. However, unlike modular curves, XΓ has singularities at the cusps and at the elliptic
points (those points x where the isotropy group Γx is non-trivial), see [4] p. 30–31.

Therefore, in order to develop a sensible theory of these Hilbert modular surfaces, we would like
to find a (minimal) desingularization of XΓ.

2.2. The explicit desingularization of Hilbert modular surfaces. Let Γ be a congruence
subgroup of SL2(OF ), i.e. a subgroup of finite index. In this section we describe the desingular-
ization of a cusp of XΓ as done in [7].

A neighbourhood in XΓ around the cusp ∞ can be described by Γ∞ \ F∞, where F∞ is the
sphere of influence of ∞, as defined on p. 8 of [7]. Then the desingularization of ∞ is determined
as follows. First we note that

Γ∞ =

{(
ε µ
0 ε−1

)
∈ Γ

}
.

Note that such a matrix acts the same as the matrix

(
ε2 µ
0 1

)
. So as a transformation group, we

have

Γ∞ =

{(
ε′ µ
0 1

)
| µ ∈M, ε′ ∈ V

}
= M o V,

where M and V are determined by Γ and the above equality. For example, when

Γ = Γ0(c, n) :=

{(
a b
c d

)
∈
(
OK c−1

nc OK

)
| ad− bc = 1

}
,

we have M = c−1 and V = (O×K)2 = {ε2 | ε ∈ O×K}. To resolve the singularity at a cusp, we
transform the cusp to ∞, then resolve the singularity of M \ F∞ and finally we quotient by the
action of V .

We considerM\C2 instead, with coordinates denoted by (z1, z2). Note thatM acts by real trans-
lations via the embeddings F → C. The infinity cusp is situated at the limit Im(z1)Im(z2) →∞,
which after applying the exponential map C2 → C2, (z1, z2) 7→ (exp(2πiz1), exp(2πiz2)) cor-
responds to the two axes z1 = 0 and z2 = 0. Of course this exponential map is not M -
invariant, but we can make it so. First choose a Z-basis µ1, µ2 for M : we can write an element
z = (z1, z2) ∈M \ C2 in terms of this basis as

z = uµ1 + vµ2 mod M for some u, v ∈ C.

Then we get a well-defined map

φµ1,µ2 : M \ C2 → C2, z = uµ1 + vµ2v 7→ (e2πiu, e2πiv).

The image of φµ1,µ2
is (C×)2, so we can view C2 = (C×)2 ∪ {z1 = 0} ∪ {z2 = 0} as a completion

at the cusp. The manifold C2 is certainly non-singular and would serve as a desingularization, but
this definition is in no way canonical. Therefore, we will choose a countable number of “natural”
bases and glue the resulting copies of C2 in the appropriate way. We note that the real embeddings
of F embed M as a lattice in R2, and we view M as such. We will be interested in the behaviour
of modular forms at the cusps and these have a Fourier expansion (see 1). So it is in some sense
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natural to look at “minimal positive points” in M , that is, points µ ∈ M+ (the totally positive
elements of M) such that

min
ν∈(M∨)+

Tr(νµ) = 1,

where M∨ ⊂ K denotes the Z-dual with respect to the trace. Then such minimal positive points of
M correspond precisely to the points of M+ on the boundary of its convex hull inside R2. Denote
these points by Ak (k ∈ Z), where the numbering is chosen such that the second coordinate of Ak
increases as k increases. Then one can show (see Lemma 2.1 in [7]) that two consecutive points
Ak−1, Ak form a Z-basis for M . It follows from the definition that Ak−1 + Ak+1 is an integral
multiple of Ak, say

Ak−1 +Ak+1 = bkAk.

Denote by C2
k the copy of C2 viewed as a desingularization of M \C2 by choosing the basis Ak−1, Ak

for M . Denote the coordinates of C2
k by (uk, vk). The identification between C2

k and C2
k+1 is given

by (uk, vk) 7→ (uakv
d
k, u

b
kv
c
k), where

(
a b
c d

)
is the change-of-basis matrix. By the definition of bk,

we have a = bk, c = 1, b = −1, d = 0, so that

(uk, vk) 7→ (ubkk vk, u
−1
k )

is the identification. Glueing the copies C2
k (k ∈ Z) in this way, we obtain a smooth manifold Z.

Note that the glueing map above is only defined when uk 6= 0, i.e. outside one of the two axes
Sk := {uk = 0} that are meant to lie above the cusp. The other axis {vk = 0} is mapped onto
{uk+1 = 0} = Sk+1. The axes intersect transversally in C2, so we obtain a chain {Sk | k ∈ Z} of
rational curves, where each Sk intersects its neighbours Sk−1 and Sk+1 exactly once, transversally,
and is disjoint from the other Sm with |m − k| ≥ 2. By definition of the identifications, the
maps φAk,Ak+1

: M \ C2 → Z all coincide to a single map we denote by φ. Now we define

Y + := φ(M \ H2) ∪ ∪kSk. It is important to note that we can find the self-intersections of the Sk
explicitly by exhibiting functions on C2

k, see p.33 of [7]. This yields

S2
k = −bk

for all k ∈ Z, where we note that bk ≥ 2 by definition of bk.
Lastly, we need to quotient by the action of the units V . As mentioned before, V acts on M by

isomorphisms and hence V acts on M \H2. In fact, it turns out that the action of V on Y + is free
and properly discontinuous, so that Y +/V is a smooth complex manifold (see Lemma 3.1 in [7]).

Let us see what happens under this quotient. Note that V always consists of squares, so each
ε ∈ V is totally positive and we have

min
ν∈(M∨)+

Tr(νεµ) = min
ν∈(εM∨)+

Tr(νµ) = min
ν∈(M∨)+

Tr(νµ),

so multiplication by ε preserves the set of points µ ∈M+ where this minimum is 1, i.e. {Ak | k ∈ Z}.
Now V is a subgroup of (O×K)2, and O×K is isomorphic to Z/2Z×Z by Dirichlet’s unit theorem as
K is a totally real quadratic number field; so V is cyclic. Denote by η a generator. The previous
display shows that for each k there is an r ∈ Z such that ηAk = Ak+r. By continuity, this number r
is independent of k. Therefore, what dividing by V comes down to is identifying those glued copies
of C2

k where the numbers k are in the same residue class modulo r. In particular, we see that we are
left with r rational curves S1, . . . , Sr lying above the cusp, intersecting as mentioned before when
r ≥ 3. When r = 2 the two curves intersect transversally in two points. When r = 1, the curve
S1 is singular with self-intersection −b1 + 2, see Lemma II.3.2 in [7]. As each bk ≥ 2, there are no
exceptional curves and we find that Y +/V is the unique minimal resolution of the singular point

at infinity of Γ∞ \ H2 (see [7] II Theorem 3.3). Glueing all the desingularizations at the different
cusps we obtain the algebraic surface ZΓ. Finally, a similar desingularization can be made for the
elliptic points, leading to the smooth algebraic surface YΓ. This is the desingularization we will be
working with.

2.3. Hilbert modular forms and differentials. For modular curves, the canonical morphism
to projective space is determined by the line bundle of holomorphic 1-forms. However, as XΓ is
singular, we cannot simply speak of the “holomorphic 1-forms” on XΓ. Instead, we must turn to
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the desingularization YΓ. We first define Hilbert modular forms. Recall that on H2 we have an
action of GL+

2 (F ) as follows:(
a b
c d

)
· (z1, z2) =

(
σ1(a)z1 + σ1(b)

σ1(c)z1 + σ1(d)
,
σ1(a)z1 + σ1(b)

σ2(c)z2 + σ2(d)

)
.

For each pair of ideals c, n ⊂ OK , we define the group

Γ(c, n) :=

{(
a b
c d

)
∈
(
OK c−1

cn OK

)
| ad− bc� 0

}
.

Let Γ = Γ(c, n) for some choice of ideals.

Definition 2.5. A Hilbert modular form of weight k = (k1, k2) ∈ Z2 for Γ is a holomorphic map
f : H2 → C such that f [γ]k = f for all γ ∈ Γ, where

f [γ]k(z1, z2) = (σ1(c)z1 + σ1(d)z1)−k1(σ2(c)z2 + σ2(d))−k2f(z1, z2)

when γ =

(
a b
c d

)
.

Hilbert modular forms turn out to be automatically holomorphic at the cusps. Each Hilbert
modular form f has a Fourier expansion

f(z) =
∑

µ∈(M∨)+

aµe
2πi(σ1(µ)z1+σ2(µ)z2),(1)

at each cusp, where M is as before. For the infinity cusp, for example, M = c−1. When a0 = 0
at all cusps, we call f a cusp form. The space of modular forms of weight k with respect to Γ is
denoted Mk(Γ), and the subspace of cusp forms by Sk(Γ).

For classical modular forms, we know that cusp forms correspond to the 1-forms on the com-
pactified modular curve. However, in this case the compactified modular curve is not even smooth
(we cannot speak of holomorphic forms) and moreover, even if we could, since the Fourier expan-
sion runs over a rank two lattice, cusp forms do not necessarily yield differential forms with a
“holomorphic” q-expansion.

When M is a complex manifold, define by ωM the canonical sheaf det Ω1
M of holomorphic

(dimM)-forms. Also let H2,′ be H2 minus the inverse images of the elliptic points of Γ \ H2

under the projection map and define Xreg := Γ \ H2,′ = XΓ \ {elliptic points and cusps}. Unlike
XΓ, this is a complex manifold, since locally a chart is given by an inverse of the projection map
π : H2,′ → Xreg. On XΓ there is no standard notion of holomorphic differential forms, but since
the elliptic points and the cusps of XΓ are isolated, the following theorem allows us to consider
differentials on Xreg instead.

Theorem 2.6 (Hartog’s phenomenon). Let n ≥ 2, U ⊂ Cn open and K ⊂ U compact. When
U \K is connected, each holomorphic function on U \K can be extended to a holomorphic function
on U .

Note how untrue this theorem is in C1, where we have the function 1/z. The idea is that in
higher dimensions, such functions with a simple pole are undefined on codimension 1 subspaces,
so extending over smaller sets is okay.

Proposition 2.7. Suppose k ∈ 2Z, k = (k, k) is a parallel weight and Γ = Γ0(c, n). Let i : Xreg →
XΓ be the inclusion. Then the map f 7→ (2πi)2fdz1 ∧ dz2 defines an isomorphism between Mk(Γ)

and i∗ω
⊗k/2
Xreg

(Xreg).

Proof. Note that Xreg = Γ \ H2,′ and the projection π : H2,′ → Xreg yields an embedding of
sheaves

π∗ : ω
⊗k/2
Xreg

→ π∗ω
⊗k/2
H2,′ .

