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Introduction

In this essay, we will discuss the following question.

If u is the solution to an elliptic equation (or system) with “nice”
coefficients, how “nice” does u have to be?

This problem (the regularity problem) is very well understood in the case of elliptic equa-
tions, when the solution u is a map from Rm to R. However, methods which work in
this case may not translate to more general situations. We will examine this problem for
linear elliptic equations, and two generalisations of this, namely elliptic systems (where
the solution is a map u : Rm → Rn), and harmonic maps (where the solution is a map
between Riemannian manifolds, but we restrict to the equation analogous to ∆u = 0).

Our main focus will be on the method of freezing coefficients, which can be used to
establish regularity results for both equations and systems in almost exactly the same way,
and can also be used to give a regularity result for harmonic maps. However, this method
relies heavily on having continuous coefficients, so we will examine a second method which
works when the coefficients are merely bounded. This method cannot be easily adapted
to systems, but still has applications for harmonic maps.

Each of our main sections is dedicated to a particular situation. In §1, we look at the
scalar case, giving an introduction to freezing coefficients, and taking a detailed look at
our second method. We give a more in-depth exploration of freezing coefficients in §2,
which is dedicated to systems, and examine how to adapt the method to give boundary
regularity. In §3, we look at examples which show that some of the results we have found
do not hold in more general situations. Finally, §4 is about harmonic maps, and we see
how both methods can be applied to give regularity and partial regularity results in this
case.
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1 Elliptic equations

1.1 The problem

In this section, we are interested in equations with the form

−∂j(aij∂iu) + bi∂iu+ cu = f − ∂jgj in Ω,

u = 0 on ∂Ω,
(1.1)

where aij, bi, c, f, gj : Ω → R are defined on a domain Ω ⊆ Rm, and the solution is a map
u : Ω → R. Here we adopt the convention that repeated indices are summed over. We
also require the aij to be symmetric (ie. aij = aji for all i, j) and uniformly elliptic, that
is there must be λ,Λ ∈ R such that

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rm

for almost all x ∈ Ω. Note this means that the aij are bounded, with ∥a∥L∞(Ω) ≤ Λ.

We are interested in weak solutions to (1.1), that is functions u ∈ H1(Ω) which satisfy∫
Ω

aij∂iu∂jφ+ bi∂iuφ+ cuφ =

∫
Ω

fφ+ gj∂jφ ∀φ ∈ H1
0 (Ω),

where as usual H1 is the space of L2 functions with weak derivatives in L2, and H1
0 is

the closure of the space C∞
c (of compactly supported smooth functions) in H1. The weak

formulation of the boundary condition is u ∈ H1
0 (Ω).

To simplify the discussion, we consider only the case where the lower-order coefficients
are all zero, giving the equation

−∂j(aij∂iu) = f − ∂jgj in Ω,

u = 0 on ∂Ω.
(1.2)

1.2 The method of freezing coefficients

We begin with the method of freezing coefficients. These ideas can be extended to systems
with minimal changes, so we give a brief discussion here, and postpone the details to §2.

The main requirement of this method is that the coefficients aij are continuous. Then
we see that aij(x) should not vary too much compared to ãij := aij(x0) on a sufficiently
small ball Br(x0) ⊆ Ω. It is therefore reasonable to expect a weak solution u of the
equation −∂j(aij(x)∂iu) = f − ∂jgj to be close to a weak solution w of ãij∂ijw = 0 on
Br(x0), if we also have u = w on ∂Br(x0).

Now ãij∂ijw = 0 is an elliptic equation with constant coefficients, so it has a unique
weak solution w with w = u on ∂Ω [GT01, theorem 8.3], and we have the following result
[HL11, Lemma 3.10].

Lemma 1.1. If (ãij) is a symmetric constant positive definite matrix such that

λ|ξ|2 ≤ ãijξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rm

for some 0 < λ ≤ Λ, and w ∈ H1(Br(x0)) is a weak solution of

ãij∂ijw = 0 in Br(x0),
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then there exists C = C(λ,Λ) such that

∥Dw∥2L2(Bρ(x0))
≤ C

(ρ
r

)n
∥Dw∥2L2(Br(x0))

,∥∥Dw −Dwx0,ρ

∥∥2
L2(Bρ(x0))

≤ C
(ρ
r

)n+2 ∥∥Dw −Dwx0,r

∥∥2
L2(Br(x0))

for each 0 < ρ ≤ r. Here we define ux0,r :=
1

|Br(x0)|

∫
Br(x0)

u for each u ∈ L1(Br(x0)).

By bounding u − w, we can use the first part of this result to control the behaviour
of u on Br(x0). Then by considering all balls with centres in some subset of Ω, we obtain
the following result1 (see §2.4 for the proof of this in a more general setting).

Theorem 1.2. Suppose u satisfies (1.2), where the aij ∈ C0(Ω) are bounded and uniformly
elliptic, f ∈ Lq(Ω) for some q ∈ (m

2
,m), and g ∈ Lq′(Ω) for each j, where q′ > m.

Then u ∈ C0,α
loc (Ω) for α = min

{
2− m

q
, 1− m

q′

}
, and for each Ω̃ ⋐ Ω there exists

C = C(λ,Λ,m, aij, q, q
′, Ω̃) such that

∥u∥C0,α(Ω̃) ≤ C
(
∥u∥H1(Ω) + ∥f∥Lq(Ω) + ∥g∥Lq′ (Ω)

)
.

Here, we write Ω̃ ⋐ Ω if Ω̃ is open with compact closure in Ω, and u ∈ C0,α
loc (Ω) if

u ∈ C0,α(Ω̃) for each Ω̃ ⋐ Ω. We write ∥g∥Lq′ (Ω) :=
∑

j ∥gj∥Lq′ (Ω).

The same technique can be used to give the following result.2 Note that this gives
higher regularity for u, so requires the coefficients to be more regular.

Theorem 1.3. Suppose u satisfies (1.2), where the aij ∈ C0,α(Ω) are bounded and uni-
formly elliptic, f ∈ Lq(Ω) for some q > m, and gj = 0. Let α = 1− m

q
.

Then Du ∈ C0,α
loc (Ω), and for each Ω̃ ⋐ Ω there exists C = C(λ,Λ,m, aij, q, Ω̃) such

that
∥Du∥C0,α(Ω̃) ≤ C

(
∥u∥H1(Ω) + ∥f∥Lq(Ω)

)
.

This requires both parts of the conclusion of lemma 1.1 because we want to bound∥∥Du−Dux0,ρ

∥∥2
L2(Bρ(x0))

, and the extra terms require some additional estimates, but the

structure of the proof is otherwise the same as that of theorem 1.2.
Suppose we have a stronger version of theorem 1.3, which holds whenever aij, gj ∈

C0,α
loc (Ω) (see [GT01, theorem 8.32]). Then we can apply a bootstrap argument (adapted

from [Eva10, §8.3.2]) to show that the solution is “one step more regular” than that of
the coefficients.

Suppose u solves ∫
Ω

aij∂iu∂jφ =

∫
Ω

fφ+ gj∂jφ ∀φ ∈ H1
0 (Ω),

with aij, gj ∈ C1,α
loc (Ω), f ∈ C0,α

loc (Ω) for some α ∈ (0, 1). Then certainly u ∈ C1,α
loc (Ω).

Further, we have that u ∈ H2
loc(Ω) by [Eva10, §8.3, theorem 1], so if we test the equation

1[HL11, theorem 3.8], case c = 0, adapted to a general domain Ω and the case g ̸= 0, conclusion
adapted to give C0,α norm.

2[HL11, theorem 3.13], adapted from the textbook in the same way as theorem 1.2.
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against −∂kφ for φ ∈ C∞
c (Ω), then we can integrate by parts to give∫

Ω

−aij∂iu∂k∂jφ =

∫
Ω

−f∂kφ− gj∂k∂jφ∫
Ω

aij∂i(∂ku)∂jφ+ ∂k(aij)∂iu∂jφ =

∫
Ω

−f∂kφ+ ∂kgj∂jφ∫
Ω

aij∂i(∂ku)∂jφ =

∫
Ω

(∂kgj − fδik − ∂k(aij)∂iu)∂jφ.

Now ∂kgj − fδik − ∂k(aij)∂iu ∈ C0,α
loc (Ω), so applying our stronger version of theorem 1.3

to ∂ku gives that u ∈ C2,α
loc (Ω).

From here, we can repeat this argument to see that if aij, gj ∈ Ck,α
loc (Ω), f ∈ Ck−1,α

loc (Ω)

for some α ∈ (0, 1), k ∈ N, then u ∈ Ck+1,α
loc (Ω).

1.3 Bounded coefficients

Our second method gives a more powerful result - we have Hölder continuity of solutions
in the case of bounded coefficients. We will outline the idea by following [HL11, §4],
beginning with the following theorem.3

Theorem 1.4. Suppose u is a subsolution of (1.2) on Br, where the aij ∈ L∞(Br) are
bounded and uniformly elliptic, and f = 0. That is,∫

Br

aij∂iu∂jφ ≤ 0 ∀φ ∈ H1
0 (Br). (1.3)

Then u+ := min{u, 0} is locally bounded on Br, and there exists4 C = C
(
m, λ

Λ

)
such that

∥∥u+
∥∥2
L∞(Bθr)

≤ C · 1

(1− θ)m
r−m

∥∥u+
∥∥2
L2(Br)

for each θ ∈ (0, 1).

Proof for r = 1, θ = 1
2
. Write v = u+, and set vk = min{v, k} for k > 0 (we will later

send k → ∞).
For β ≥ 0 and η ∈ C1

0(B1) to be determined, we will test (1.3) against the H1
0 function

φ = η2(vβkv − kβ+1).

Note that

Dφ = η2(βvβ−1
k Dvkv + vβkDv) + 2ηDη(vβkv − kβ+1)

= η2vβk (βDvk +Dv) + 2ηDη(vβkv − kβ+1),

since Dvk = 0 in the set {v ̸= vk}, so vDvk = vkDvk.

3[HL11, theorem 4.1, method 2], simplified to the case c = f = 0, p = 2, given for Br ⊆ Rm instead
of B1.

4[HL11] gives that C depends on λ, Λ separately, but the dependence we have stated follows from the
given proof and is needed later on.
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Now Dφ = 0 outside {u > 0}, and Du = Dv in {u > 0}, so

0 ≥
∫
B1

aij∂iu∂jφ

=

∫
{u>0}

aij∂iu∂jφ

=

∫
{u>0}

aij∂iv(β∂jvk + ∂jv)η
2vβk + 2

∫
{u>0}

aij∂iv∂jη(v
β
kv − kβ+1)η

=

∫
{u>0}

aij(β∂ivk∂jvk + ∂iv∂jv)η
2vβk + 2

∫
{u>0}

aij∂iv∂jη(v
β
kv − kβ+1)η

≥ λ

∫
{u>0}

(β|Dvk|2 + |Dv|2)η2vβk − 2 ∥aij∥L∞(B1)

∫
{u>0}

|Dv||Dη|(vβkv)η

≥ λ

∫
{u>0}

(β|Dvk|2 + |Dv|2)η2vβk − 2Λ

∫
{u>0}

(
λ

4Λ
|Dv|2η2 + Λ

λ
|Dη|2v2)vβk

= λ

∫
{u>0}

(
β|Dvk|2 +

1

2
|Dv|2

)
η2vβk − 2Λ2

λ

∫
{u>0}

|Dη|2v2vβk ,

where for the fourth line we used that ∂ivk = ∂iv wherever ∂jvk ̸= 0.
Hence ∫

{u>0}

(
β|Dvk|2 +

1

2
|Dv|2

)
η2vβk ≤ 2Λ2

λ2

∫
{u>0}

|Dη|2v2vβk . (1.4)

Note that if w = v
β/2
k v, then

|Dw|2 =
∣∣∣∣β2 vβ/2−1

k vDvk + v
β/2
k Dv

∣∣∣∣2
=

β2

4
vβk |Dvk|2 + βvβk |Dvk|2 + vβk |Dv|2

≤ (1 + β)
(
β|Dvk|2 + |Dv|2

)
vβk .