By Hartog’s phenomenon, we have

ω
⊗k/2
H2,′ (H2,′) = ω

⊗k/2
H2 (H2) = {f(dz1 ∧ dz2)⊗k/2 | f is holomorphic on H2}.

It is clear that all elements in the image of ω
⊗k/2
Xreg

are invariant for the Γ-action. On the other

hand, locally on H2,′ the projection π is biholomorphic and any inverse determines a chart, from
which we see that locally on U ⊂ Xreg, a Γ-invariant differential form on π−1(U) determines a
differential on Xreg. In other words, the image of π∗ is precisely the push-forward of the sheaf on



FIRST YEAR PHD REPORT 7

H2,′ of those elements η = f(dz1 ∧ dz2)⊗k/2 invariant for the γ-action for each γ ∈ Γ. Considering

the global sections and applying Hartog’s phenomenon, we see that indeed ω
⊗k/2
Xreg

(Xreg) can be

identified with the Γ-invariant forms f(dz1∧dz2)⊗k/2, where f is holomorphic on H2. Lastly, note
that such a form is Γ-invariant if and only if f ∈Mk(Γ). �

Note that YΓ → XΓ restricts to an isomorphism on the inverse image of Xreg, so global dif-
ferential forms on YΓ determine modular forms via the previous proposition. On the other hand,
Proposition 3.7 in [7] shows that an element f(dz1 ∧ dz2) ∈ ωXreg

(Xreg) can be extended to a
differential form on YΓ if and only if f ∈ S2(Γ).

Theorem 2.8. The map f 7→ fdz1∧dz2 determines an isomorphism between S2(Γ) and ωYΓ
(YΓ).

Note how satisfyingly analogous this is to the modular curve case.

2.4. How to check whether the image of the canonical map is a surface. From this section
onwards we investigate to what extent we can determine the equations for birational models of
Hilbert modular surfaces. For modular curves, one obtains equations for isomorphic models via the
canonical embedding into projective space using explicit computations of the Fourier expansions
of modular forms (see [5]). For Hilbert modular forms with respect to Γ0(n) it has recently also
become possible to determine the Fourier coefficients in Magma, so one might hope for a similar
argument to work in this case as well.

Let k be an even positive integer and k = (k, k). Suppose we are given a set of cusp forms in
Sk(Γ) for some congruence subgroup Γ ⊂ SL2(OF ). These correspond to global sections of ωYΓ

and hence determine a rational map Φ from YΓ to projective space. We would like this map to
be birational. But how can we even know the image has the right dimension? It suffices to check
this locally, even at the tangent space, since at a smooth point, the dimension of the tangent space
equals the dimension of the variety. Suppose that the image of Φ were a curve. Then the image
of the tangent space at any point would be 1-dimensional, at least when the image of this point is
non-singular. However, intuitively, these tangent spaces should vary smoothly and hence cannot
suddenly jump in dimension.

Proposition 2.9. Suppose that Φ : Y → C is a non-constant rational map between a smooth
complete surface Y and a (possibly singular) curve C. Then for each y ∈ Y where Φ is defined,
the image Φ∗(TyY ) ⊂ TΦ(y)C is 1-dimensional.

Proof. Let C̃ be the normalisation of C. As Y is smooth, the rational map factors via C̃ → C.

Since C̃ is smooth, its tangent spaces are 1-dimensional. �

So if we want to show that the image of Φ is a surface, it suffices to show that Φ∗(TaYΓ) is
2-dimensional for one a ∈ YΓ. We take a = (0, 0) ∈ C2

k. Around zero, the cusp forms have a
Fourier expansion

f =
1

ukvk

∑
ν∈M∨+

aν(f)u
TrνAk−1

k vTrνAk
k .

Note that we divide by ukvk because dz1 ∧ dz2 = C duk∧dvk
ukvk

for C a constant. Suppose that

f0, . . . , fn are a basis for S2(Γ) such that f0(a) 6= 0. Then locally around a, Φ is the map to affine
space given by (f1, . . . , fn). Then it suffices to show that the matrix(

∂fi
∂uk

∂fi
∂vk

)
i,j

has rank 2 at (0, 0). These derivatives of the fi correspond by Taylor’s theorem to the coefficients
for uk and vk respectively. So if we can compute the coefficients aν(fi) for ν such that TrνAk−1 = 1
and TrνAk = 2 or TrνAk−1 = 2 and TrνAk = 1, then we can determine this matrix. Also we
would need to determine aν(fi) for ν with TrνAk−1 = TrνAk = 1 in order to determine the cusp
form f such that f(a) 6= 0.

2.5. An important inequality. Having found a way to determine whether the image of Φ is a
surface, we now assume that indeed the image is a surface. Then Φ is generically finite and we can
associate to it its degree. How can we determine this degree? A good tool for this is intersection
theory.
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Theorem 2.10. When f : X → Y is a generically finite morphism of non-singular projective
surfaces, we have for each pair of divisors D,D′ on Y that

f∗D · f∗D′ = (deg f)D ·D′,

where the dot denotes the intersection index.

Now when D is a divisor on Y , its corresponding map ΦD to projective space is a priori only
rational, so we would like to extend the above theorem to rational maps. Note that if OY (D) has
at least 2 elements (which is the case when the image is a surface), then we see that the basepoints
B have codimension 2.

Theorem 2.11. Let D be a divisor on a smooth projective surface Y such that the (closure of the)
image Σ of ΦD is a surface. When either Σ is non-singular or ΦD is birational, we have

D2 ≥ (deg ΦD)(deg Σ)

with equality if and only if ΦD is a morphism.

Remark 2.12. In particular, when D2 ≤ 0 this theorem implies that Σ is singular and deg ΦD > 1.

Proof. Intuitively, if E,E′ are suitably chosen effective divisors on Σ representing OΣ(1), then
Φ∗D(E) and ΦD(E′) intersect transversally in (deg ΦD)(E ·E′) points where ΦD is defined, but also
in the base points of D.

To make this precise, we use blow-ups in order to reduce to the case where ΦD is a morphism.
By Theorem II.7 (p. 14) in [1], repeatedly blowing up base points of D yields a surface Y ′ with
a birational morphism π : Y ′ → Y and a morphism Y ′ → Σ induced by π∗D − E, where E is a
sum of exceptional curves created in the blow-up, such that Y ′ → Σ equals Y ′ → Y → Σ. By the
previous theorem (π∗D)2 = D2. Also, the pull-back of OΣ(1) to Y ′ is OY ′(π∗D − E). But we
know that E · π∗D = 0 by properties of exceptional divisors (see II.3(ii) in [1]) and that E2 < 0.
Therefore, we find that D2 ≥ (π∗D − E)2 and, replacing Y by Y ′, we may assume that ΦD is a
morphism. So by the previous theorem we are done when Σ is non-singular.

Suppose now that ΦD is birational, but Σ possibly singular. We will reduce to the case where

Σ is non-singular. Let Σ̃ be a minimal desingularization of Σ with p : Σ̃→ Σ. Then p is surjective,
so p∗p

∗OΣ(1) = OΣ(1). Also, a push-forward does not change cohomology, so by definition of the
degree as 2 times the leading coefficient of the Hilbert polynomial, we see that deg Σ = OΣ̃(1)2.

(When S is non-singular and embedded in projective space, the equality OS(1)2 = degS is a direct
application of Riemann-Roch.) Now because ΦD is a proper birational morphism and Y is smooth,

the map Y → Σ is a desingularization, so it factors via the minimal desingularization Σ̃. Hence
we may assume that Σ is non-singular and we are done by the previous part. �

Denote by K a divisor on YΓ corresponding to ωYΓ
. This theorem gives us a means of verifying

that our morphism Φ = ΦK is birational. Suppose we have shown that the image is a surface. We
can compute all equations for the image since we know it must be a surface, hence we can compute
the degree of the image and we can check whether it is non-singular. Moreover, there is a formula
for K2 (see p. 64 of [7])

K2 = 4ζF (−1)[SL2(OF ) : Γ]−
∑
σ,k

(bσk − 2)−A,

where A is a non-negative number depending on the elliptic points and their explicit desingular-
ization (which we did not describe in these notes). When Γ acts on H2 without fixed points, A = 0
and in general A can be computed. Finally, if the image is indeed non-singular and its degree
equals K2, then ΦK must be birational, as desired. Note that we expect ΦK to be an embedding
for large fields and large ideals n ⊂ OK because we then have many cusp forms, in which case the
image is indeed non-singular and deg ΦK = 1.

2.6. A Hecke bound for Hilbert modular forms. Being able to verify that ΦK is birational,
we now turn to computing the equations of its image. For this, we need to compute sufficiently
many coefficients of Hilbert modular forms. But how many, and which ones? This question was
answered by Gil and Pacetti [8]. They give a bound for arbitrary congruence subgroups Γ; in this
section we slightly improve this for our choice Γ = Γ0(n) := Γ0(n,OF ).

We have seen that OYΓ
(K) ' S2(Γ). By the same reasons, we haveM2(Γ) ' OYΓ

(K+
∑
σ,k S

σ
k ),

where the sum runs over the rational curves Sσk resolving the singularities at the cusps σ. Taking
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the global sections of the kth tensor powers, we obtain

M2k(Γ) ' OYΓ
(kK + k

∑
j,σ

Sσj ).

Moreover, if we expand f ∈M2k(Γ) around the cusp at infinity, we have

f(z) =
∑
ν∈M∨+

aνe
2πiTr(νz) =

∑
ν∈M∨+

aνu
Tr(νAk)

k v
Tr(νAk+1)
k

where uk, vk denote the coordinates on the chart C2
k in the desingularization of the infinity cusp.

Then we define

ordS∞j (f) := max{n ∈ Z | aν = 0 for all ν s.t. TrνAk = n}.

The order at other cusps can be defined by first transforming to the infinity cusp. We note that,
since ν is in the positive cone of M∨, for each n ∈ Z≥0 there are only finitely many coefficients ν
with TrνAk < n and in fact these ν can be computed explicitly in terms of the Ak.

Proposition 2.13. Suppose that the canonical divisor K on YΓ is nef and that for each σ, j the
modular form f ∈ M2k(Γ) vanishes to order aσj on Sσj . Then f = 0 once (one of) the aσj is
sufficiently large.

Proof. Such a modular forms exists if and only if OYΓ
(kK +

∑
j,σ(k − aσj )Sσj ) 6= (0), i.e. if and

only if the corresponding divisor is linearly equivalent to an effecitve divisor. But K is nef, so the
existence of such a modular form implies that

K · (kK +
∑
j,σ

(k − aσj )Sσj ) ≥ 0.

As each Sσj is a rational curve, it has arithmetic genus 1, so K · Sσj = −(Sσj )2 = bk ≥ 2. It
follows that the above intersection number is negative once the aσj become sufficiently large. In
fact, it suffices for one of these to be sufficiently large. Moreover, this “sufficiently large” number
is computable if we can compute K2. �

In order to see when the condition in the above proposition is satisfied, we use the following
proposition.

Proposition 2.14. When Y is a minimal smooth complex projective surface of general type, its
canonical divisor KY is nef.

Recall that D is the discriminant of F .

Theorem 2.15. Let Γ = Γ(n,OF ). Then YΓ is minimal and of general type in the following cases:

• When D /∈ {5, 8, 12, 13, 17, 21, 24, 28, 33, 60} and moreover n = NOF with
– N ≥ 3 when either D 6≡ 1 mod 8 or D ≡ 1 mod 8 and
D = (m2 − 8)/n2 for some m,n ∈ Z>0 with m ≡ 7 mod 8 or
D ∈ {29, 37, 40, 41, 44, 56, 57, 69, 105, 53, 61, 65, 73, 76, 77, 85, 88, 92, 93, 120, 140, 165};

– or

N ≥
√

3
∑
σ,j

(bσj − 2).

• When the pair (D, n) ∈ {(5, 3OF ), (8, p7), (13, 2OF ), (17, 2OF ), (21, 2OF ), (24, p2)}, where
p7 and p2 are ideals of norms 7 and 2 respectively.

Moreover, when YΓ(n,OF ) is minimal and of general type, then so is YΓ(nm,OF ) for each ideal m.

Remark 2.16. Note that only the fields with discriminants 12, 33 and 60 are missing from the
above list.

Proof. This is a combination of many results in [7] brought together by Gil and Pacetti. �

The idea is now that we have M2k(Γ0(n,OF )) ⊂ M2k(Γ(N,OF )) when n | N and choosing
N sufficiently large according to the theorem, we know that KYΓ(N,OF )

is nef and the previous
proposition can be applied. Note that the inclusion of modular forms corresponds to the pull-back
of the corresponding sheaf along the quotient π : YΓ(N,OF ) → YΓ0(n,OF ). We can do better than
just using the inclusion of modular forms if we take the ramification along the cusp resolution
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curves into account. In fact, we will express the result in terms of YΓ(OF ,OF ), by considering the
maps

YΓ(N,OF ) → YΓ0(n,OF ) → YΓ(OF ,OF ).

We first explain how to express things in terms of YΓ0(n,OF ). Consider the cusp∞ of XΓ0(n,OF ) and

let S∞j be one of its resolution curves. This cusp has type (M,V ) where M = OF and V = (O×F )2.
All of the cusps of XΓ(N,OF ) above ∞ are of the same type (NOF , VN ), where VN is the group of

squares of elements O×F that are 1 modulo N . The two lattices OK and NOF are isomorphic via
multiplication by N , and so they yield the same numbers bk. Now if E is the resolution of a cusp
of XΓ(N,OF ) lying above infinity such that E is mapped onto Sσj , we see that in local coordinates

the map E → S∞j corresponds to (u, v) 7→ (uN , vN ). So the ramification degree of E/S∞j equals
N and we conclude that

π∗S∞j =
∑

S 7→S∞j

NS,

where the sum runs over all the resolution curves of cusps of YΓ(N,OF ) lying over infinity. Suppose
that the length of the resolution cycle of ∞ in YΓ(n,OF ) is r. Then the length of the resolution
cycle of each cusp of YΓ(Nn,OF ) is r[V : VN ]. Note that the displayed sum can be broken down into
a sum over the cusps over ∞ and for each such cusp a sum over the Sσi such that j ≡ i mod r.
The only question that remains is: how many cusps of XΓ(N,OF ) lie above ∞? Let d be the
index [Γ0(n,OF ) : Γ(N)] and the degree of the map YΓ(N,OF ) → YΓ0(n). Note that the index

[Γ(N)∞ : Γ0(n)∞] of the isotropy groups is Norm(N)[V : VN ] = N2[V : VN ]. Then the number of
cusps of XΓ(N) above a given cusp of XΓ0(n) is

[Γ0(n) : Γ(N)]

[Γ(N)∞ : Γ0(n)∞]
=

d

N2[V : VN ]
.

Proposition 2.17. If f ∈M2k(Γ0(n,OK)) vanishes to order a at the resolution curve S∞j of the
cusp infinity in XΓ0(n,OF ), then f vanishes to order Na at all the resolution curves Sσi in YΓ0(N,OF )

where σ is one of the d/N2[V : VN ] cusps lying over ∞ and i ≡ j mod r, where r is the length of
the resolution cycle of ∞ ∈ XΓ0(n,OF ). Moreover, in this case we have bσi = b∞j for all such i, σ
and the length of the resolution cycle of σ is r[V : VN ]. In particular,∑

σ 7→∞
1≤k≤r[V :VN ]

(bσk − 2) =
d

N2

∑
1≤k≤r

(b∞k − 2).

Lastly, we consider the map YΓ0(n) → YSL2(OF ). If τ is a cusp of the former lying above the
infinity cusp of the latter, then their types (M,V ) are the same, and hence so are the corresponding
numbers bk and the lengths of the resolution cycles. So all we need to know is the number of cusps
of XΓ0(n) above a given cusp of XSL2(OF ). Since the isotropy groups are the same, this is just the
degree [SL2(OF ) : Γ0(n)].

Proposition 2.18. The degree [SL2(OF ) : Γ0(n)] equals

N(n)
∏
p|n

(1 + 1/N(p)).

The proof is analogous to the case K = Q.

We say that a cusp form has order a at a cusp, when it vanishes to order at least a at all of the
resolution curves of this cusp.

Theorem 2.19 (Hecke bound). Choose N such that n | N and YΓ0(NOF ) is minimal and of general
type. If f ∈ S2k(Γ0(n)) vanishes at the infinity cusp to order a+ 1, where

a >
4kNdζF (−1)∑

j(b0,j − 2)
−
(

1 + (d− 1)
k

N

) ∑h
i=1

∑
j(bij − 2)∑

j(b0,j − 2)

and d = [SL2(OF ) : Γ0(n)] = N(n)
∏

p|n(1+N(p)−1), then f = 0. Here the numbers bi,j correspond

to the resolutions of the cusps of XSL2(OF ), with i = 0 the infinity cusp.

Proof. We reason as in the proof of Proposition 2.13, using Propositions 2.17 and 2.18 to express
everything in terms of the numbers bi,j corresponding to the cusps of XSL2(OF ). Finally, we use

the equation for K2 mentioned before. �
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Note that the first term in the Hecke bound comes from the vanishing to order a at the infinity
cusp and the second term comes from the vanishing to order 1 at the other cusps.

We have now established all the ingredients to possibly compute the equations for birational
models of Hilbert modular surfaces.

2.7. A major downside of Γ0(n). We first need to mention a downside of working with Γ0(n)
that became apparent during the computations. Recall that the isotropy group of ∞ of SL2(OF )
are the upper triangular matrices in SL2(OF ), so the isotropy group of ∞ in Γ0(n) is the same.
This means that if σ is a cusp of XΓ0(n) mapping to ∞ ∈ XSL2(OF ) then the resolutions of σ and
∞ consist of an equal number of curves with equal self-intersections −bσk = −b∞k . Moreover, again
since the isotropy group does not change, there are d := [SL2(OK) : Γ0(n)] cusps of XΓ0(n) lying
above any given cusp of XSL2(OK). Now recall the formula

K2 = 4ζK(−1)d−
∑
σ,k

(bσk − 2)−A.

It is important to note here that the contribution A from the elliptic points is very small in practice;
for small discriminants almost always smaller than 2 (see the table on p.65 and Table 2 at the
end of the book of [7]). But the contribution from the cusps now by the previous remarks equals
d
∑
σ,k(bσk − 2) where the sum now runs over the cusps of XSL2(OK) instead. So we obtain

K2
YΓ0(n)

= d

4ζK(−1)−
∑
k,σ

(bσk − 2)

−A
and up to the small contribution from the elliptic points, K2 just gets multiplied with the index
compared to the case Γ = SL2(OK). Unfortunately, K2 + A is negative on YSL2(OK) for all K

of discriminant at most 89 and therefore, K2 will be negative on YΓ0(n) for such fields K as well,
regardless of n. So we know that ΦK is not birational in all those cases by Theorem 2.11. This
problem does not occur for e.g. the principal congruence subgroups Γ(n), because the isotropy
groups do change. However, for those subgroups Magma cannot compute Fourier coefficients.

Despite ΦK not being birational to a surface, it is still interesting to compute the equations of
its image. We still have a way of checking whether the image is a surface. However, we do not
have an upper bound for the degree of the equations that occur. Unfortunately, we will see that
equations indeed have a high degree.

2.8. Computations with Magma. Appended to this report is Magma code that can potentially
compute equations of Hilbert modular surfaces, based on the previous sections. In this section, we
give an overview of the computations that need to be done and we do some examples.

Our first aim is to compute a matrix of Fourier coefficients of a basis of cusp forms for S2(Γ0(n))
such that the cusp forms of some weight k are determined by these Fourier coefficients. In order
to obtain the indices of these coefficients, we first need to determine the Hecke bound, for which
the numbers bσk need to be computed, at least at the infinity cusp but preferrably at all cusps.
Then, in order to apply the Hecke bound to find the indices, we also need to know explicitly the
points Ak at the infinity cusp. In order to compute the Ak and bk (at any cusp), I used the explicit
continued fraction method described in Section II.5 of [7]. The totally positive indices of bounded
trace can then be enumerated using the dual bases of the bases Ak−1, Ak.

Consequently, the Magma package on Hilbert modular forms can be used to compute the Fourier
coefficients at these indices of new forms. Doing this at all levels dividing the given level and
embedding the newforms at lower levels appropriately, one obtains all cusp forms. (There is a
similar decomposition of the space of cusp forms in terms of newforms at the levels dividing the
given level as for modular forms.) This finally yields the desired matrix of Fourier coefficients.
Using the tensor product, this can efficiently be transformed into the corresponding matrices for
the degree d ≥ 2 monomials in the cusp forms. We can then let Magma compute the kernel of the
transpose of this matrix to compute the possible equations.