Combining this with (1.4) gives∫
{u>0}

|D(wη)|2 ≤
∫
{u>0}

|Dw|2η2

≤ (1 + β)

∫
{u>0}

(
β|Dvk|2 + |Dv|2

)
η2vβk

≤ 2(1 + β)

∫
{u>0}

(
β|Dvk|2 +

1

2
|Dv|2

)
η2vβk

≤ C

(
Λ

λ

)
· (1 + β)

∫
{u>0}

|Dη|2v2vβk

= C · (1 + β)

∫
{u>0}

w2|Dη|2.

Write χ = m
m−2

if m > 2 and take arbitrary χ > 2 if m ≤ 2. Then the Sobolev
inequality gives ∥wη∥L2χ ≤ C ∥D(wη)∥L2 , so

∥wη∥2L2χ(BR) ≤ C ∥D(wη)∥2L2(BR) ≤ C · (1 + β) ∥Dη∥2L2(BR) ∥w∥
2
L2(BR) .
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Then if 0 < ρ < R ≤ 1, we take η to be a cut-off function with

η ≡ 1 in Bρ, η ≡ 0 outside BR, |Dη| ≤ 2

R− ρ
,

giving

∥w∥2L2χ(Bρ)
≤ ∥wη∥2L2χ(BR) ≤ C · (1 + β)

(
2

R− ρ

)2

∥w∥2L2(BR) .

Now vk ≤ v and w = v
β/2
k v, so(∫

Bρ

v
(β+2)χ
k

) 1
χ

≤ ∥w∥2L2χ(Bρ)
≤ C

1 + β

(R− ρ)2
∥w∥2L2(BR) ≤ C

1 + β

(R− ρ)2

∫
BR

vβ+2,

provided the final integral is bounded. Writing γ = β + 2 ≥ 2 and sending k → ∞ then
gives

∥v∥Lγχ(Bρ)
≤
(

Cγ

(R− ρ)2

) 1
γ

∥v∥Lγ(BR) , (1.5)

where we allow ∥v∥Lγ(BR) = ∞.
For the final step, we iterate by setting

γi = 2χi, ri =
1

2
+

1

2i+1

for i = 0, 1, · · · , so (1.5) gives

∥v∥Lγi+1 (Bri+1 )
≤
(
2i+3χiC

) 1
2
χ−i

∥v∥Lγi (Bri )
.

Now
∑

(i+ 3)χ−i,
∑

iχ−i,
∑

χ−i are all finite, so by iteration we have

∥v∥Lγi (B 1
2
) ≤ ∥v∥Lγi (Bri )

≤ C ∥v∥L2(B1)

for each i. Sending i → ∞ gives the result for r = 1, θ = 1
2
.

Proof for general r, θ. Suppose u : Br → R is a subsolution of −∂j(aij∂iu) = 0, and
y ∈ Bθr. Then B(1−θ)r(y) ⊆ Br, so if

v : B1 → R, v(x) = u((1− θ)rx+ y),

then v is a subsolution of −∂j(ãij∂iu) = 0 in B1, where ãij(x) := aij((1 − θ)rx + y) for
each i, j. The ãij are uniformly elliptic, with the same λ, Λ as the aij, so applying the
result above gives∥∥u+

∥∥2
L∞(B 1

2 (1−θ)r
(y))

=
∥∥v+∥∥2

L∞(B 1
2
)
≤ C ·

∥∥v+∥∥2
L2(B1)

≤ C((1− θ))r−m
∥∥u+

∥∥2
L2(Br)

.

Finally, Bθr is contained in a finite union of balls B 1
2
(1−θ)r(yi) with yi ∈ Bθr for each i, so

the result follows.

We also have the following result, which can be obtained via direct calculation [HL11,
theorem 4.10].
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Theorem 1.5. If u ∈ H1(B2) is a bounded weak solution of −∂j(aij∂iu) = 0, where the
aij ∈ L∞(B2) are bounded and uniformly elliptic, then

osc
B 1

2

u ≤ γ osc
B1

u

for some γ = γ
(
m, λ

Λ

)
, where oscΩ u := ess supΩ u− ess infΩ u.

By dilation, theorem 1.5 holds on any B2r, Br, B r
2
, with the same γ.

Combining theorems 1.4 and 1.5 yields the following ([HL11, theorem 4.11] - given
without proof in [HL11], so we give our own proof here).

Theorem 1.6. If u ∈ H1(B1) is a weak solution of −∂j(aij∂iu) = 0, where the aij ∈
L∞(B1) are bounded and uniformly elliptic, then u ∈ C0,α(B 1

2
), with

∥u∥C0,α(B 1
2
) ≤ C ∥u∥L2(B1)

for some α = α
(
m, λ

Λ

)
, C = C

(
m, λ

Λ

)
.

Proof. We begin with our key estimate. Take any z ∈ B 1
2
, k ≥ 0. Now B 1

4
(z) ⊆ B 3

4
, and

u is bounded on B 3
4
by theorem 1.4 (applied to ±u), so theorem 1.5 gives

osc
B

2−2−k (z)
u ≤ γ osc

B
2−1−k (z)

u ≤ · · · ≤ γk osc
B 1

4
(z)

u ≤ γk osc
B 3

4

u ≤ 2γk sup
B 3

4

u.

First, we show that u ∈ C0(B 1
2
). Set ak(z) = ess infB

2−2+k (z) u, bk(z) = ess supB
2−2+k (z)

u

for each z ∈ B 1
2
, so ak(z) is increasing, bk(z) is decreasing. Additionally,

0 ≤ bk(z)− ak(z) = osc
B

2−2−k (z)
u ≤ C ∥u∥L2(B1)

γk → 0,

so ak, bk → u uniformly for some u : B 1
2
→ R. Further, if ck(z) =

1
|B

2−2+k (z)|

∫
B

2−2+k (z)
u,

then ak ≤ ck ≤ bk, so ck → u uniformly. The ck are all continuous functions, so u is
continuous. Finally, ck(u) → u a.e. by the Lebesgue differentiation theorem

Finally, we show that u ∈ C0,α(B 1
2
). Given x, y ∈ B 1

2
with |x− y| < 1

2
, take z = x+y

2
,

and k ∈ N such that 2−3−k ≤ |x−y|
2

< 2−2−k. Then

|u(x)− u(y)| ≤ osc
B

2−2−k (z)
u = osc

B
2−2−k (z)

u ≤ 2γk ess sup
B 3

4

u,

and γk ≤ γ−2|x− y|−
log γ
log 2 . Now γ < 1 so − log γ

log 2
> 0, so we get α = α(γ) ∈ (0, 1) such that

|u(x)− u(y)|
|x− y|α

≤ C
(
m, λ

Λ

)
ess sup

B 3
4

u.

If x, y ∈ B 1
2
, |x− y| > 1

2
, then

|u(x)− u(y)|
|x− y|α

≤ 21−α sup
B 3

4

u = 21−α ess sup
B 3

4

u.

Finally, theorem 1.4 gives

sup
x∈B 1

2

|u(x)|+ sup
x,y∈B 1

2

|u(x)− u(y)|
|x− y|α

≤ C
(
m, λ

Λ

)
ess sup

B 3
4

u ≤ C
(
m, λ

Λ

)
∥u∥L2(B1)

.

8



The following result is an easy consequence of this (see [HL11, lemma 4.12]).

Lemma 1.7. If w ∈ H1(Br) is a weak solution of −∂j(aij∂iw) = 0, where the aij ∈
L∞(Br) are bounded and uniformly elliptic, then there exist α = α

(
m, λ

Λ

)
∈ (0, 1), C =

C
(
m, λ

Λ

)
such that

∥Dw∥2L2(Bρ)
≤ C

(ρ
r

)m−2+2α

∥Dw∥2L2(Br)

for any 0 < ρ < r.

This has the same conclusion as lemma 1.1, but does not require constant coeffi-
cients. This means that we can use the method outlined in §1.2, but without freezing
the coefficients, so we do not need continuity of the aij. This gives the following result
[HL11, theorem 4.13].

Theorem 1.8. Suppose u satisfies (1.2), where the aij ∈ L∞(Ω) are bounded and uni-
formly elliptic, and f ∈ Lq(Ω) for some q ∈ (m

2
,m).

Then u ∈ C0,α
loc (Ω) for some α = α

(
m, λ

Λ
, q
)
∈ (0, 1), and for each Ω̃ ⋐ Ω there exists

C = C(λ,Λ,m, q, Ω̃) such that

∥u∥C0,α(Ω̃) ≤ C
(
∥u∥H1(Ω) + ∥f∥Lq(Ω)

)
.

Unfortunately, theorem 1.4 does not hold for systems (see §3.1), so we cannot get an
analogue of lemma 1.7, even when u is bounded, and the method does not carry over to
the systems case. However, this idea can be applied in other contexts, so we will see it
again in §4.5.
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2 Elliptic systems

In §1.2, we briefly examined the method of freezing coefficients. We will now explore
this idea in more detail in the context of elliptic systems, following the structure of the
proof in [HL11, §3]. In [HL11], the proof is given in the scalar case for B1 ⊆ Rm, so we
have adapted it to work for systems and any domain Ω ⊆ Rm, using ideas from [Giu03]
and [Gia83] to assist this goal. We have also extended it to allow the case g ̸= 0 (see
(2.1)). We have restricted to equations with only leading-order coefficients to streamline
the discussion. In the rest of this section, we discuss an extension of the method to give
boundary regularity.

2.1 The problem

Suppose u : Ω → Rn for Ω ⊆ Rm. We write u(x) = (u1(x), . . . um(x)), and consider the
problem

−∂j(A
ij
αβ∂iu

α) = fβ − ∂jg
j
β in Ω,

u = 0 on ∂Ω,
(2.1)

where we require this to hold for each β. We use the convention that repeated indices in
upper and lower pairs are summed over, and take i, j = 1, . . . ,m, and α, β = 1, . . . , n.

We assume that the coefficients Aij
αβ ∈ L∞(Ω) of the system are symmetric in i, j and

in α, β, and that they are bounded and uniformly elliptic, that is there exist λ, Λ such
that

λ|ξ|2 ≤ Aij
αβ(x)ξ

α
i ξ

β
j ≤ Λ|ξ|2 ∀ξ ∈ Rmn

for almost all x ∈ Ω.
The weak formulation of (2.1) is∫

Ω

Aij
αβ(x)∂iu

α∂jφ
β =

∫
Ω

fβφ
β + gjβ∂jφ

β ∀φ ∈ H1
0 (Ω,Rn), (2.2)

with u ∈ H1
0 (Ω,Rn). The notation (·,Rn) indicates that functions in the relevant function

space have codomain Rn, although we will suppress this notation where convenient.