Example 2.20. We consider F = Q(
√

10). Then the discriminant D = 40 and we compute
that ζF (−1) = 7/6. This field has class number 2, so each element a of the class group satisfies
a−2 = OK . The resolution cycle for each of the two cusps is

(8, 2, 2, 2, 2, 2).
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This yields that

4ζF (−1)−
∑
σ,k

(bσk − 2) = −22

3

so K2 < 0. Therefore, the rational map ΦK from YΓ0(n) to projective space is not birational for
any choice of n. Let us take n = 2OF . Then the adelic cusp forms of level two with respect to
Γ0(2OF ) are 8-dimensional and the narrow class number is 2. We can compute the Hecke bound:
f ∈ S2(Γ0(2OF )) vanishes everywhere once its order of vanishing at all the resolution curves of the
infinity cusp is at least 14. The number of totally positive elements µ of O∨F that are inequivalent
with respect to the action of the unit group and that satisfy TrµAk ≤ 14 for some k, is 646. We
compute that dimS2(Γ0(2OF )) = 4. These four cusp forms must satisfy at least one equation.
At all the intersection points of the resolution curves at infinity, we find that the Jacobian matrix
of ΦK has rank 1, so one would even expect two equations. However, we are not in posession
of an upper bound for the degree of such equations. Our programme did not find any equations
of degree ≤ 18. Note that for not finding equations, one need not look for all coefficients up to
the Hecke bound, but it suffices to verify that no equation exists when considering any number of
coefficients.

If we take an example with larger discriminant, we do find a positive K2.

Example 2.21. Consider K = Q(
√

101). Then the discriminant D = 101. The class number is
1, and the resolution cycle at infinity for Γ0(n) (any n) is

(11, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3).

We compute that

4ζK(−1)−
∑
k

(b∞k − 2) = 5/3.

Consider n = 2OK . Then [SL2(OK) : Γ0(n)] = 5, so the canonical self-intersection on YΓ0(n) is
slightly smaller than 25/3. The Hecke bound is 21 and the dimension of the space of adelic cusp
forms is 12. However, for a field as large as this, the number of coefficients up to the Hecke bound
is huge and the algorithm that computes equations takes too long.

3. Applying Runge’s method to the Siegel modular variety

In this section we study an application of Runge’s method to the Siegel modular variety intro-
duced by Le Fourn [3], who proves the following theorem.

Theorem 3.1 (Le Fourn). Suppose that K is Q or an imaginary quadratic number field. Consider
a principally polarized abelian surface (A, λ) such that (A, λ) and its 2-torsion are defined over K,
and having potentially good reduction at all finite places of K. If the semi-stable reduction of (A, λ)
is a product of elliptic curves at most at 3 finite places, then

hF (A) ≤ 1070,

where hF denotes the Faltings height. In particular, there are finitely many such abelian varieties.

The aim of this project was to improve this result for principally polarized abelian surfaces with
real multiplication, but so far we have not managed to do so.

3.1. An introduction to Runge’s method. The following example illustrates the simplest case
of Runge’s method for solving Diophantine equations.

Example 3.2. Suppose we want to solve the Diophantine equation

y2 = x4 + ax3 + bx2 + cx+ d, a, b, c, d ∈ Z
in integers x, y ∈ Z. By completing the square, we can rewrite the equation as

y2 = (x2 + a′x+ b′)2 + c′x+ d′, a′, b′, c′, d′ ∈ Q
which yields an equation of the form

C(y − (x2 + αx+ β))(y + x2 + αx+ β) = γx+ δ, C, α, β, γ, δ ∈ Z.
If either y − (x2 + αx + be) = 0 or y + x2 + αx + β = 0 then γx + δ = 0. Otherwise, we find
that y is x-linearly close to both x2 + αx+ β and −(x2 + αx+ β), which is impossible when x is
large. So this yields an upper bound on |x|, and we have thus found a method to solve the given
Diophantine equation.
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We now show how this idea can be extended to curves over Q. Suppose that C is a smooth
projective irreducible curve over Q and φ ∈ Q(C) has poles Q = Q1, . . . Qn in C(C) . We say that
a point P ∈ C(Q) is φ-integral when φ(P ) ∈ Z.

Theorem 3.3. Suppose that U ⊂ C(C) is an open neighbourhood (in the Euclidean topology) of
the Gal(Q/Q)-conjugates of Q. Then the number of φ-integral points of C(Q) outside of U is finite.

Proof. For n sufficiently large, we see from the Riemann-Roch theorem that there exists a non-
constant f ∈ Q(C) with divf ≥ −nQ. Since f is defined over a number field, the number of
Gal(Q/Q)-conjugates of f is finite. Let g be their product. Then the poles of g are precisely
Q1, . . . , Qn and g ∈ Q(C). We claim that g is integral over Q[φ]. By commutative algebra, the
integral closure of Q[φ] in Q(C) is the intersection of all valuation rings of Q(C) containing Q[φ].
But each such valuation ring contains a valuation ring determined by a point of C(Q) that is not
a pole of Y . Indeed, Q(C) is the fraction field of Q[X,φ]/h(X,φ) for some h ∈ Q[X,φ] irreducible
over Q. The non-poles of φ are then precisely the (affine) solutions of h. As the poles of g are
a subset of the poles of Y , we find that g is a regular function of the affine curve determined by
Q[X,φ]/h(X,φ), i.e. g ∈ Q[X,φ]/h(X,φ) and therefore it is in the valuation ring determined by
each such affine point.

Now, multiplying g by a constant multiple we find that g is in fact integral over Z[φ]. In
particular, if P ∈ C(Q) is φ-integral, then g(P ) is integral over Z[φ(P )] = Z. Since also g(P ) ∈ Q
we find that g(P ) ∈ Z. But g is continuous on the compact set C(Q) \ U and therefore bounded.
So g(C(Q) \ U) is finite and therefore, so is C(Q) \ U since g has finite degree. �

A priori, the previous theorem is a concentration result: the integral points are concentrated
near the Gal(Q/Q)-orbit of Q. However, if φ has two (disjoint) Gal(Q/Q) orbits of poles, then the
integral points cannot be concentrated near both orbits, so we find that the set of all φ-integral
points is finite. To be precise, we should take the open sets around the two orbits to be disjoint.

Example 3.4. How does this relate to Example 3.2? First of all, note that the curve in the
example is singular at infinity. Let T = y/x2 and S = 1/x. This yields a birationally equivalent
model

T 2 = 1 + aS + bS2 + cS3 + dS4

where the points Q1 : S = 0, T = 1 and Q2 : S = 0, T = −1 are mapped onto the singular
point at infinity. Here these two points are non-singular, and we see (x, y) in the original equation
approaches these two points at infinity when y → ∞ and y → −∞ respectively. The poles of the
function x are precisely these two points at infinity, whereas y− (x2 +Xx+X) has only one pole
Q2 and y+x2 +Xx+X has one pole Q1. So both of these can play the role of g in the above proof
and therefore we indeed get finitely many x-integral solutions. We even obtain an explicit bound
on the number of solutions because we have explicitly determined the Riemann-Roch functions g.
Note that with this choice of φ = x, we see that φ-integral points are precisely the integral points.

The crucial property of the curve in the above example is that its normalization has two points
at infinity.

Let us now see what happens when we try to generalise the previous theorem to arbitrary
number fields K and their rings of integers. The proof of the theorem then remains the same
after we choose an embedding σ : K → C. However, there can be infinitely many x ∈ OK with
σ(x) bounded. What we want is to bound the height of x, for which we need to bound |x|v for
each place v. For the finite places, we have |x|v ≤ 1 when we assume x ∈ OK . For the infinite
place, we need φ to have more orbits of poles. Suppose that s is the number of infinite places of
K and φ has ≥ s + 1 pole orbits. Let g1, . . . , gs+1 be the functions corresponding to the orbits
via Riemann-Roch. For each embedding σ : K → C, we find open neighbourhoods Ui around the
orbit of Qi. For each P ∈ C(K), there is one i (we assume we chose the Ui disjointly) such that
σ(P ) ∈ Ui. Then we have an upper bound for σ(gj(P )) for all j 6= i. Since we have more than s
functions g1, . . . , gs+1, we find that for each P there must be a j such that σ(gj(P )) is bounded
for all σ, as desired.

Another way to view this, is that for each point P we are looking for an orbit of the poles of Y
that is far away from P in every norm. For each place v, a given point P can be v-adically close to
only one orbit. If there is one, we remove it. After this process, we are left with at least one more
orbit, say of Qj , from which P is far away in every norm. Then the height h(gj(P )) is bounded.
From this, we see that we can even be more flexible.
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Theorem 3.5 (Runge over number fields). Suppose that C is a smooth irreducible curve over a
number field K. Let SK be any finite set of places containing all infinite places and φ ∈ C(K) such
that it’s poles consist of r Galois orbits. If the Runge condition

SK < r

holds, the number of SK , φ-integral points is finite.

We continue to increase generality. Suppose now instead that we start with a normal projective
variety X over K of dimension possibly greater than 1. The zeros of a function are now not points,
but codimension 1 subvarieties. Instead of a function, we start with the data of a number of non-
Galois conjugate effective Weil divisors D1, . . . , Dr. There are now two adjustments that need to
be made with respect to the 1-dimensional case.

Firstly, each of these divisors yields functions in the Riemann-Roch spaces L(nDi) for large n.
However, in order to be able to get a bound on the Weil height of integral points, we need a bound
on all the “coordinates”. If each Di is ample, the functions in L(nDi) for n sufficiently large embed
X into projective space. After the embedding, these functions are just the coordinate maps and
thus bounds on φ(P ) for φ ∈ L(Di) would suffice for bounding the Weil height.

Secondly, the Galois orbits of these divisors are no longer disjoint, so each point P can be v-
adically close to many such orbits. So we let m be the maximal size of a subset of {D1, . . . , Dr}
with non-empty common intersection. Then each point P can be close to at most m divisors Di,
so instead of the condition SK < r, we need

mSK < r.

Let D =
∑
Di. To describe the result, we need to say what D-integral points are. Let SK be a

finite set of places of K. We say that R ⊂ X \D is a set of D,SK-integral points, when for every
f ∈ K(X \ D) there is a constant cf ∈ K∗ such that cff(P ) ∈ OK,SK for all P ∈ R (“bounded
denominators”).

Theorem 3.6 (Levin [14]). With the definitions as above, if the Runge condition mSK < r holds
then every set of D,SK-integral points is finite.

In fact Levin’s theorem is stronger than this: the union of sets of D,SL-integral points over
number fields L ⊃ K and finite sets SL of places of L satisfying the Runge condition is finite (see
[14] for the precise statement).

3.2. Application to abelian varieties. The main drawback of Runge’s method is the Runge
condition, which is rather strong. Samuel Le Fourn [3] set out to make this condition more flexible,
as follows. If we already know that the integral points we are looking for lie in a certain region of
X where less of the Di intersect, then the value of m in the Runge condition may be lowered. See
Theorem 1 in [3] for the precise statement. Following Le Fourn, we refer to this improved Runge
method as the tubular Runge method. This method is particularly useful when dealing with moduli
spaces, as Le Fourn illustrated on the Siegel modular variety. We describe his result below.

The Siegel modular variety A2(2) over C is the moduli space of principally polarized abelian
varieties with a symplectic basis for their 2-torsion (with respect to the Weil pairing). This has
a Satake compactification A2(2)S , whose boundary A2(2)S \ A2(2) has a moduli-interpretation of
non-smooth objects. The compactification A2(2)S has an integral model A2(2)S over SpecZ[1/2]
containing as open dense subscheme the moduli scheme A2(2) parametrizing principally polarized
abelian varieties with level 2 structure over SpecZ[1/2]-schemes.

Therefore if K is a number field and v a finite place not above 2, a triple (A, λ, α2) ∈ A2(2)(K)
is v-adically far from the boundary if A has potentially good reduction at v.

The divisors used by Le Fourn on A2(2) are theta divisors, to be defined later, whose union
consists of the triples (A, λ, α2), where (A, λ) is a product of elliptic curves (with the product
principal polarization). There are 10 such divisors and they are disjoint on A2(2), but on the
boundary there is a common intersection of at most 6 of them. A triple (A, λ, α2) ∈ A2(2)(K)
is integral at a place v with respect to these divisors when A has potentially good reduction at v
and this reduction is not a product of elliptic curves. Informally, this means (A, λ, α2) is v-adically
far away from the divisors. As the integral triples have everywhere potentially good reduction, we
know they are v-adically far away from the boundary at the finite places v, and hence far away
from the common intersection of 6 divisors. This idea allowed Le Fourn to weaken his Runge
condition and prove his theorem, which we restate here (see Theorem 4 in [3]).
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Theorem 3.7 (Le Fourn). Suppose that K is Q or an imaginary quadratic number field. Consider
a principally polarized abelian surface (A, λ) such that (A, λ) and its 2-torsion are defined over K,
and having potentially good reduction at all finite places of K. If the semi-stable reduction of (A, λ)
is a product of elliptic curves at most at 3 finite places, then

hF (A) ≤ 1070,

where hF denotes the Faltings height. In particular, there are finitely many such abelian varieties.

Remark 3.8. The number 3 in this theorem is the largest integer smaller than 10− 6. The number
10 is the number of divisors and 6 is the common intersection number at the boundary for the one
infinite place. By Le Fourn’s “tubular” approach, we are then allowed to add 3 non-integral finite
places because the divisors are disjoint away from the boundary. In particular, without this tubular
idea we would have obtained the same theorem with the stronger condition that the semi-stable
reduction is never a product of elliptic curves.

In the remainder of this subsection we sketch Le Fourn’s proof more finely. Recall that the
principally polarized abelian surfaces over C can be parametrized by a quotient of the Siegel upper
half space S2. For each τ ∈ S2, we have Aτ = C2/Z2 ⊕ τZ2, Hτ (z, w) = zt(Im(τ)−1w and

θτ (z) =
∑
n∈Z2

eπin
tτn+2πintz.

If we decide to let τ vary instead of z, this becomes a function on S2. Define θ(τ) := θτ (0) and for

each a, b ∈ 1
2Z

2 set θa,b(τ) := e−iπa
tbθτ (aτ + b). Let Γ2(2) be the subgroup of Sp4(Z) consisting

of those matrices congruent to I4 modulo 2. We have seen that Sp4(Z) \S2 is the moduli space
of principally polarized abelian varieties over C. The reader familiar with modular curves will not
be surprised that Γ2(2) \S2 is precisely A2(2).

Proposition 3.9. For each a, b ∈ 1
2Z

2, θa,b is independent of the values of a, b modulo Z2 and

moreover, θ16
a,b is a Siegel modular form of degree g, level 2 and weight 8.

See Definition-Proposition 6.14 in [3] for a proof. I will not define a Siegel modular form here,
but, as expected, this means the θ16

a,b satisfy a transformation property with respect to the action

of Γ2(2). Moreover, since the Siegel modular forms together define an embedding into projective
space, the line bundle of Siegel modular forms of degree g, level 2 and weight 8, is ample. Note
that we now have 16 theta functions θa,b in total.

Proposition 3.10. The theta function θa,b for a, b ∈ 1
2Z

2/Z2 vanishes identically if and only if
4atb = 1, i.e. when (a, b) is one of(
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Moreover, no quotient of two of the ten non-vanishing θa,bs is constant.

See Definition-Proposition 7.7 of [3] for a proof by computing the Fourier coefficients. We call
the six pairs above singular ; the ten remaining ones are regular. Because the theta functions θa,b
are Siegel modular forms, they have a well-defined divisor of zeros Θa,b on A2(2)S when (a, b) is
regular. As the line bundle of Siegel modular forms is ample, so are these 10 theta divisors.

In order to study these divisors on the moduli space, note that θa,b(τ) = 0 if and only if
θτ (aτ + b) = 0, so the union of the ten theta divisors restricted to the non-compactified A2(2)
consists of those τ such that θτ vanishes at a 2-torsion point of Aτ . Le Fourn used this to show
that the theta divisors are disjoint on A2(2) and that their union are those triples (Aτ , Hτ , α2,τ )
such that (Aτ , Hτ ) is a product of elliptic curves.

We need more, however, because all of this a priori only holds over the field of complex numbers.
In order to deal with the semi-stable reduction of abelian varieties we need a similar description of
these divisors over fields of arbitrary characteristic. Since we have a Siegel moduli scheme A2(2)
over SpecZ[1/2], we may hope to generalise the theta functions to arbitrary fields of characteristic
unequal to 2.

Let k be any field of characteristic unequal to 2. Instead, the right objects to generalise are their
divisors Θa,b. For any triple (A, λ, α2), we are given a principal polarization λ. This is induced
by a line bundle L whose global sections are 1-dimensional because λ is principal. So given L,
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there is a unique effective divisor in its linear equivalence class. However, there are multiple ample
symmetric line bundles inducing λ. In fact, they are precisely

T ∗xL for x ∈ A[2].

So in order to canonically choose a divisor on A, it suffices to make a canonical choice for L inducing
λ.

Proposition 3.11 (Igusa correspondence). Suppose that (A, λ) is a principally polarized abelian
variety over k. Then each choice of symplectic F2-basis for A[2] determines canonically a line
bundle L inducing λ.

This was first proved by Igusa [13]; see the next section for a survey of Igusa’s proof. Igusa
correspondence is the reason we added the symplectic basis for the 2-torsion to the moduli space.
Over C, it turns out that the line bundle associated to the standard basis α2,τ = ( 1

2 ,
1
2τ) by Igusa

correspondence is indeed divθτ . This correspondence allows us to define the theta divisors Θa,b(k)
over arbitrary fields of characteristic unequal to 2, as follows.

Definition 3.12. The theta divisor Θa,b(k) (for (a, b) regular) on A2(2)S(k) is the divisor whose
restriction to A2(2)(k) consists of those triples (A, λ, α2) ∈ A2(k) such that the unique effective
divisor ΘA,λ,α2 on A associated to α2 by Igusa correspondence contains the 2-torsion point of
α2-coordinates (a, b).

Of course it needs verification that this is a well-defined divisor; see Definition 7.10 in [3].
Again, the union of the ten theta divisors Θa,b(k) on A2(2)(k) is the set of products of elliptic

curves, which should explain the nature of the condition in Theorem 3.7. In characteristic 2 one
does not simply have a moduli space and more effort is needed; see Section 8.3 of [3].

All of the above explains how Le Fourn could obtain a finiteness result, but to obtain an explicit
upper bound on the Faltings height, we need a witness for the ampleness of the theta divisors: Van
der Geer [6] showed that the map

ψ : A2(2)→ P9, τ 7→ (θa,b(τ)4)(a,b) regular

is an embedding such that A2(2)S is identified with the closure of the image, for which he computed
explicit equations. This map allowed Le Fourn to obtain his explicit bound; see [3] for more details.

3.3. Igusa correspondence. In this Section we prove Proposition 3.11, following Igusa’s original
proof in [13].

3.3.1. Line bundles as 1-cocycles. Let ` ∈ 2Z be an even integer and (A, λ) a principally polarized
abelian variety. Then λ equals the map

x 7→ T ∗xL⊗ L−1

for some ample symmetric line bundle L. However, there can be multiple such line bundles inducing
λ, and these line bundles are precisely

T ∗xL such that x ∈ A[2].

Here x needs to be in A[2] to make the line bundle symmetric. Choose such an L. Then h0(L,A) =
(deg λ)2 = 1, so there is a unique effective divisor X whose associated line bundle is L, and X is
also symmetric. We then define for each u ∈ A[`] a function ψu on A by the equality

div(ψu) = (` · Id)∗(T ∗uX −X).

Note that T ∗uL and L are isomorphic line bundles, hence such a function exists. Of course ψu is
only defined up to a constant.

Because we defined ψu via the pull-back of multiplication by `, the divisor div(ψu) is invariant
under translation by elements of A[`]. In particular, for each v ∈ A[`], we have

ψu(z + v) = e`(u, v)ψu(z)

for some e`(u, v) ∈ µ`. This defines the Weil pairing e` on A[`]. It is a non-degenerate, alternating,
multiplicative bilinear form. Here alternating means that it is trivial on the diagonal.

From now on, we consider only the case ` = 2 and we ease notation by setting b := e2. Then
note that div(ψu) is symmetric for each u ∈ A[2] because X is symmetric. Hence there exists a
cX(u) ∈ {±1} such that

ψu(−z) = cX(u)ψu(z).
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If r′ ∈ A[4] is such that 2r′ = r, then one check that

ψr+s(z) = C · ψr(z)ψs(z − r′).
Using both this identity and the same identity with z replaced by r − z, we can use the definition
of cX to deduce that

b(r, s)cX(r + s) = cX(r)cX(s).(2)

So cX is not a homomorphism, but we can view it as a 1-cocycle for group cohomology on A[2]
and the above identity means that cX is mapped to b by the boundary map. So let T be the set
of all 1-cocycles mapped to b by the boundary map, i.e. satisfying the above identity.

Now A[2] acts on T via t · cX = cT∗t X . We would like to express the right-hand side in terms of
cX . To that end, we consider ψu(z − t′) for t′ ∈ A[4], which has divisor (2 ∗ Id)∗(T ∗t+uX − T ∗t X).
Then

ψu(−z − t′) = cX(u)ψu(z + t′) = cX(u)b(r, t)ψu(z − t′),
from which we find

cT∗t X(u) = b(u, t)cX(u).