2.2 Campanato spaces

The method of freezing coefficients will give us integral estimates for the solution u, but we
wish to conclude that u is locally α-Hölder continuous. This means we need an integral
characterisation of C0,α functions, so we give the characterisation from [Giu03, §2.3],
beginning with the following definition.

Definition 2.1. Let Ω ⊆ Rm, 1 ≤ p < ∞, and λ ≥ 0. Then the Campanato space
Lp,λ(Ω,Rn) is the space of functions u ∈ Lp(Ω,Rn) such that

[u]pp,λ := sup
x0∈Ω
r>0

r−λ ∥u− ux0,r∥
p
Lp(Ωr(x0))

< ∞,

where Ωr(x0) := Ω ∩Br(x0), and

ux0,r :=
1

|Ωr(x0)|

∫
Ωr(x0)

u.

The associated norm is
∥u∥Lp,λ := [u]p,λ + ∥u∥Lp .
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Remark 2.1. In [Giu03], this definition is given using cubes instead of balls, although it
is noted that this gives an isomorphic space.

Remark 2.2. If r > ε, then

r−λ ∥u− ux0,r∥
p
Lp(Ωr(x0))

≤ ε−λ ∥u− ux0,r∥
p
Lp(Ω) ,

so [u]p,λ only depends on the behaviour for small values of r.

We will also need the following assumption on Ω.

Definition 2.2. We say Ω ⊆ Rm has no external cusps if there exists A ≥ 0 such that

|Ωr(x0)| ≥ A|Br(x0)|

for each x0 ∈ Ω and 0 < r ≤ 1, where we recall from definition 2.1 that Ωr(x0) :=
Ω ∩Br(x0).

Now we have the following theorem [Tah15, theorem 18.12].5

Theorem 2.1. Let Ω ⊆ Rm be a bounded open set with no external cusps, and suppose
m < λ ≤ m + p, so that α := λ−m

p
∈ (0, 1]. Then the spaces Lp,λ(Ω,Rn) and C0,α(Ω,Rn)

are isomorphic. In particular, there is C = C(p,A, λ,m) such that

∥u∥C0,α ≤ C ∥u∥Lp,λ

for each u ∈ Lp,λ(Ω,R).

In [Tah15], the dependence of the constant is not mentioned explicitly. However, we
will later need the fact that it is independent of λ, so we sketch the proof here to show
where the constant comes from.

Proof (sketch). First, we have that if x ∈ Ω, 0 < ρ < r ≤ min{1, diam(Ω)}, then there is
C = C(p,A, λ,m) such that

|ux,r − ux,ρ|p ≤ Cr
λ−m

p [u]p,λ (2.3)

(see [Tah15, proof of lemmas 18.7, 18.8, and case 1 in subsequent calculations]).
Then given 0 < R ≤ 1, (2.3) can be used to show that the sequence of averages (ux,2−iR)

converges uniformly to a limit u which is independent of the choice of R. The ux,2−iR are
all continuous, so u is continuous, and u = u a.e. by the Lebesgue differentiation theorem.

Hence it is enough to show that u is Hölder continuous. If x, y ∈ Ω, r := |x− y| < 1
2
,

then
|u(x)− u(y)| ≤ |u(x)− ux,2r|+ |ux,2r − uy,2r|+ |uy,2r − u(y)|.

Then (2.3) immediately gives a bound on the first and third terms. Integrating

|ux,2r − uy,2r| ≤ |ux,2r − u(z)|+ |u(z)− uy,2r|

over z ∈ Ω2r(x)∩Ω2r(y), and using (2.3) and the fact that Ω has no external cusps, gives
a bound for the second term. Hence we have that

|u(x)− u(y)| ≤ Cr
λ−m

p [u]p,λ .

5A similar result is also in [Giu03, §2.3], but it requires Ω to have no internal cusps instead. This
cannot be correct, as the example we give in §3.4 is for a domain with no internal cusps.
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2.3 Additional preliminary results

We now collect the other preliminary results we need to prove our main theorem.
First, we need the following analogue of lemma 1.1 [Gia83, §III, theorem 2.1].

Lemma 2.2. Suppose w ∈ H1(Br(x0),Rn) is a weak solution of

Ãij
αβ∂i∂jw

α = 0 in Br(x0) for each β,

where the Ãij
αβ are constants, symmetric in i, j and α, β, such that

λ|ξ|2 ≤ Ãij
αβξ

α
i ξ

β
j ≤ Λ|ξ|2 ∀ξ ∈ Rmn

for some 0 < λ ≤ Λ. Then there exists C = C(λ,Λ) such that

∥w∥2L2(Bρ(x0))
≤ C

(ρ
r

)m
∥w∥2L2(Br(x0))

,

∥w − wx0,ρ∥
2
L2(Bρ(x0))

≤ C
(ρ
r

)m+2

∥w − wx0,r∥
2
L2(Br(x0))

,

for each 0 < ρ ≤ r.

Finally, we will need the following technical lemma (special case of [HL11, Lemma
3.4]).6

Lemma 2.3. Given constants A,B, α, β ≥ 0 with β < α, there exist constants ε > 0,
C ≥ 0 depending only on A,α, β, such that if φ : [0, R] → [0,∞) is an increasing function,
and

φ(ρ) ≤ A
((ρ

r

)α
+ ε
)
φ(r) +Brβ

for each 0 < ρ ≤ r ≤ R, then

φ(r) ≤ C

(( r

R

)β
φ(R) +Brβ

)
for each 0 < r ≤ R.

Proof. Note that for τ ∈ (0, 1), r ≤ R, we have that

φ(τr) ≤ A (τα + ε)φ(r) +Brβ

Without loss of generality, assume that 2A > 1, so we can take τ ∈ (0, 1) such that
τ−(α−γ) = 2A, where γ := α+β

2
. Assume ε ≤ τα.

Then
φ(τr) ≤ 2Aταφ(r) +Brβ = τ γφ(r) +Brβ.

For k ∈ N, taking r = τ kR gives

φ(τ k+1R) ≤ τ γφ(τ kR) +Bτ kβRβ,

6Note that [HL11, Lemma 3.4] requires the exponent γ of r
R in the conclusion to be different to the

exponent β of r, with γ > β. In the subsequent proof of the analogue to our theorem 2.4, the text requires
γ = β, so we have amended the proof of this lemma to allow this.
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so that

φ(τ kR) ≤ τ kγφ(R) +BRβ

k−1∑
j=0

τ jγ+(k−1−j)β

= τ kγφ(R) +B(τ k−1R)β
k−1∑
j=0

τ j(γ−β)

≤ τ kγφ(R) +
1

1− τ γ−β
·B(τ k−1R)β

= τ kγφ(R) +
2A

2A− 1
·B(τ k−1R)β,

where we used γ − β = α− γ and τ−(α−γ) = 2A for the final step.
Now given any 0 < r ≤ R, choose k such that τ k+1 ≤ r

R
< τ k. Then the above gives

φ(r) ≤ 1

τ γ

( r

R

)γ
φ(R) +

1

τ 2β
2A

2A− 1
·Brβ

≤ 1

τ 2β

(( r

R

)β
φ(R) +Brβ

)
,

so the result follows with ε = τα, C = τ−2β.

2.4 The main theorem

We now give our adaptation of [HL11, theorem 3.8], the main theorem of this section.
We begin by assuming that the coefficients Aij

αβ are uniformly continuous, so we can find
a “modulus of continuity”7 τ : [0,∞) → [0,∞) such that for each i, j, α, β,

|Aij
αβ(x)− Aij

αβ(y)| ≤ τ(δ) whenever |x− y| < δ. (2.4)

Theorem 2.4. Suppose Ω ⊆ Rm is bounded, and u satisfies (2.2), where the Aij
αβ ∈

C0(Ω,Rn) are bounded, uniformly elliptic, and uniformly continuous, f ∈ Lq(Ω,Rn) for
some q ∈ (m

2
,m), and g ∈ Lq′(Ω,Rmn) for some q′ > m.

Then u ∈ C0,α
loc (Ω) for α = min

{
2− m

q
, 1− m

q

}
, and for each Ω̃ ⋐ Ω there exists C

depending only on λ, Λ, m, τ , q, q′, dist(Ω̃, ∂Ω) such that8

∥u∥C0,α(Ω̃) ≤ C
(
∥u∥H1(Ω) + ∥f∥Lq(Ω) ∥g∥Lq′ (Ω)

)
,

where τ is as defined in (2.4).

Proof. Fix x0, r such that Br(x0) ⊆ Ω, and write Ãij
αβ := Aij

αβ(x0) ∈ R for each i, j, α, β.
Then there is a unique solution w ∈ H1(Br(x0),Rn) to the “frozen” equation∫

Br(x0)

Ãij
αβ∂iw

α∂jφ
β = 0 ∀φ ∈ H1

0 (Br(x0),Rn) (2.5)

7This definition is slightly different to that taken in [HL11], but ensures that τ is increasing, which
we will need later.

8In [HL11], the dependence on m, q is not mentioned, however it does follow from the given proof.

13



with u− w ∈ H1
0 (Br(x0),Rn) (see [Gia83, §I, thoerem 3.1]).

Note that if w solves (2.5), then so does Dw, so writing v = u− w and using lemma
2.2 gives that

∥Du∥2L2(Bρ(x0))
≤ 2 ∥Dw∥2L2(Bρ(x0))

+ 2 ∥Dv∥2L2(Bρ(x0))

≤ C
(ρ
r

)m
∥Dw∥2Br(x0)

+ 2 ∥Dv∥2L2(Bρ(x0))

≤ C
(ρ
r

)m (
2 ∥Du∥2Br(x0)

+ 2 ∥Dv∥2Br(x0)

)
+ 2 ∥Dv∥2L2(Bρ(x0))

≤ C
((ρ

r

)m
∥Du∥2L2(Br(x0))

+ ∥Dv∥2L2(Br(x0))

)
, (2.6)

where C depends on λ,Λ. So we want to estimate ∥Dv∥2L2(Br(x0))
.

Note that given φ ∈ H1
0 (Br(x0),Rn), we have from (2.2) and (2.5) that∫

Br(x0)

Ãij
αβ∂iv

α∂jφ
β =

∫
Br(x0)

Ãij
αβ∂iu

α∂jφ
β

=

∫
Br(x0)

((
Aij

αβ − Ãij
αβ

)
∂iu

α∂jφ
β + fβφ

β + gjβ∂jφ
β
)
.

Now v ∈ H1
0 (Br(x0),Rn), so we can set φ = v and use the fact that τ is increasing to

give∫
Br(x0)

Ãij
αβ∂iv

α∂jv
β =

∫
Br(x0)

((
Aij

αβ − Ãij
αβ

)
∂iu

α∂jv
β + fβv

β + gjβ∂jv
β
)

≤
∫
Br(x0)

(
τ(r)∂iu

α∂jv
β + fβv

β + gjβ∂jv
β
)

≤ C(m)
(
τ(r) ∥Du∥L2(Br(x0))

∥Dv∥L2(Br(x0))

+ ∥f∥Lγ(Br(x0))
∥v∥L2∗ (Br(x0))

+ ∥g∥L2(Br(x0))
∥Dv∥L2(Br(x0))

)
,

(2.7)

where γ = 2m
m+2

, 2∗ = 2m
m−2

. We chose these exponents for the second term because 2∗ is
the largest possible exponent in the Sobolev inequality ∥v∥L2∗ ≤ C ∥Dv∥L2 , which gives
the smallest possible exponent γ for f , and hence the largest possible α (once g is taken
into account), which we can see from the following calculation.

∥f∥2Lγ(Br(x0))
=

(∫
Br(x0)

1 · |f |γ
) 2

γ

≤

((∫
Br(x0)

1
q

q−γ

)1− γ
q

·
(∫

Br(x0)

(|f |γ)
q
γ

) γ
q

) 2
γ

≤ C(m) (rm)2(
1
γ
− 1

q )
(∫

Ω

|f |q
) 2

q

= C(m)rm−2+2(2−m
q ) ∥f∥2Lq(Ω) . (2.8)

Similarly,

∥g∥2Lγ(Br(x0))
≤ C(m)r

m−2+2
(
1−m

q′

)
∥g∥2Lq′ (Ω) . (2.9)
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So returning to (2.7), using the Sobolev inequality mentioned above and uniform

ellipticity, and then substituting (2.8), (2.9) with α = min
{
2− m

q
, 1− m

q

}
gives∫

Br(x0)

λ|Dv|2 ≤ C
(
τ(r) ∥Du∥L2(Br(x0))

+ ∥f∥Lγ(Br(x0))
+ ∥g∥L2(Br(x0))

)
∥Dv∥L2(Br(x0))

∥Dv∥L2(Br(x0))
≤ C

(
τ(r) ∥Du∥L2(Br(x0))

+ ∥f∥Lγ(Br(x0))
+ ∥g∥L2(Br(x0))

)
∥Dv∥2L2(Br(x0))

≤ C
(
τ(r) ∥Du∥2L2(Br(x0))

+ rm−2+2α
(
∥f∥2Lq(Ω) + ∥g∥2Lq′ (Ω)

))
.

Now we can substitute this into (2.6) to get

∥Du∥2L2(Bρ(x0))
≤ C(λ,Λ,m)

(((ρ
r

)m
+ τ(r)

)
∥Du∥2L2(Br(x0))

+ rm−2+2αF 2
)
, (2.10)

where F := ∥f∥2Lq(Ω) + ∥g∥2Lq′ (Ω)

Finally, we apply lemma 2.3 with φ(t) = ∥Du∥2L2(Bt(x0))
. Note that if x0 ∈ Ω̃ ⋐ Ω then

Bt(x0) ⊆ Ω for each t ∈ [0, R] provided R ≤ dist(Ω̃, ∂Ω). Then we get C, ε depending
on9 C(λ,Λ), m, m− 2+ 2α (that is depending on λ, Λ, m, q), such that if τ(R) < ε then

∥Du∥2L2(Br(x0))
≤ Crm−2+2α

(
1

Rm−2+2α
∥Du∥2L2(Ω) + F 2

)
. (2.11)

Hence if we take R0 such that R0 ≤ dist(Ω̃, ∂Ω), τ(R0) < ε, then for each r < R0 we get

∥Du∥2L2(Br(x0))
≤ C(λ,Λ,m, τ, q, dist(Ω̃, ∂Ω))rm−2+2α

(
∥Du∥2L2(Ω) + F 2

)
.

Now for x0 ∈ Ω̃, take r0 > 0 such that Br0(x0) ⊆ Ω̃. Then for each r < r0, we have

Ω̃r(x0) = Br(x0), so we may use the Poincaré-Wirtinger inequality

∥u− u∥2L2(Br(x0))
≤ C(m)r2 ∥Du∥2L2(Br(x0))

(see [Eva10, §5.8.1]) to give

r−(m+2α) ∥u− ux0,r∥
2
L2(Ω̃r(x0))

≤ Cr−(m+2α) · r2 ∥Du∥2L2(Br(x0))

= Cr−(m−2+2α) ∥Du∥2L2(B(x0,r))

≤ C(λ,Λ,m, τ, q, dist(Ω̃, ∂Ω))
(
∥Du∥2L2(Ω) + F 2

)
.

So u ∈ L2,m+2α(Ω̃), with

∥u∥L2,m+2α(Ω̃) = [u]2,m+2α + ∥u∥L2(Ω̃) ≤ C(λ,Λ,m, τ, q, dist(Ω̃, ∂Ω))
(
∥u∥H1(Ω) + F

)
.

(2.12)

However, we need Ω̃ to have no external cusps to apply theorem 2.1.
We add our own note about how to handle this. Write δ = 1

2
dist(Ω̃, ∂Ω), and take

Ω̂ = Bδ(Ω̃) := {x ∈ Rm : dist(x, Ω̃) < δ}.
9Note that this is the only point in this proof which gives dependence on q.
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Then dist(Ω̂, ∂Ω) = 1
2
dist(Ω̃, ∂Ω), and if x ∈ Ω̂ then there is x̃ ∈ Ω̃ such that x ∈ Bδ(x̃) ⊆

Ω̂. Now
|Ω̂r(x)| = |Ω̂ ∩Br(x)| ≥ |Bδ(x̃) ∩Br(x)| ≥ 2−m|Br(x)|

for 0 < r ≤ 2δ, and

|Ω̂r(x)| ≥ |Bδ(x̃) ∩Br(x)| ≥ |Bδ(x̃)| ≥ δmr−m|Br(x)|

for 2δ < r ≤ 1, so taking A = min {2−m, δm} gives that Ω̂ has no external cusps.

Now L2,m+2α(Ω̃) ⊆ L2,m+2α(Ω̂), so using theorem 2.1, and applying (2.12) to Ω̂, gives

that u ∈ C0,α(Ω̃), with

∥u∥C0,α(Ω̃) ≤ C(δ, α,m) ∥u∥L2,m+2α(Ω̃)

= C(dist(Ω̃, ∂Ω),m, q) ∥u∥L2,m+2α(Ω̂)

≤ C(λ,Λ,m, τ, q, dist(Ω̃, ∂Ω))
(
∥u∥H1(Ω) + F

)
.

Recalling that F = ∥f∥2Lq(Ω) + ∥g∥2Lq′ (Ω) gives the result.

This theorem does not quite match theorem 1.2, as we are requiring the coefficients
Aij

αβ to be uniformly continuous. However, we add our own note that if the Aij
αβ are

continuous on Ω and we fix some Ω̃ ⋐ Ω, then we can find Ω̂ such that Ω̃ ⋐ Ω̂ ⋐ Ω. Then
the Aij

αβ are uniformly continuous in Ω̂, so we can apply theorem 2.4 in Ω̂ to see that

∥u∥C0,α(Ω̃) ≤ C
(
∥u∥H1(Ω) + ∥f∥Lq(Ω) + ∥g∥2Lq′ (Ω)

)
.

This gives the following result.

Theorem 2.5. Suppose the conditions of theorem 2.4 hold with the Aij
αβ ∈ C0(Ω,Rn) not

necessarily uniformly continuous. Then the conclusion of theorem 2.4 also holds, with the
constant C now depending on the Aij

αβ, m, q, and dist(Ω̃, ∂Ω).

We may also obtain regularity results for the derivatives of u in the same way as in
§1.2. Note that in theorem 1.3 we require aij ∈ C0,α(Ω). The argument used to obtain
theorem 2.5 can be used here to replace this with the condition aij ∈ C0,α

loc (Ω).

2.5 Boundary regularity

Theorem 2.4 only gives interior regularity, so we give our own exploration of how to adapt
this proof to get boundary regularity.

In the proof, we only restrict x0 to lie in Ω̃ ⋐ Ω because we need R > 0 such that
BR(x0) ⊆ Ω for each x0. In the context of boundary regularity, it is natural to replace
Br(x0) with Ωr(x0) to avoid this issue. This leads us to ask whether (with suitable
assumptions on Ω) we can get an analogous result to lemma 2.2 with Bρ(x0), Br(x0)
replaced with Ωρ(x0), Ωr(x0).

Also, when using this lemma in our proof, we take w = u on ∂Ω, where u ∈ H1
0 (Ω),

so we can restrict to the case when w = 0 on ∂Ω. Hence we need the following analogue
of lemma 2.2.
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Remark 2.3. Let Ω ⊆ Rm be a Lipschitz domain, and Ãij
αβ be constants, symmetric in i, j

and α, β, such that
λ|ξ|2 ≤ Ãij

αβξ
α
i ξ

β
j ≤ Λ|ξ|2 ∀ξ ∈ Rmn

for some 0 < λ ≤ Λ. Let w ∈ H1(Ωr(x0),Rn) be a weak solution of

Ãij
αβ∂ijw

α = 0 for each β (2.13)

in Ωr(x0), with u = 0 on ∂Ω in the sense of trace. Then it is reasonable to expect10 that
there exists C = C(λ,Λ,Ω) such that

∥Dw∥2L2(Ωρ(x0))
≤ C

(ρ
r

)m
∥Dw∥2L2(Ωr(x0))

for each 0 < ρ ≤ r ≤ diam(Ω).

Unfortunately, we did not have time to obtain a proof of this.
It may be the case that this is true for more general domains (using a suitable notion

of “w = 0 on ∂Ω”). In that case, we would probably need to impose a cusp condition.
However, when applying this to boundary regularity, we wish to apply theorem 2.1 to
obtain Hölder continuity, which already has a cusp condition which we need to impose.

Theorem 2.6. Let Ω ⊆ Rm be such that the conclusion of remark 2.3 holds. Suppose u
satisfies (2.2), where the Aij

αβ ∈ C0(Ω,Rn) are bounded and uniformly continuous, τ is as
defined in (2.4), and f ∈ Lq(Ω,Rn) for some q ∈ (m

2
,m).

Then u ∈ L2,m+2α(Ω̃), where α = 2− m
q
, and there exists C(λ,Λ,Ω,m, τ, q) such that

∥u∥L2,m+2α(Ω̃) ≤ C
(
∥u∥H1(Ω) + ∥f∥Lq(Ω)

)
.

Proof. This time, we fix x0 ∈ Ω and some r > 0. If we set Ãij
αβ := Aij

αβ(x0), then as before
we have a unique solution w ∈ H1(Ωr(x0),Rn) to∫

Ωr(x0)

Ãij
αβ∂iw

α∂jφ
β = 0 ∀φ ∈ H1

0 (Ωr(x0),Rn)

with u− w ∈ H1
0 (Ωr(x0),Rn).

Further, since u ∈ H1
0 (Ω), u−w ∈ H1

0 (Ωr(x0)), both u and u−w are in the H1 closure
of the set

{u ∈ C∞(Ωr(x0)) : dist(supp u, ∂Ω) > 0},

so w is also in this set, and we can use remark 2.3.
From here, we continue as in the proof of theorem 2.4 with Bρ(x0), Br(x0) replaced

with Ωρ(x0),Ωr(x0), until we get an analogue of (2.10), that is

∥Du∥2L2(Ωρ(x0))
≤ C(λ,Λ,Ω, n)

((
τ(r) +

(ρ
r

)m)
∥Du∥2L2(Ωr(x0))

+ rm−2+2α ∥f∥2Lq(Ω)

)
.

10[Gia83, §VIII.2] mentions that if ∂Ω is smooth, then the method used to prove theorem 2.4 “can
be straightforwardly extended up to the boundary”, citing [Cam65]. This paper is in Italian so we were
unable to read it, but it makes it seem plausible that this holds in this case. Certainly the result can
be obtained when Ωr(x0) is a half-ball by taking an odd extension. From here we could proceed by
“flattening the boundary”, as described in [Eva10, §C.1].
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Again, we apply lemma 2.3, this time setting φ(t) = ∥Du∥2L2(Ωt(x0))
. Again, this gives

C, ε depending on C(λ,Λ), m, m− 2 + 2α (that is, on λ, Λ, m, q), such that if τ(R) < ε
then

∥Du∥2L2(Br(x0))
≤ Crm−2+2α

(
1

Rm−2+2α
∥Du∥2L2(Ω) + ∥f∥2Lq(Ω)

)
.