In particular, since b is non-degenerate, the map X 7→ cX is injective. Also, each element of T
is determined by its values on 2g generators due to (2), so |T | = 22g. On the other hand, the
line bundles inducing λ are T ∗uL for u ∈ A[2] and each line bundle determines a unique divisor,
so we also have 22g such divisors X. Therefore we may identify T with these divisors, and the
(transitive) action of A[2] on T is then given by t · X = T ∗t X. This re-interpretation of the line
bundles is the key fact from which the Igusa correspondence follows by abstract non-sense.

3.3.2. Symplectic bases and 1-cocycles. In this subsection we use the notation from the previous
subsection, but we note that we can work in greater generality. So define A[2] to be any abelian
group isomorphic to (Z/2Z)2g, let b : A[2]×A[2]→ {±1} be a non-degenerate, alternating, bilinear
multiplicative pairing. Now b, considered as a function on B[2]×B[2], can be viewed as a µ2-valued
2-cocycle for group cohomology. Since A[2] is a free group, its 2nd cohomology group vanishes, so
b is the image of some 1-cochain cX : A[2]→ µ2 under the boundary map. Define T to be the set
of all 1-cocyles cX : A[2]→ {±1} mapping to b, i.e. satisfying (2). Again A[2] acts transitively on
T as follows: for s ∈ B[2] and cX ∈ T we set

s · cX(r) = b(r, s)cX(r).

We denote the action of A[2] on T by s · cX := s + cX . Now T is not quite a group (there is
not even an identity element), but T does admit a notion of difference: for cX , cY ∈ T , we say
cX − cY = s when cY + s = cX . On the disjoint union A[2] t T we thus obtain a group law, given
on T by cX + cY := cX − cY . We denote this group by X [2].

Lemma 3.13. For each r ∈ A[2] and cX ∈ T the following identities hold: ∑
r∈A[2]

cX(r)

2

= 22g and

∑
cX∈T

cX(r) =

{
0 if r 6= 0 and

22g if r = 0.

Proof. We first prove the second identity. It follows from the coboundary-identity that cX(0) = 1
for all X, so now assume r 6= 0. We choose cX ∈ T and rewrite the sum:∑

cX∈T
cX(r) =

∑
s∈B[2]

cX+s(r) =
∑
s∈B[2]

b(s, r)cX(r) = cX(r)
∑
s∈B[2]

b(s, r).

So it suffices to show that
∑
b∈A[2] b(s, r) = 0, which is easily seen by multiplying the sum with

b(s′, r) = −1.
For the first identity, we compute the square to obtain∑

r,s

cX(r)cX(s).

We substitute cX(r)cX(s) = b(r, s)cX(r + s) in this term and sum over p = r + s and r instead to
obtain ∑

p

∑
r

b(r, p)cX(p) =
∑
p

∑
r

cX+r(p) = 22g
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by the second identity. �

For cX ∈ T , we now define e(cX) to be the sign of
∑
r cX(r). This gives rise to a notion of even

and odd. In fact, the cXs are determined by these signs, in the following way:

e(cX)e(cY ) =
1

22g

∑
r,t

cX(r + t)cY (r) =
1

22g

∑
r

∑
t

b(t, r +X − Y )cX(r) = cX(X + Y ).

We define a symplectic basis for A[2] to be an F2-basis such that b is given by a matrix with only
−1 on the diagonal and 1 everywhere else. Choose such a symplectic basis B. This yields an
isomorphism A[2] ' F2g

2 . For u ∈ A[2], we denote its coordinates in F2g
2 by m = (m′,m′′), where

m′,m′′ ∈ Fg2. Now suppose we choose a cZ ∈ T . This yields a “projection along cZ” map

T → A[2]→ F2g
2 , cZ + u 7→ u 7→ m

that allows us to assign coordinates to all elements of T .

Lemma 3.14. The choice of symplectic basis B yields a unique even cZ ∈ T such that

e(cX) = (−1)m
′tm′′ ,

where cX ∈ T has coordinates m = (m′,m′′) ∈ F2g
2 under the projection along cZ .

Proof. First choose any even cZ ∈ T . Consider any cX ∈ T and write it as cX = cZ + r for some
r ∈ A[2] with coordinates m = (m′,m′′). The key to prove this lemma is to realise that the map

d : r 7→ (−1)m
′tm′′

is an element of T . Indeed, the identity (2) follows from the fact that

b(r, s) = (−1)m
′tn′′−m′′tn′

if s has coordinates n = (n′, n′′), which is easily verified. Then since cZ is even, we have

e(cX) = e(cX)e(cZ) = cZ(r).

By transitivity of the action of A[2] on T , there exists s ∈ A[2] such that

e(cX) = cZ(r) = b(r, s)d(r) = (−1)m
′tn′′−m′′tn′+m′tm′′ .

To show that there is a unique choice of even cZ corresponding n = 0, we must verify which n ∈ F2g
2

correspond to even cZ ∈ T . From the previous lemma, one deduces that∑
cY

e(cY ) = 2g,

while by counting (or because it is an element of T ), we also have
∑
m(−1)m

′tm′′ = 2g. But∑
cY

e(cY ) =
∑
m

(−1)(m+n)′t(m+n)′′−n′tn′′ = (−1)n
′tn′′

∑
m

(−1)m
′m′′ ,

so we must have n′tn′′ = 0. Now because e(cX) = cZ(r), the map cZ 7→ n is injective. But two
similar induction arguments show that both the number of even elements of T and the number of
n ∈ F2g

2 with n′tn′′ = 0 equal 2g−1(2g + 1), so the map is a bijection. We conclude that there is a
unique cZ ∈ T corresponding to n = 0. �

We say that this symplectic basis B and the line bundle Z are related by Igusa correspondence.
This finishes the proof of Proposition 3.11.

3.4. Symmetry of the theta divisors. Let k be an algebraically closed field of characteristic
unequal to 2. Recall that we were originally only interested in principally polarized abelian surfaces,
but we had to add a level 2 structure in order to define the theta divisors over k using Igusa
correspondence. We thus have a group action of Sp4(F2) on A2(2)(k) given by

γ(A, λ, α2) = (A, λ, γα2) for γ ∈ Sp4(F2).

If we understand this group action, we may be able to exploit this symmetry and our freedom of
choosing the level 2 structure we fancy. When k = C, we have A2(2)(C) = Γ2(2)\S2 which comes
with an action of

Sp4(Z)/Γ2(2) = Sp4(F2).

It turns out these two actions for k = C are related via γ 7→ γ−1.
The purpose of this section is to describe the action of Sp4(F2) on the theta divisors Θa,b(k).
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Proposition 3.15. Suppose that (a, b) ∈ (Z/2Z)4 is a regular pair. For each γ =

(
A B
C D

)
∈

Sp4(F2) we have

γ (Θa,b) = Θ[(a,b)−(n′,n′′)]γt ,

where n′ and n′′ are the pairs of diagonal entries of BtD and AtC respectively. This action is
transitive on the set of the ten regular theta divisors, and

StabSp4(F2)(Θ0000) = Γ1,2 := {γ ∈ Sp4(F2) | Q((x, y)γt) = Q(x, y)},

where Q(x, y) = xty for x, y ∈ (Z/2Z)2.

Remark 3.16. The action of Sp4(F2) should preserve the regular/singular distinction and hence
the form Q. So (n′, n′′) = 0 (i.e. γ stabilizes Θ0000) should indeed only happen when γ leaves Q
invariant.

Proof. Suppose that γ ∈ Sp4(F2) transforms α2 into α′2. We assume that (a, b) ∈ ΘA,λ,α2 , where
(a, b) denote the α2-coordinates of an element in A[2]. Then for some u = u(γ, α2) ∈ A[2], we have
by Proposition 6.12 of [3] that

ΘA,λ,α′2
= T ∗uΘA,λ,α2

.

We compute the α2-coordinates of u using Igusa correspondence: Θ = ΘA,λ,α2 satisfies by definition

cΘ(r) = (−1)m
′tm′′ (r ∈ A[2]),

where r = (m′,m′′) in α2-coordinates. Write γ =

(
A B
C D

)
. Similarly, Θ′ = ΘA,λ,α′2

satisfies

cΘ′(r) = (−1)

(A B
)m′
m′′

t(C D
)m′
m′′


.

Using the that AtD − CtB = I, we find that the exponent of (−1) is equivalent to

m′tAtCm′ +m′′tBtDm′′ +m′tm′′ mod 2.

Lastly, using that AtC and BtD are symmetric, this is seen to equal

m′t
(

(AtC)11

(AtC)22

)
+m′′t

(
(BtD)11

(BtD)22

)
+m′tm′′ mod 2.

In particular, we have shown that

cΘ′(r) = b(r, u)cΘ(r),

where u ∈ A[2] has α2-coordinates (n′, n′′) := ((BtD)11, (B
tD)22, (A

tC)11, (A
tC)22). This means

that Θ′ = T ∗uΘ.
So given that (a, b) ∈ Θ, we find, now in α′2-coordinates, that

((a, b)− (n′, n′′)) γt ∈ Θ′.

As Sp4(F2) is finite, one can now compute this action explicitly and verify the transitivity.
As mentioned in the remark, it is clear that the group fixing Θ0000 is contained in Γ1,2. The

converse can be proved by finding an explicit set of generators for Γ1,2, see the appendix to Section
II.5 of [15]. �

This agrees with the functional equation for these theta functions in the complex case k = C,
which says that for all γ ∈ Γ1,2 we have

θ(a,b)(γ(τ)) = ζ det(Cτ +D)θ(a,b)γt ,

where ζ is a root of unity depending only on a, b and γ. See Section II.5 of [15] for a proof. In
fact, as the Proposition suggests, there is indeed an analogous transformation formula for theta
functions with respect to the entire symplectic group Sp4(Z), see page 226 of [12].
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3.5. When principally polarized abelian surfaces with real multiplication are a product
of elliptic curves. When commencing this project at the start of Term 2, the aim was to try
and (im)prove Le Fourn’s theorem for Hilbert modular surfaces. Indeed, theta functions can be
generalised to the Hilbert setting, though there appears to be less knowledge about theta functions
over real quadratic fields. The main obstruction we found, however, is that Igusa correspondence
does not appear to generalise to abelian varieties with an OF /2OF -basis for their 2-torsion. Es-
sentially, the problem is that an OF /2OF -basis for the 2-torsion gives much less information than
a Z/2Z-basis and hence does not allow us to canonically choose a line bundle.