So we can take R0 such that τ(R0) < ε0Then for r < R0 we get

∥Du∥2L2(Br(x0))
≤ C(λ,Λ,Ω,m, τ, q)rm−2+2α

(
∥Du∥2L2(Ω) + ∥f∥2Lq(Ω)

)
.

Finally, since u ∈ H1
0 (Ωr(x0)), its extension by 0 is in H1

0 (Br(x0)). Hence we can apply
the Poincaré-Wirtinger inequality from [Eva10, §5.8.1] as before to conclude that u ∈
L2,m+2α(Ω̃), with

∥u∥L2,m+2α(Ω̃) ≤ C(λ,Λ,Ω,m, τ, q)
(
∥u∥H1(Ω) + ∥f∥Lq(Ω)

)
.

If Ω ⊆ Rm is Lipschitz and bounded, then it has no external cusps. Hence if the
conditions of theorem 2.6 hold, then theorem 2.1 gives that u ∈ C0,α(Ω) for α = 2 − m

q
,

and
∥u∥C0,α(Ω) ≤ C

(
∥u∥H1(Ω) + ∥f∥Lq(Ω)

)
,

so we recover an analogue of theorem 2.4.
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3 Counterexamples

We devote this section to examples which show that certain assumptions cannot be
dropped from the theorems we have seen in §1 and 2.

In all calculations, sums will be shown explicitly and lower indices will be used to
avoid confusion.

3.1 A system with bounded coefficients

Theorem 1.4 gives that elliptic equations with bounded coefficients have locally bounded
solutions, but this is not true for systems, as can be seen from an example due to De Giorgi
[DG68]. We found this example in [Gia83, §2.3], where only the system and associated
solution are given, so we present our own calculations to explain the reasoning behind it.

We aim to find a system which has

u : B1 → Rm, u(x) =
x

|x|γ

as a solution, where γ ≥ 1 is to be determined and B1 ⊆ Rm. Note that u is discontinuous,
and is unbounded when γ > 1.

We will need the following lemma ([Gia83, §II, lemma 3.1], special case).

Lemma 3.1. Suppose Ω ⊆ Rm is bounded, m ≥ 2, and u ∈ H1(Ω) ∩ C2(Ω\{x0},Rn),
where x0 ∈ Ω. Then if u is a classical solution of∑

i,j,β

∂i(A
ij
αβ(x, u(x)) ∂juβ) = 0 ∀α, (3.1)

in Ω\{x0}, and
Aij

αβ(x, u(x)) ∈ L∞(Ω) ∩ C1(Ω\{x0})

for each i, j, α, β, then u is a weak solution of (3.1) in Ω.

This means we need u ∈ H1(B1,Rm), so we must take γ < m
2
. Already this means

that in order to have γ ≥ 1 we must have m ≥ 3.
We look for a system with coefficients Aij

αβ depending only on x. In that case, a
classical solution to (3.1) must satisfy∑

i,j,β

Aij
αβ(x) ∂ijuβ +

∑
i,j,β

∂iA
ij
αβ(x) ∂juβ = 0 ∀α.

We will need the following derivatives.

∂k

(
1

|x|c

)
= −c

xk

|x|c+2

∂juβ = ∂j

(
xβ

|x|γ

)
= −γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

∂ijuβ = γ(γ + 2)
xixjxβ

|x|γ+4
− γ

xβ

|x|γ+2
δij − γ

xj

|x|γ+2
δiβ − γ

xi

|x|γ+2
δjβ

First, we note that if we take the usual Laplacian, that is if Aij
αβ = δijδαβ, then
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∑
i,j,β

∂i(δijδαβ∂juβ) =
∑
i

∂2
i uα

=
∑
i

(
γ(γ + 2)

x2
ixα

|x|γ+4
− γ

xα

|x|γ+2
− γ

xi

|x|γ+2
δiα − γ

xi

|x|γ+2
δiα

)
= γ(γ + 2)

|x|2xα

|x|γ+4
−mγ

xα

|x|γ+2
− 2γ

xα

|x|γ+2

= −γ(m− γ)
xα

|x|γ+2
.

Next, we wish to find an additional term which will cancel this out. The resulting
operator must be elliptic and bounded, and a simple way to do this is to take Aij

αβ =

δijδαβ + aiαa
j
β for some choice of bounded coefficients aiα(x), as this gives∑

i,j,α,β

Aij
αβξ

i
αξ

j
β =

∑
i,α

(
ξiα
)2

+
(∑

i,α

aiαξ
i
α

)2
≥
(
1 + sup

i,α

∥∥aiα∥∥L∞

)
|ξ|2.

A first guess for aiα is xα

|x|c for some c > 0, since

∂i

(
xαxβ

|x|c

)
= −c

xixαxβ

|x|c+2
+

xβ

|x|c
δiα +

xα

|x|c
δiβ.

However, multiplying this with ∂juβ gives terms which are multiplied by a single copy of
xi, and will not cancel out easily.

So it is better to try aiα = xixα

|x|c . We need c ≤ 2 for this to be bounded, and if c < 2
then it is continuous, so u cannot be a solution to the associated system by theorem 2.4.
Hence we take c = 2, and calculate for x ̸= 0∑
i,j,β

xixjxαxβ

|x|4
∂ijuβ +

∑
i,j,β

∂i
xixjxαxβ

|x|4
∂juβ

=
∑
i,j,β

xixjxαxβ

|x|4

(
γ(γ + 2)

xixjxβ

|x|γ+4
− γ

xβ

|x|γ+2
δij − γ

xj

|x|γ+2
δiβ − γ

xi

|x|γ+2
δjβ

)
+
∑
i,j,β

(
−4

x2
ixjxαxβ

|x|6
+

xjxαxβ

|x|4
+

xixαxβ

|x|4
δij +

xixjxβ

|x|4
δiα +

xixjxα

|x|4
δiβ

)(
−γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

)

=
∑
i,j,β

xα

|x|4

(
γ(γ + 2)

x2
ix

2
jx

2
β

|x|γ+4
− γ

x2
ix

2
β

|x|γ+2
δij − γ

x2
ix

2
j

|x|γ+2
δiβ − γ

x2
ix

2
j

|x|γ+2
δjβ

)
+
∑
j,β

xα

|x|4

(
−4

|x|2xjxβ

|x|2
+mxjxβ + xjxβ + xαxjxβ + xjxβ

)(
−γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

)
=

xα

|x|γ+4

(
γ(γ + 2)

|x|6

|x|4
− γ

|x|4

|x|2
− γ

|x|4

|x|2
− γ

|x|4

|x|2

)
+
∑
j,β

xα

|x|γ+4

(
−4

|x|2xjxβ

|x|2
+ (m+ 3)xjxβ

)(
−γ

xjxβ

|x|2
+ δjβ

)
=

xα

|x|γ+2
(γ(γ − 1) + (−4 +m+ 3)(−γ + 1))

= −(γ(m− γ)− (m− 1))
xα

|x|γ+2
.
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This suggests we take

Aij
αβ = δijδαβ −

γ(m− γ)

γ(m− γ)− (m− 1)

xixjxαxβ

|x|4
.

Unfortunately, when 1 ≤ γ < m
2
, we have

γ(γ −m)

γ(γ −m) +m− 1
≥

m
2

(
m− m

2

)
m
2

(
m− m

2

)
−m+ 1

=

(
m

m− 2

)2

> 1.

So if

x =

(
1

2
, 0, . . . , 0

)
∈ B1, ξiα =

{
1 i = α = 1

0 otherwise,

then ∑
i,j,α,β

Aij
αβξ

i
αξ

j
β = A11

11 = 1− γ(m− γ)

γ(m− γ)− (m− 1)
· 1 < 0,

so the system is not elliptic.
However, we can continue to adjust the coefficients aiα chosen above. Note that

∂i

(
xixα

|x|2

)
= −2

x2
ixα

|x|4
+

xα

|x|2
+

xi

|x|2
δiα,

and that ∂juβδjβ collapses nicely once summed, that is∑
j,β

∂juβδjβ =
∑
j,β

(
−γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

)
δjβ = (1− γ)

1

|x|γ
.

This suggests that xixα

|x|2 δjβ would also work well as a term of Aij
αβ, so we try

Aij
αβ = δijδαβ +

(
C1δiα + C2

xixα

|x|2

)(
C1δjβ + C2

xjxβ

|x|2

)
.

Next we calculate∑
i,j,β

xixα

|x|2
δjβ∂ijuβ +

∑
i,j,β

∂i
xixα

|x|2
δjβ∂juβ

=
∑
i,j,β

xixα

|x|2
δjβ

(
γ(γ + 2)

xixjxβ

|x|γ+4
− γ

xβ

|x|γ+2
δij − γ

xj

|x|γ+2
δiβ − γ

xi

|x|γ+2
δjβ

)
+
∑
i,j,β

(
−2

x2
ixα

|x|4
+

xα

|x|2
+

xi

|x|2
δiα

)
δjβ

(
−γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

)

=
∑
i,β

xα

|x|2

(
γ(γ + 2)

x2
ix

2
β

|x|γ+4
− γ

xixβ

|x|γ+2
δiβ − γ

xixβ

|x|γ+2
δiβ − γ

x2
i

|x|γ+2

)
+
∑
i

(
−2

x2
ixα

|x|4
+

xα

|x|2
+

xi

|x|2
δiα

)∑
j,β

(
−γ

xjxβ

|x|γ+2
δjβ +

1

|x|γ
δjβ

)

=
∑
i

xα

|x|2

(
γ(γ + 2)

x2
β

|x|γ+2
− 2γ

x2
β

|x|γ+2
− γ

1

|x|γ

)
+

(
−2

xα

|x|2
+m

xα

|x|2
+

xα

|x|2

)∑
β

(
−γ

x2
β

|x|γ+2
+

1

|x|γ

)
= (−γ(m− γ) + (m− 1)(m− γ))

xα

|x|γ+2
,
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∑
i,j,β

xjxβ

|x|2
δiα∂ijuβ +

∑
i,j,β

∂i
xjxβ

|x|2
δiα∂juβ

=
∑
i,j,β

xjxβ

|x|2
δiα

(
γ(γ + 2)

xixjxβ

|x|γ+4
− γ

xβ

|x|γ+2
δij − γ

xj

|x|γ+2
δiβ − γ

xi

|x|γ+2
δjβ

)
+
∑
i,j,β

(
−2

xixjxβ

|x|4
+

xβ

|x|2
δij +

xj

|x|2
δiβ

)
δiα

(
−γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

)

=
∑
j,β

1

|x|2

(
γ(γ + 2)

xαx
2
jx

2
β

|x|γ+4
− γ

xjx
2
β

|x|γ+2
δjα − γ

x2
jxβ

|x|γ+2
δαβ − γ

xαxjxβ

|x|γ+2
δjβ

)
+
∑
j,β

1

|x|2

(
−2

xαxjxβ

|x|2
+

xβ

|x|2
δjα +

xj

|x|2
δαβ

)(
−γ

xjxβ

|x|γ+2
+

1

|x|γ
δjβ

)

=
∑
β

1

|x|2

(
γ(γ + 2)

xαx
2
β

|x|γ+2
− γ

xαx
2
β

|x|γ+2
− γ

xβ

|x|γ
δαβ − γ

xαx
2
β

|x|γ+2

)

+
∑
β

1

|x|2

(
2γ

xαx
2
β

|x|γ+2
− γ

xαx
2
β

|x|γ+4
− γ

xβ

|x|γ+2
δαβ − 2

xαx
2
β

|x|γ+2
+

xβ

|x|γ+2
δαβ +

xβ

|x|γ+2
δαβ

)
= (γ(γ + 2)− γ − γ − γ)

xα

|x|γ+2
+ (2γ − γ − γ − 2 + 1 + 1)

xα

|x|γ+2

= γ(γ − 1)
xα

|x|γ+2
,

and∑
i,j,β

δiαδjβ∂ijuβ +
∑
i,j,β

∂iδiαδjβ∂juβ

=
∑
i,j,β

δiαδjβ

(
γ(γ + 2)

xixjxβ

|x|γ+4
− γ

xβ

|x|γ+2
δij − γ

xj

|x|γ+2
δiβ − γ

xi

|x|γ+2
δjβ

)
+ 0

=
∑
j

(
γ(γ + 2)

xαx
2
j

|x|γ+4
− γ

xj

|x|γ+2
δjα − γ

xj

|x|γ+2
δjα − γ

xα

|x|γ+2

)
= (γ(γ + 2)− γ − γ −mγ)

xα

|x|γ+2

= −γ(m− γ)
xα

|x|γ+2
.