This is why we decided to look at abelian varieties with real multiplication inside the Siegel
modular variety. An additional benefit of this is that possible results may be uniform over all real
quadratic fields. We initially hoped that the OF -multiplication would impose a condition on the
theta divisors, e.g. that some theta divisors never contained any triples (A, λ, α2) such that (A, λ)
has OF -multiplication, but by the symmetry of the previous Section that cannot be the case. On
the other hand, a principally polarized abelian variety with real multiplication cannot be a product
of any two elliptic curves.

Proposition 3.17. Let F = Q(
√
D) be a real quadratic number field and suppose that (A, λ) is

a principally polarized abelian surface over an algebraically closed field k with real multiplication
by OF . If (A, λ) is isomorphic to a product of elliptic curves E1 × E2 (with product principal
polarization), then E1 and E2 are isogenous. Moreover, if EndE1 = Z then D is of the form
D = a2 + eb2, where e is the degree of an isogeny between E1 and E2 and a, b ∈ Z.

Proof. If an abelian surface has real multiplication, then it is either simple, or isogenous to a
product of an elliptic curve with itself. The reason is that, when E is an elliptic curve, End0(E) :=
EndE ⊗ Q does not contain a real quadratic field. When E1 is not isogenous to E2, we have
End0(E1 × E2) ' End0(E1) × End0(E2), which hence does not contain a real quadratic field
either. So suppose that A = E1 × E2, where φ : E1 → E2 is an isogeny of degree e. Then
φ× Id : E1 × E2 → E2 × E2 yields an isomorphism

End0(A) ' End0(E2 × E2) = Mat2×2(End0(E2)).

This means
√
D ∈ OF is mapped to a matrix

α =

(
a b ◦ φ̂

φ ◦ c d

)
with a, b, c, d ∈ End(E),

where a hat denotes the dual isogeny. Solving the equation α2 = D · I2 we find a = −d and
a2 + bce = D (using that D 6= a2 as D is positive and square-free and a is either in Z, an order
in an imaginary quadratic field or a quaternion algebra). We now compute implications of the
equality α = λ−1 ◦ α∗ ◦ λ, where λ = λ1 × λ2 is the product principle polarization given by

λ : (P,Q) 7→ (O1)× E2 − (P )× E2 + E1 × (O1)− (Q)× E2.

Note that λ is indeed surjective because Pic0(E1×E2) ' Pic0(E1)×Pic0(E2). We write α = α1+α2,

where α1 =

(
a 0
0 d

)
and α2 =

(
0 b ◦ φ̂

φ ◦ c 0

)
and we compute that

λ−1 ◦ α∗1(O1)× E2 − λ−1 ◦ α∗1(P )× E2 = λ−1
∑

R∈ker a

(R)× E2 and − (P̃ +R)× E2

= λ−1 ◦ deg a
[
(O1)× E2 − (P̃ )× E2

]
= λ−1 [(O1)× E2 − (âP )× E2] = (âP,O2),

where aP̃ = P , and similarly

λ−1 ◦ α∗2 [(O1)× E2 − (P )× E2] = λ−1(E1 × (O2)− E1 × (φ ◦ ĉ)) = (O1, b̂ ◦ φ̂(P )).

The analogous equations hold for α∗i [E1 × (O2)− E1 × (Q) and we obtain

λ−1 ◦ α∗ ◦ λ(P,Q) = (âP + ĉ ◦ φ̂Q, b̂ ◦ φP + d̂Q).

In other words, the equation α = λ−1α∗λ comes down to(
a b ◦ φ̂

φ ◦ c d

)
=

(
â ĉ ◦ φ̂

φ ◦ b̂ d̂

)
,

so a = â, d = d̂ and b̂ = c. In particular, if E1, E2 have endomorphism ring Z, thenD = a2+eb2. �
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The above proof also shows us how to construct products of elliptic curves with real multiplica-
tion. Given D, we find a u ∈ Z>0 and an elliptic curve E with complex multiplication by Q(

√
−u)

such that D = a2 + (x2 + uy2) for some x, y ∈ Z. Then E × E has real multiplication by the ring

of integers of Q(
√
D) by mapping

√
D to the matrix(
a x+ uy

x− uy −a

)
∈ End(E × E).

Another way is to simply find two D-isogenous elliptic curves. This is possible since there is no
restriction on the field the isogeny should be defined over.

So it is possible for triples (A, λ, α2), where (A, λ) has real multiplication by OF for any real
quadratic F , to be in one of the theta divisors. In fact, by the previous Section, such triples are in
every theta divisor. There are restrictions on which products of elliptic curves can occur, but we
have not managed to link this to the geometry of the theta divisors. Moreover, the author does not
expect a result such as “all products of elliptic curves with real multiplication have v-adic distance
at least x to the boundary of A2(2)S” to hold for any place v, as the j-invariant of a CM elliptic
curve can have arbitrarily large v-valuation.

Appendix A. Magma code for computing equations for birational models of
Hilbert modular surfaces

RemoveSquares:=function(d)

Fact:=Factorization(d);

for i in Factorization(d) do

if i[2] gt 1 then

if IsOdd(i[2]) then d:=d/i[1]^(i[2]-1);

else d:=d/i[1]^(i[2]);

end if;

end if;

end for;

return d;

end function;

disc:=function(d)

d:=IntegerRing()!RemoveSquares(d);

if d mod 4 eq 1 mod 4 then return d;

else return 4*d;

end if;

end function;

RemoveDoubles:=function(List)

newList:=[];

for s in List do

if not s in newList then

Append(~newList,s);

end if;

end for;

return newList;

end function;

ZBasis:=function(F,OF,y,d,I) /*This computes a Z-module basis 1,w0 of an ideal */

gens:=Generators(I);/*strictly equivalent to I such that w0_1>2 and 0<w0_2<1 */

A<[r]> := AbelianGroup([0,0]);

denom:=1;

for g in gens do

denom:=denom*Denominator(g[1])*Denominator(g[2]);

end for;

groupgens:=[];

Z:=IntegerRing(); Q:=RationalField();
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for g in gens do

if disc(d) mod 4 ne 1 then

Append(~groupgens,(Z!(denom*g[1]))*r[1]+(Z!(denom*g[2]))*r[2]);

Append(~groupgens,d*(Z!(denom*g[2]))*r[1]+(Z!(denom*g[1]))*r[2]);

else Append(~groupgens,(Z!(denom*g[1]))*r[1]+(Z!(denom*g[2]))*r[2]);

Append(~groupgens,(Z!((d-1)/4))*(Z!(denom*g[2]))*r[1]+

(Z!(denom*g[1])+Z!(denom*g[2]))*r[2]);

end if;

end for;

B<t>:=sub<A|groupgens>;

grpgens:=Generators(B);

basis:=[(OF!Eltseq(A!g))/denom : g in grpgens];

if Floor(Conjugate(basis[1],1)*Conjugate(basis[1],2)

-Conjugate(basis[1],2)*Conjugate(basis[2],1)) gt 0 then

Reverse(~basis);

end if;

G:=Automorphisms(F);

a:=Q!Norm(basis[1]); c:=Q!Norm(basis[2]);

b:=Q!(G[2](basis[1])*basis[2]+basis[1]*G[2](basis[2]));

den:=Denominator(a)*Denominator(b)*Denominator(c);

a:=Z!(a*den); b:=Z!(b*den); c:=Z!(c*den);

NM:=Gcd([a,b,c]);

a:=a/NM; b:=b/NM; c:=c/NM;

Delta:=b^2-4*a*c;

sqrtDelta:=(Z!SquareRoot(Delta/d))*y;

w0:=(b+sqrtDelta)/(2*c);

if Floor(Conjugate(w0,1)) lt 0 then w0:=-w0; end if;

w0:= w0-Floor(Conjugate(w0,2));

if Floor(Conjugate(w0,1)) ge 2 then return w0;

else return "error";

end if;

end function;

ResolutionCycle:=function(F,OF,w0,d)

Z:=IntegerRing();

/*Complexy:=Conjugates(y)[1];

if (Z!d) mod 4 ne 1 mod 4 then

w0:=Ceiling(Complexy)+y;

else if IsOdd(Ceiling(Complexy)) then w0:=Ceiling(Complexy)/2+y/2;

else w0:=Ceiling(Complexy)/2+1/2+y/2;

end if;

end if;*/

B:=[w0-1,1];

A:=[];

U,m:=UnitGroup(OF);

if Floor(Conjugate(m(U.2),1)) lt 1 then

u:=m(U.2)^2;

else u:=m(U.2)^(-2);

end if;

while u ne B[# B] do

ak:=Floor(Conjugate(B[# B -1]/B[# B],1));

Append(~B,B[#B -1]-ak*B[#B]);

Append(~A,ak);

end while;

ResolutionCycle:=[];

for i in [1..#A] do

if IsEven(i) then /*Note that our set A is [a_0,...,a_{2l-1}] in
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VdGeer’s notation */

cyclepart:=[];

for j in [1..A[i]-1] do

Append(~cyclepart,2);

end for;

ResolutionCycle:=ResolutionCycle cat cyclepart;

else Append(~ResolutionCycle,A[i]+2);

end if;

end for;

Aklist:=[];

for i in [2..#B-2] do /*the list B is B-1, B0,...B2l */

if IsEven(i) then Append(~Aklist,B[i]);

if A[i] gt 1 then

for j in [1..A[i]-1] do

Append(~Aklist,B[i]-j*B[i+1]);

end for;

end if;

end if;

end for;

Append(~Aklist,B[#B]);

return ResolutionCycle, Aklist; /*Aklist is actually [A0,...Ar] where Ar=ep*A0*/

end function;

/*The results of this function do not always match the O_K-column of the

table on p41 of VdGeer because VdGeer uses the full totally positive part of

the unit group which may differ from the squares of the units. Also, we find

that the number of 2’s appearing in the cycle when D = alpha^2+4 is

alpha -1 instead of 2*alpha - 1. */

DualBasisOf:=function(F,OF,y,Basis)

A1:=F!Basis[1];

A2:=F!Basis[2];

conj:=Automorphisms(F)[2];

sqdelta:=A1*conj(A2)-conj(A1)*A2;

A2dual:=-conj(A1)/sqdelta;

A1dual:=conj(A2)/sqdelta;

return [A1dual,A2dual];

end function;

SurfaceCheckCoefficients:=function(F,OF,y,d)

ResCycle,Aklist:=ResolutionCycle(F,OF,ZBasis(F,OF,y,d,1*OF) ,d);

mu1:=Aklist[1];

mu2:=Aklist[2];

DBasis:=DualBasisOf(F,OF,y,[mu1,mu2]);

mu1dual:=DBasis[1]; mu2dual:=DBasis[2];