So if Aij
αβ = δijδαβ +

(
C1δiα + C2

xixα

|x|2

)(
C1δjβ + C2

xjxβ

|x|2

)
, then

∑
i,j,β

∂i(A
ij
αβ(x)∂juβ) =

(
− γ(m− γ)− C2

1γ(m− γ) + C1C2(−γ(m− γ) + (m− 1)(m− γ))

+ C1C2γ(γ − 1)− C2
2(γ(m− γ)− (m− 1))

) xα

|x|γ+2
.

Hence, if the term in the brackets is zero, then lemma 3.1 gives that u(x) = x
|x|γ is a weak

solution to our system on B1. Provided C1, C2 > 0,the system will be elliptic.
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Rewriting this condition gives

0 = −γ(m− γ)(1 + C2
1 + C1C2 + C2

2) + C1C2(m
2 −m−mγ + γ + γ2 − γ) + C2

2(m− 1)

= −γ(m− γ)(1 + C2
1 + C1C2 + C2

2) + C1C2(m(m− 1)− γ(m− γ)) + C2
2(m− 1)

= −γ(m− γ)(1 + (C1 + C2)
2) + C2(m− 1)(C1m+ C2).

We write γ = m
2
(1− d) for d > 0, giving

m2

4
(1− d)(1 + d)(1 + (C1 + C2)

2) = C2(m− 1)(C1m+ C2)

m2(1− d2)(1 + (C1 + C2)
2) = 4C2(m− 1)(C1m+ C2)

m2d2(1 + (C1 + C2)
2) = m2(1 + (C1 + C2)

2)− 4C2(m− 1)(C1m+ C2)

d2(1 + (C1 + C2)
2) = 1 +m−2(C1m− C2(m− 2))2,

so

d =

√
1 + (C1 − m−2

m
C2)2

1 + (C1 + C2)2
.

By varying C1, C2, we can obtain any value of d ∈ (0, 1), and hence any γ ∈ (0, m
2
).

Therefore, any function u ∈ H1(B1,Rm) of the form u(x) = x|x|−γ, γ ∈ (1, m
2
), is a

solution to an elliptic system with bounded coefficients. In particular, taking C1 = m−2,
C2 = m gives De Giorgi’s example, that is the elliptic system∑

i,j,α,β

∫
B1

Aij
αβ(x)∂juβ∂iφα = 0,

Aij
αβ = δijδαβ +

(
(m− 2)δiα +m

xixα

|x|2

)(
(m− 2)δjβ +m

xjxβ

|x|2

)
,

which has the discontinuous and unbounded solution u ∈ H1(B1,Rm) given by

u(x) =
x

|x|γ
, γ =

m

2

(
1−

√
1

1 + (2m− 2)2

)
.

3.2 A system with smooth coefficients depending on u

Theorem 2.4 gives that elliptic systems with continuous coefficients depending only on x
have Hölder continuous solutions. In §4, we will look at harmonic maps, and the systems
which these solve have coefficients depending on u(x) also. An example due to Giusti and
Miranda [GM68] shows that theorem 2.4 does not hold in this case. Again, we found this
in [Gia83, §2.3], where only the system and associated solution are given, so we present
it alongside our own calculations.

This time, we seek a system of the form (3.1) with smooth coefficients Aij
αβ depending

only on u, with solution

u : B1 → Rm u(x) =
x

|x|
.

Again, we need m ≥ 3 to have u ∈ H1(B1,Rm).
As before, we begin with the usual Laplacian, and setting γ = 1 in our previous

computation gives∑
i,j,β

∂i(δijδαβ∂juβ) = −1(m− 1)
xα

|x|1+2
= −(m− 1)

xα

|x|3
.
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Again we want coefficients Aij
αβ = δijδαβ + aiαa

j
β, now for smooth aiα(u). As before, a

first guess is aiα = uα = xα

|x| , but

∂i

(
xαxβ

|x|2

)
= −2

xixαxβ

|x|4
+

xβ

|x|2
δiα +

xα

|x|2
δiβ

has terms which do not sum nicely.
A better guess is aiα = uiuα = xixα

|x|2 , so that aiαa
j
β = uiujuαuβ =

xixjxαxβ

|x|4 . From
previous computations, we have∑

i,j,β

∂i

(
xixjxαxβ

|x|4
∂juβ

)
= −(1(m− 1)− (m− 1))

xα

|x|1+2
= 0.

We appear to have found an appropriate system, but taking Aij
αβ = uiujuαuβ does not

satisfy the ellipticity condition
Aij

αβξ
i
αξ

j
β ≥ λ|ξ|2.

We try the same trick as before, and take

Aij
αβ = δijδαβ + (C1δiα + C2uiuα) (C1δjβ + C2ujuβ) .

Then, again making use of previous calculations, we have∑
i,j,β

∂i

(
uiuαδjβ
|x|4

∂juβ

)
= (−1(m− 1) + (m− 1)(m− 1))

xα

|x|1+2
= (m− 2)(m− 1)

xα

|x|3
,

∑
i,j,β

∂i

(
ujuβ

|x|4
δiα∂juβ

)
= −1(1− 1)

xα

|x|1+2
= 0,

∑
i,j,β

∂i (δiαδjβ∂juβ) = −1(m− 1)
xα

|x|1+2
= −(m− 1)

xα

|x|3
,

so
∂i
(
Aij

αβ∂juβ

)
= (−(m− 1)− C2

1(m− 1) + C1C2(m− 1)(m− 2))
xα

|x|3
.

Setting this equal to 0 and dividing by m− 1 gives

1 = C1(C2(m− 2)− C1),

so taking C1 = 1, C2 =
2

m−2
gives the required system.

However, while aiα = uiuα is smooth, it is not unbounded as u varies. But by not-
ing that |u| = 1 when u = x

|x| , we can adjust the coefficients aiα without re-doing the
calculations above. In particular,

aiα =
uiuα

1 + |u|2

gives smooth, bounded coefficients.
This gives Giusti and Miranda’s example, which is the elliptic system∑

i,j,α,β

∫
B1

Aij
αβ(x)∂juβ∂iφα = 0,

Aij
αβ = δijδαβ +

(
δiα +

4

m− 2
· uiuα

1 + |u|2

)(
δjβ +

4

m− 2
· ujuβ

1 + |u|2

)
.

Applying lemma 3.1 shows it has the discontinuous solution u ∈ H1(B1,Rm) given by

u(x) =
x

|x|
.
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3.3 Extending the counterexamples

The example in §3.1 only applies when n = m ≥ 3, so we give our own extension of this
example to any m,n ≥ 3.

In all cases, we take a system of the form

m∑
i,j=1

n∑
α,β=1

∫
B1

Aij
αβ(x)∂juβ∂iφα = 0 ∀φ ∈ H1

0 (B1,Rn),

or equivalently

m∑
i,j=1

n∑
β=1

∫
B1

Aij
αβ(x)∂juβ∂iφ = 0 ∀φ ∈ H1

0 (B1), α = 1, . . . , n.

If n > m, then set

Aij
αβ = δijδαβ +

(
(m− 2)δiα +m

xixα

|x|2

)(
(m− 2)δjβ +m

xjxβ

|x|2

)
,

uα =
xα

|x|γ
where γ =

m

2

(
1−

√
1

1 + (2m− 2)2

)
,

with the convention that xk = 0 for k > m.
Note that the system is still elliptic, and that ∂juβ = 0 when β > m.
Then for each φ ∈ H1

0 (B1), α ≤ m, we have

m∑
i,j=1

n∑
β=1

∫
B1

Aij
αβ∂juβ∂iφ =

m∑
i,j,β=1

∫
B1

Aij
αβ∂juβ∂iφ = 0,

from §3.1. When α > m, we have

Aij
αβ = δijδαβ +

(
(m− 2) · 0 +m

xi · 0
|x|2

)(
(m− 2)δjβ +m

xjxβ

|x|2

)
= δijδαβ,

so
m∑

i,j=1

n∑
β=1

∫
B1

Aij
αβ∂juβ∂iφ =

m∑
i=1

∫
B1

∂iuα∂iφ =
m∑
i=1

∫
B1

0 · ∂iφ = 0.

Hence u is an unbounded discontinuous solution to the system given above.
If m > n, then given x ∈ Rm, write x̃ := (x1, . . . , xn) ∈ Rn. We take

Aij
αβ = δijδαβ +

(
(n− 2)δiα + n

x̃ix̃α

|x̃|2

)(
(n− 2)δjβ + n

x̃jx̃β

|x̃|2

)
,

uα =
x̃α

|x̃|γ
where γ =

n

2

(
1−

√
1

1 + (2n− 2)2

)
,

again with the convention that x̃k = 0 for k > n. Note that ∂juβ = 0 for j > n.
Now if i > n, then

Aij
αβ = δijδαβ +

(
(n− 2) · 0 + n

0 · x̃α

|x̃|2

)(
(n− 2)δjβ + n

x̃jx̃β

|x̃|2

)
= δijδαβ,
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so

m∑
i,j=1

n∑
β=1

∫
B1

Aij
αβ∂juβ∂iφ =

m∑
i=1

n∑
j,β=1

∫
B1

Aij
αβ∂juβ∂iφ

=
n∑

i,j,β=1

∫
B1

Aij
αβ∂juβ∂iφ+

m∑
i=n+1

n∑
j,β=1

∫
B1

δijδαβ∂juβ∂iφ

=
n∑

i,j,β=1

∫
B1

Aij
αβ∂juβ∂iφ+

m∑
i=n+1

n∑
j,β=1

∫
B1

0 · δαβ∂juβ∂iφ

=
n∑

i,j,β=1

∫
B1

Aij
αβ∂juβ∂iφ

= 0

from §3.1, so u is an unbounded discontinuous solution to our system.
Note that when n > m, u is only discontinuous at a point, but when m > n, the

singular set is B1 ∩ {x1, . . . , xN = 0}, which has Hausdorff dimension11 m − n. We can
generate further examples with larger singular sets as follows.

Given x ∈ Rm, write x̃ := (x1, x2, x3), and set

Aij
αβ = δijδαβ +

(
δiα + 3

x̃ix̃α

|x̃|2

)(
δjβ + 3

x̃jx̃β

|x̃|2

)
,

uα =
x̃α

|x̃|γ
where γ =

3

2

(
1− 1√

17

)
.

Then ∂juβ = 0 whenever j > 3 or β > 3, and if i > 3 or α > 3 then Aij
αβ = δijδαβ.

So u is a solution of the associated system, by similar calculations to those above. Hence
we have an elliptic system with bounded coefficients, whose solution has a singular set of
Hausdorff dimension m− 3.

This procedure can also be carried out with the example in §3.2.
From this, it is reasonable to guess that we can establish partial regularity results -

that is, solutions to elliptic systems with “nice” coefficients should themselves be “nice”
outside a singular set of Hausdorff dimension some constant amount less than that of the
domain. This indeed turns out to be true in many cases (see for example [Giu03, §9]).

3.4 The Campanato space for a domain with a cusp

Theorem 2.1 gives that if Ω has no external cusps, then the spaces C0,α(Ω) and Lp,m+pα

are isomorphic. To see that the inclusion C0,α(Ω) ⊆ Lp,m+pα(Ω) holds for any domain Ω,
we note that for fixed y = (y1, . . . , ym) ∈ Ω, 1 ≤ p < ∞, r > 0, we have∫

Ωr(y)

|u(x)− uy,r|p dx ≤ C(p)

∫
Ωr(y)

|u(x)− ξ|p dx ∀ξ ∈ Rn (3.2)

11A definition of Hausdorff dimension can be found in ***, although the precise definition is not
important here

26



(see [Giu03, remark 2.2]). Hence if u ∈ C0,α(Ω), then

r−m−pα

∫
Ωr(y)

|u(x)− uy,r|p dx ≤ Cr−m−pα

∫
Ωr(y)

|u(x)− u(y)|p dx

≤ Cr−pα sup
x∈Ωr(y)

|u(x)− u(y)|p

≤ C sup
x,y∈Ω

|u(x)− u(y)|p

|x− y|pα

= C ∥u∥pC0,α(Ω) .

We give our own example to show that the assumption on Ω is required for the reverse
inclusion.

Fix any m ≥ 2, p ∈ [1,∞) and α ∈ (0, 1). Then for β ≥ 1, γ ∈ (0, α) to be chosen
later, define Ω ⊆ Rm, u : Ω → R by

Ω = {(x1, x̃) ∈ R× Rm−1 : 0 < x1 < 1, |x̃| < xβ
1}, u(x1, x̃) = xγ

1 .

Now u /∈ C0,α(Ω), so our aim is to find β such that u ∈ Lp,m+pα(Ω). We will bound
(∗) := r−m−pα

∫
Ωr(y)

|u(x) − uy,r|p dx for fixed y ∈ Ω by separating into cases (see figure

3.1). By remark 2.2, we may consider only r ≤ 1.

0 < r ≤ yβ1 yβ1 ≤ r < y1 y1 < r ≤ 1

Figure 3.1: The different cases for our calculation.

Case 1 (0 < r ≤ y1). Using (3.2) with ξ = yγ1 gives

(∗) ≤ Cr−m−pα

∫
Ωr(y)

|xγ
1 − yγ1 |p dx

≤ Cr−m−pα |Ωr(y)| sup
x∈Ωr(y)

|xγ
1 − yγ1 |p

= Cr−m−pα |Ωr(y)|

(
sup
|t|<r

|(y1 + t)γ − yγ1 |

)p

= Cr−m−pα |Ωr(y)|(yγ1 − (y1 − r)γ)p.

Now r
y1

∈ (0, 1) so 1− r
y1

≤ (1− r
y1
)γ, giving that yγ1 − (y1 − r)γ ≤ yγ−1

1 r. Hence

(∗) ≤ Cr−m+p(1−α) y
−p(1−γ)
1 |Ωr(y)|.

If r ≤ yβ1 , then Ωr(y) ⊆ Br(y) and r1−α ≤ y
β(1−α)
1 , so

(∗) ≤ Cr p(1−α) y
−p(1−γ)
1 ≤ C

(
y
β(1−α)−(1−γ)
1

)p
.
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And if r ≥ yβ1 , then

Ωr(y) ⊆ {(x1, x̃) : |x1 − y1| < r, |x̃| < (y1 + r)β},

which has volume Cr(y1 + r)β(m−1) ≤ Cry
β(m−1)
1 , so

(∗) ≤ Cr−(m−1)+p(1−α) y
β(m−1)−p(1−γ)
1 .

Depending on the sign of −(m−1)+p(1−α), this either achieves its maximum at r = yβ1
or r = y1. Hence

(∗) ≤ Cmax
{(

y
β(1−α)−(1−γ)
1

)p
, y

(β−1)(m−1)−p(α−γ)
1

}
.

Case 2 (y1 < r ≤ 1). Now

Ωr(y) ⊆ {(x1, x̃) ∈ R× Rm−1 : 0 < x1 < 2r, |x̃| < xβ
1}.

Using this, and (3.2) with ξ = 0, gives

(∗) ≤ Cr−m−pα

∫ 2r

0

tβ(m−1) · tpγ dt

= Cr(β−1)(m−1)−p(α−γ).

Depending on the sign of −(m−1)+p(1−α), this either achieves its maximum at r = y1
or r = 1, giving

(∗) ≤ Cmax
{
y
(β−1)(m−1)−p(α−γ)
1 , 1

}
.

Combining both cases gives that for fixed y ∈ Ω,

sup
r>0

r−m−pα

∫
Ωr(y)

|u(x)− uy,r|p dx ≤ Cmax
{(

y
β(1−α)−(1−γ)
1

)p
, y

(β−1)(m−1)−p(α−γ)
1 , 1

}
,

so
[u]pp,λ ≤ C sup

y1∈(0,1)
max

{(
y
β(1−α)−(1−γ)
1

)p
, y

(β−1)(m−1)−p(α−γ)
1 , 1

}
.

This is finite if β(1−α)− (1− γ), (β − 1)(m− 1)− p(α− γ) are both non-negative, that
is if

β ≥ 1 +
α− γ

1− α
, β − 1 ≥ p(α− γ)

m− 1
.

So if

β ≥ 1 + max

{
1

1− α
,

p

m− 1

}
(α− γ),

then u ∈ Lp,m+pα(Ω).
We can also show that if u ∈ Lp,m+pα(Ω), then β must satisfy the inequality above.

To do this, we use remark 2.1 to equivalently take Ωr(y) = Ω∩Qr(y), where Qr(y) is the
cube of side length 2r centred at y and aligned with the axes. Given u ∈ Lp,m+pα(Ω), for
some fixed m ≥ 2, p ∈ [1,∞), 0 < γ ≤ α,< 1, β ≥ 1, we carry out two calculations.
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Calculation 1. Take r ∈ (0, 1). Then Ωr(0) = {x ∈ Ω : 0 < x1 < r}, and

u0,r =

∫ r

0
tβ(m−1)tγ dt∫ r

0
tβ(m−1) dt

=
β(m− 1) + 1

β(m− 1) + 1 + γ
rγ.

Now write C̃ =
(

β(m−1)+1
β(m−1)+1+γ

)1/γ
∈ (0, 1), so

r−m−pα

∫
Ωr(0)

|u(x)− u0,r|p dx = r−m−pα

∫ r

0

tβ(m−1)|(C̃r)γ − tγ|p dt

≥ r−m−pα

∫ 1
2
C̃r

0

tβ(m−1)((C̃r)γ − tγ)p dt

≥ r−m−pα((C̃r)γ − (1
2
C̃r)γ)p

∫ 1
2
C̃r

0

tβ(m−1) dt

= Cr(β−1)(m−1)−p(α−γ),

where C > 0 is independent of r. Now if r > 0, then the function y 7→ r−λ ∥u− uy,r∥Lp(Ωr(y))

is continuous, so

[u]pp,λ ≥ sup
x0∈Ω

r−λ ∥u− uy,r∥pLp(Ωr(y))
[u]pp,λ

= sup
x0∈Ω

r−λ ∥u− uy,r∥pLp(Ωr(y))

≥ Cr(β−1)(m−1)−p(α−γ)

for each r > 0. Hence (β − 1)(m− 1)− p(α− γ) ≥ 0, that is

β ≥ 1 +
p

m− 1
(α− γ).

Calculation 2. Take y1 ∈ (0, 1
2
), and set y = (y1, 0, 0, . . . , 0), r =

(
1
2
y1
)β
. Then (y1−r)β ≥

(2r1/β − r1/β)β = r, so Ωr(y) = Qr(y). Further,

uy,r = (2r)−m

∫ y1+r

y1−r

(2r)m−1tγ dt =
1

2(γ + 1)r

(
(y1 + r)γ+1 − (y1 − r)γ+1

)
.

Now for γ ∈ (0, 1), we have

d

ds

(
(y1 + s)γ+1 − (y1 − s)γ+1

)
= 2(γ + 1) · 1

2
((y1 + s)γ + (y1 − s)γ) ≤ 2(γ + 1)yγ1

by concavity of s 7→ sγ. Integrating this inequality, noting that (y1+0)γ+1−(y1−0)γ+1 = 0,
dividing by 2(γ + 1)s and taking s = r then gives

uy,r ≤ yγ1 .

Hence

r−m−pα

∫
Ωr(y)

|u(x)− uy,r|p dx = r−m−pα

∫ y1+r

y1−r

(2r)m−1|tγ − uy,r|p dt

≥ r−1−pα

∫ y1+r

y1+
r
2

(tγ − uy,r)
p dt

≥ r−1−pα

∫ y1+r

y1+
r
2

(tγ − yγ1 )
p dt

≥ 1

2
r−pα

((
y1 +

r

2

)γ
− yγ1

)p
.
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Now for s ≤ y1, γ < 1, we have

d

ds
((y1 + s)γ − yγ1 ) = γ (y1 + s)γ−1 ≥ 2γ−1γ yγ−1

1 .

Integrating this inequality, noting that (y1 + 0)γ − yγ1 = 0, and taking s = r
2
≤ y1 gives(

y1 +
r

2

)γ
− yγ1 ≥ C(γ) yγ−1

1 r,

so

[u]pp,λ ≥ r−m−pα

∫
Ωr(y)

|u(x)− uy,r|p dx

≥ Cr−pα
(
yγ−1
1 r

)p
= Cy

p (β(1−α)−(1−γ))
1

for each y1 > 0, where C > 0 is independent of y1. Hence β(1− α)− (1− γ) ≥ 0, that is

β ≥ 1 +
1

1− α
(α− γ).

These calculations show that given m ≥ 2, p ∈ [1,∞), 0 < γ ≤ α,< 1, β ≥ 1, if we
define Ω ⊆ Rm, u : Ω → R by

Ω = {(x1, x̃) ∈ R× Rm−1 : 0 < x1 < 1, |x̃| < xβ
1}, u(x1, x̃) = xγ

1

then

u ∈ Lp,m+pα(Ω) ⇔ β ≥ 1 + max

{
1

1− α
,

p

m− 1

}
(α− γ).

Hence the “pointiness” of the cusps of Ω regulates the regularity of u ∈ Lp,m+pα(Ω).
It seems reasonable to expect that something similar holds in general. In particular,

we suggest the following.

If Ω has at worst C0,β cusps, that is there exists A ≥ 0 such that for each
x0 ∈ Ω and 0 < r ≤ min{1, diam(Ω)}, we have |Ωr(x0)| ≥ Arβ(m−1)+1, then

Lp,m+pα(Ω) ⊆ C0,γ(Ω), where γ = α−min

{
1− α,

m− 1

p

}
(β − 1).