List:=[mu1dual+2*mu2dual,2*mu1dual+mu2dual,mu1dual+mu2dual];

for i in [1..2] do

if not IsTotallyPositive(List[i]) then

Remove(~List,i);

Insert(~List,i,1/3);

end if;

end for;

if not IsTotallyPositive(List[3]) then

return "All forms map zero to zero";

end if;

return List;

end function;
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NumberN:=function(d) /*Apart from the special cases 12,28,33,60 the only */

Z:=IntegerRing(); /* D up to 100 this function does not cover are 89,97*/

D:=disc(d); /*for that would need to compute b_k’s at other cusps*/

if not D in [5,8,12,13,17,21,24,28,33,60] then

if D mod 8 ne 1 mod 8 or D in [41,105,65,73] then

return 3;

else for e in Divisors(D) do

if e mod 8 ne 1 mod 8 then return 3;

end if;

end for;

end if;

if IsSquare(D+8) then

if Z!SquareRoot(D+8) mod 8 eq 7 mod 8 then return 3;

end if;

end if;

else if D eq 5 then return 3;

end if;

if D eq 8 then return 7;

end if;

if D eq 13 or D eq 17 or D eq 21 or D eq 24 then return 2;

end if;

end if;

return 10; /*This is just to not make it give an error for the D we still miss*/

end function;

zeta:=function(F,d);

zetaminone:=0;

sqrtD:=Floor(SquareRoot(disc(d)));

index:=[x : x in [-sqrtD..sqrtD] | x^2 mod 4 eq disc(d) mod 4];

for x in index do

y:=(disc(d)-x^2)/4;

y:=IntegerRing()!y;

zetaminone:=zetaminone+SumOfDivisors(y);

end for;

return zetaminone/60;

end function;

degree:=function(F,OF,nn)

primes:=[p : p in Divisors(nn) | IsPrime(p)];

deg:=Norm(nn);

for p in primes do

deg:=deg*(1+1/Norm(p));

end for;

return deg;

end function;

SturmBound:=function(F,OF,y,d,nn,k)

N:=NumberN(d);

ResCycle,Aklist:=ResolutionCycle(F,OF,ZBasis(F,OF,y,d,1*OF),d);

zetaF:=zeta(F,d);

b:=0;

for bk in ResCycle do

b:=b+bk-2;

end for;

gens:=Generators(nn);

if #gens eq 1 and gens[1][2] eq 0 then
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n:=gens[1][1];

else n:=Norm(nn);

end if;

if n ge N then level:=n;

else level:=n*Ceiling(N/n);

end if;

deg:=degree(F,OF,nn);

bound:=2*k*deg*level*zetaF/b; /*Note that our k is often denoted k/2 */

NCG,f:=NarrowClassGroup(F);

for g in NCG do

I:=f(g)^(-2);

ResCycle,Aklist:=ResolutionCycle(F,OF,ZBasis(F,OF,y,d,I),d);

for bk in ResCycle do

bound:=bound-(1+(deg-1)*k/(2*N))*(bk-2)/b;

end for;

end for;

return Floor(bound+1);

end function;

CoefficientList:=function(d,SturmBound);

Z:=IntegerRing();

R<x> := PolynomialRing(IntegerRing());

d:=Z!RemoveSquares(d);

F<x>:= NumberField(x^2-d); OF:= MaximalOrder(F); RR:=RealField();

y:=OF ! x;

ResCycle, Aklist:=ResolutionCycle(F,OF,ZBasis(F,OF,y,d,1*OF),d);

List:=[];

for i in [1..# Aklist -1] do

DBasis:=DualBasisOf(F,OF,y,[Aklist[i],Aklist[i+1]]);

lbd1:=Conjugate(Aklist[i+1]/Aklist[i],1);

ubd1:=Conjugate(Aklist[i+1]/Aklist[i],2);

for m in [1..SturmBound] do

lbd:=(RR!m)*lbd1;

ubd:=(RR!m)*ubd1;

List cat:= [m*DBasis[1]+n*DBasis[2] : n in [Ceiling(lbd)..Floor(ubd)]];

end for;

end for;

U,m:=UnitGroup(OF);

u:=m(U.2)^2;

/*for s in List do

if u*s in List then Exclude(~List,u*s);

end if;

end for;*/

return Setseq(Set(List));

end function;

R<x> := PolynomialRing(IntegerRing());

F<x>:= NumberField(x^2-10); OF:= MaximalOrder(F);

y:=OF ! x;

RemoveDoubles2:=function(List)

return Setseq(Set(List));

end function;

EigenformFourierCoefficients:=function(f,K,L,d,y)

B:=[];

ChangeUniverse(~B,K);
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if disc(d) mod 4 eq 1 then

dif:=y;

else dif:=2*y;

end if;

for ksi in L do

if IsIntegral(dif*ksi) then /*the ksi-th Fourier coefficient is the */

A:=[]; /* eigenvalue of T_{dif*ksi*OF} */

Fact:=Factorization(dif*ksi);

for i in [1..# Fact] do

P:=Fact[i][1];

ap:=HeckeEigenvalue(f,P);

AP:=[1,ap];

if Fact[i][2] gt 1 then

for j in [1.. Fact[i][2]-1] do

Append(~AP,ap*AP[# AP]-Norm(P)*AP[# AP-1]);

end for;

end if;

Append(~A,AP[# AP]);

end for;

a:=1;

for b in A

do a:=b*a;

end for;

Append(~B,a);

else Append(~B,0);

end if;

end for;

return B;

end function;

IrredEigenspaceFourierMatrix:=function(N,L,d,y);

KK:=HeckeEigenvalueField(N);

if KK eq RationalField() then KK:=QNF(); end if;

K:=SplittingField(KK);

boolean,f:=IsSubfield(KK,K);

Embed(KK,K,f(KK.1));

G:=Automorphisms(K);

B:=EigenformFourierCoefficients(Eigenform(N),K,L,d,y);

Q:=[[sigma(x) : x in B] : sigma in G];

return Matrix(Q);

end function;

NewspaceFourierMatrix:=function(M,L,d,y);

Dec:=NewformDecomposition(M);

Q:=Matrix(RationalField(),[]);

KK:=RationalField();

for N in Dec do

list:=IrredEigenspaceFourierMatrix(N,L,d,y);

if RowSequence(Q) eq [] then Q:=list;

else

K:=Compositum(BaseRing(list),BaseRing(Q));

Q:=ChangeRing(Q,K);

list:=ChangeRing(list,K);

Q:=VerticalJoin(Q,list);

end if;

end for;

return Q;

end function;
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CuspFormBasisMatrix:=function(F,OF,I,L,d,y,k)

Levels:=Divisors(I);

T:=[];

for nn1 in Levels do

Divs:=Divisors(I/nn1);

KK:=RationalField();

for nn2 in Divs do

LL:=[ksi*OF/nn2 : ksi in L];

N:=NewSubspace(HilbertCuspForms(F,nn1,[k,k]));

if Dimension(N) ge 1 then

Matrixpart:=NewspaceFourierMatrix(N,LL,d,y);

if #Eltseq(T) eq 0 then T:=Matrixpart;

else

KK:=Compositum(BaseRing(Matrixpart),BaseRing(T));

T:=ChangeRing(T,KK);

Matrixpart:=ChangeRing(Matrixpart,KK);

T:=VerticalJoin(T,Matrixpart);

end if;

end if;

end for;

end for;

T:=RowSequence(RemoveZeroRows(EchelonForm(Matrix(T))));

return Matrix(RationalField(),T);

end function;

LatticeSymmProduct:=function(A,B,Acolindex,Bcolindex)

ABcolindex:=RemoveDoubles([ksi+eta : ksi in Acolindex, eta in Bcolindex]);

N:=Ncols(A);

M:=Ncols(B);

remainingcolumns:=[1..N*M];

product:=TensorProduct(A,B);

for nu in ABcolindex do

pairs:=[[i,j] : j in [1..M],i in [1..N]

| Acolindex[i]+Bcolindex[j] eq nu];

firstpair:=pairs[1];

fpindex:=(firstpair[1]-1)*M+firstpair[2];

for p in [2..#pairs] do

i:=pairs[p][1];

j:=pairs[p][2];

index:=M*i-M+j;

AddColumn(~product,1,index,fpindex);

Exclude(~remainingcolumns,index);

end for;

end for;

return

Matrix(RemoveDoubles2(RowSequence(Submatrix(product,[1..Nrows(product)],remainingcolumns)))),

ABcolindex;

end function;

/* Removing double rows ensures we treat fi*fj and fj*fi as equal. This would only

kill something in the kernel if there are cusp forms f_i,f_j,f_k,f_m such

that f_i*f_j=f_k*f_m. We can verify this by checking whether the number of

rows of the returned matrix equals the number of rows of the symmetric square,

which is n*(n+1)/2 where n is the nr of rows of the original matrix */

/*The index of the rows of the monomial matrix the above function creates

has the following order: when f1,...fn is a basis of the cusp forms, the order is
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f1^d,f1^(d-1)f_2,f1^(d-1)f3,...f1^(d-1)fn,f1^(d-2)f2f1 (omitted), f1^(d-2)f2f2

etc. We need a function that computes the monomial from the row number. */

MonomialFromRowIndex:=function(index,d,P,n)

names:=[];

for i in [1..n] do

Append(~names,"x" cat IntegerToString(i-1));

end for;

AssignNames(~P,names);

A:=[[0,0]];

while d gt 0 do

sum:=0;

a:=0;

while sum lt index do

sum:=sum+Binomial(n+d-2,d-1);

n:=n-1;

a:=a+1;

end while;

sum:=sum-Binomial(n+d-1,d-1);

n:=n+1;

Append(~A,[a,A[#A][2]+a-1]);

index:=index - sum;

d:=d-1;

end while;

p:=1;

for i in [2..#A] do

j:=A[i][2]+1;

p:=p*P.j;

end for;

return p;

end function;

EquationsFromMonomialMatrix:=function(matrix,d,n)

P:=PolynomialAlgebra(RationalField(),n);

V:=Basis(Kernel(matrix));

I:=ideal<P|0>;

for v in V do

eqn:=0;

w:=Eltseq(v);

for i in [1..#w] do

if w[i] ne 0 then eqn:=eqn+w[i]*MonomialFromRowIndex(i,d,P,n);

end if;

end for;

I:=I+ideal<P|eqn>;

end for;

return I;

end function;
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Journal de théorie des nombres de Bordeaux, 20(2):385–417, 2008

15. David Mumford, Tata lectures on theta I, Birkhäuser, 2007, reprint of the 1983 edition
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