Returning to §2.5, this would mean that we could relax the condition that Ω has no
external cusps (provided we don’t run into the cusp condition mentioned after remark
2.3), and still be able to use theorem 2.6 to conclude that solutions of elliptic systems
with uniformly continuous coefficients are Hölder continuous. Unfortunately, we did not
have time to explore this any further, but [GL23] would be our starting point for further
exploration in this direction.

3.5 Boundary regularity

The original aim of finding the example in §3.4 was to construct an example to show that
the cusp condition is needed to apply theorem 2.6 to Hölder continuity. While we can find
equations of the desired form which have u (as defined in §3.4) as a solution (for example
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by noting that for any q, we can have ∆u ∈ Lq(Ω) by taking β sufficiently large), we do
not have that u is equal to zero on the boundary.

If we adapt u to get appropriate boundary conditions, for example by taking

u(x1, x̃) = xγ
1(1− x1)(1− x−2β

1 |x̃|2),

then

∆u =
(
γ(γ − 1)xγ−2

1 − (γ − 2β)(γ − 2β − 1)xγ−2β−2
1 |x̃|2

)
−
(
(γ + 1)γxγ−1

1 − (γ − 2β + 1)(γ − 2β)xγ−2β−1
1 |x̃|2

)
+ 2(m− 1)

(
xγ−2β
1 − xγ−2β+1

1

)
.

Now if x ∈ Ω (with Ω as in §3.4), then x−2β
1 |x̃|2 ≤ 1, so the first term behaves like

xγ−2
1 and the second term behaves like xγ−1

1 . Now∫
Ω

x
q(γ−2)
1 dx =

∫ 1

t=0

tβ · tq(γ−2) dt,

so by making β large we can ensure the first two terms are in Lq(Ω) for our desired q.
However, the third term (which comes from derivatives with respect to x2, . . . , xm) is only
in Lq(Ω) when β is small. This prevents us from adjusting β to get the first terms in
Lq(Ω).

This suggests adding an “adjustment” term to our equation to cancel the third term,
but we were unable to find an appropriate adjustment which is uniformly continuous.
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4 Harmonic Maps

In §1, we studied elliptic equations, where the solution u is a map from Ω ⊆ Rm to R,
and in §2, we studied elliptic systems, where the solution is a map from Ω ⊆ Rm to
Rn. We now consider the situation where the solution is a map between Riemannian
manifolds, but we will restrict our attention to those which satisfy an analogue of the
equation ∆u = 0. These are known as harmonic maps.

Examples of harmonic maps include geodesics and minimal surfaces (see §4.2), but
they also include other situations, for example the behaviour of nematic liquid crystals
[Hél02, introduction]. These can be thought of as thin rod-shaped molecules which want
to be parallel to each other. Considering their direction (a unit-length vector) at each
point in space gives a map to the unit sphere which minimises some variational energy,
and this turns out to be very close to the energy given in definition 4.1.

4.1 Defining harmonic maps

Suppose we have Riemannian manifolds M,N of dimensions m,n, with C1 Riemannian
metrics g, h respectively.

We begin by defining harmonic maps M → Rn, following [Hél02, §1.1]. Given local
coordinates (x1, . . . , xm) on U ⊆ M, and a function u : U → R, we define the Laplacian
by

∆Mu =
1√
det g

∂i

(√
det g gij(x)∂ju

)
,

where gij(x) = g(x) (∂xi , ∂xj), and gij(x) is the (i, j)th element of the inverse matrix of
(gij). It is clear from a routine calculation that this is coordinate-independent.

Note that if M = Rm with the Euclidean metric, then gij = δij, and ∆Mu =
1√
1
∂i
(√

1δij∂ju
)
= ∂2

i u, giving the usual Laplacian.
Then we say that u : M → Rn is harmonic if each component uα : M → R satisfies

∆Muα = 0.
To help move on to the general case, note that if Ω ⊆ Rm, then harmonic maps

Ω → Rn are critical points of the energy functional u 7→
∫
Ω
|Du|2 dx =

∑
i,α

∫
Ω
(∂iu

α)2 dx.
Trying an analogous expression for functions u : M → Rn, we see that if

e(u) :=
∑
α

gij(x)∂iu
α∂ju

α, E(u) :=

∫
M

e(u) dvolg,

where dvolg =
√

det g(x) dx1 . . . dxm, then e(u) is coordinate-independent, and harmonic
maps are critical points of E.

This suggests the following definition of harmonic maps M → N [SY97, §IX.1].
Note we are retaining the convention that repeated indices are summed over, with i, j =
1, . . . ,m and α, β = 1, . . . , n.

Definition 4.1. Given a C1 function u : (M, g) → (N , h), and local coordinates x1, . . . , xm

on M, y1, . . . , yn on N , the energy density is

e(u) := gij(x)hαβ(u(x))∂iu
α∂ju

β,

where we write u = (u1, . . . , un), gij = g (∂xi , ∂xj), hαβ = h
(
∂yα , ∂yβ

)
. Then u is a

harmonic map if it is a critical point of the energy functional

E(u) :=

∫
M

e(u) dvolg. (4.1)
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Note that e(u) = trg(u
∗h), so this is coordinate-independent.

Further, if ∇ is the Levi-Civita connection on N with Christoffel symbols Γα
βγ in the

coordinates y1, . . . , yn, then the Euler-Lagrange equations for (4.1) are

∆Muα + gij(x)Γα
βγ(u(x))∂iu

β∂ju
γ = 0 ∀α, (4.2)

so we can also take this as the definition of harmonic maps (see [Hél02, §1.2]).
If N = Rn, then all the Christoffel symbols are 0, giving our previous definition of

harmonic maps into Rn.
Additionally, ifN is isometrically embedded in RN , we have an alternative formulation

of (4.2), namely
∆Mu+ gijB(u(x)) (∂iu, ∂ju) = 0, (4.3)

where B is the second fundamental form of N (see [Hél02, (1.17), lemma 1.2.4]).

4.2 Examples

In order to motivate our discussion, we give a few examples of harmonic maps.

Example 4.1 (Geodesics [Hél02, example 1.2.6]). If M = [0, L] ⊆ R with coordinate t,
then (4.2) becomes

üα + Γα
βγ(u) u̇

β u̇γ = 0 ∀α.
These are the geodesic equations for curves in (N , h).

Example 4.2 (Minimal submanifolds [HW08, §2.2, example 7]). If u : M → N is an
isometric immersion, then it can be shown that u is harmonic if and only ifM is a minimal
submanifold of N .

Example 4.3 (Holomorphic maps (adapted from [HW08, §2.2, example 10])). If M =
N = C, with complex coordinate z = x+ iy on M, then gij = δij and all the Christoffel
symbols for h are 0. Hence (4.2) becomes

0 =
(
∂2
x + ∂2

y

)
u = ∂z̄∂zu,

So holomorphic and antiholomorphic maps are harmonic.

Example 4.4 (Maps into the sphere (adapted from [HW08, §3.1, example])). Suppose
N = Sn ⊆ Rn+1 with the round metric. The second fundamental form of Sn ⊆ Rn+1 is

B(p)(X, Y ) = ⟨X, Y ⟩p,

where ⟨·, ·⟩ is the usual inner product on Rn+1. So (4.3) becomes

∆Mu = −e(u)u, (4.4)

where e(u) :=
∑

α g
ij∂iu

α∂ju
α.

Now if M = Bn+1 ⊆ Rn+1 is the unit ball, then (4.4) becomes

∆u = −|Du|2u,

which has weak solution x 7→ x
|x| . This suggests that it would be useful to find a weak

formulation of definition 4.1, and also that maps satisfying such a definition may not be
continuous.
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4.3 Different notions of weakly harmonic maps

We now seek a notion of weakly harmonic maps. As mentioned in [SY97, §IX.1], it makes
sense to first restrict our attention to maps with finite energy. Recalling that

E(u) =

∫
M

gij(x)hαβ(u(x))∂iu
α∂ju

β dvolg,

we see that our maps should be bounded (to control hαβ(u)) with derivatives in L2 (to
control ∂iu

α · ∂juβ), so they should be in the space

L∞(M,N ) ∩H1(M,N ).

Unfortunately, we don’t have a good notion of what this space means, since we want to
work in local coordinates, but this requires continuity (to assume that the image of an open
set in M is contained in a coordinate chart of N ), which we want to avoid imposing. We
can get around this by isometrically embedding N in RN (although a smooth embedding
can be used instead [SY97, §IX.1]), and considering maps u : M → RN taking values in
N almost everywhere, giving the space

D :=
{
u ∈ L∞(M,RN) ∩H1(M,RN) : u(x) ∈ N a.e.

}
.

We could now give a weak formulation of (4.2), but again this requires local coordinates
on N , and hence continuity. However, the weak formulation of (4.3) makes sense without
assuming continuity, and if u is continuous then the two weak formulations agree. This
suggests the following definition [SY97, §IX.1].

Definition 4.2. A map u ∈ D is weakly harmonic if∫
M

∑
α

[
gij∂iu

α∂jφ
α + gijφαBα(u(x)) (∂iu, ∂ju)

]
dvolg = 0 (4.5)

for each coordinate patch U ⊆ M, and any φ ∈ H1
0 (U,RN) ∩ L∞(U,RN).12 (Recall that

B is the second fundamental form of the embedding of N in RN .)

There are other weak formulations of definition 4.1, so we briefly outline two such
formulations from [HW08, §3.1]. A map u ∈ D is called minimising if any v ∈ D such
that v = u outside a compact subset of M, satisfies E(v) ≥ E(u). And a weakly harmonic
map is called stationary if it is stationary with respect to a larger class of deformations
than those used to find the Euler-Lagrange equations for (4.1). We have the inclusions

{minimising maps} ⊆ {stationary maps} ⊆ {weakly harmonic maps},

and these are strict in general.

12In [SY97], φ is restricted to C∞
c (U,RN ), but we have opted for the more general class of functions

used in [Hél02, definition 1.4.9], as this will be useful to us later on. Note that this gives an equivalent
definition.
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4.4 Regularity of continuous weakly harmonic maps, via freez-
ing coefficients

We begin with the following surprising theorem [Hél02, theorem 1.5.1].

Theorem 4.1. Suppose N is compact without boundary, and u ∈ H1(M,N ) is a con-
tinuous harmonic map.13 Then u is smooth, that is if the metric on M is Ck,α, and the
metric on N is C l,α, then u is C min{k,l}+1,α.

The difficult step in the proof of this theorem is showing that u is Lipschitz [HW08,
§4.1]. We will prove the weaker statement that Hölder continuous weakly harmonic maps
are Lipschitz continuous, because it shows another freezing coefficients argument. The
idea is that the continuity of u means we can assume that the image of a small set in M
lies in a single coordinate patch in N , and therefore work in local coordinates. We cannot
use theorem 2.4 here, since our coefficients depend on u as well as x (see §3.2), but we
can choose coordinates in such a way that the frozen equation has a nice form.

Proposition 4.2. If a weakly harmonic map u : M → N is α-Hölder continuous for
some α ∈ (0, 1), then u is locally Lipschitz.

The following proof is from [SY97, §IX.7], with some parts reordered and additional
explanation added for clarity.

Proof. First, we obtain an estimate which will be useful later. Take normal coordi-
nates (x1, . . . , xm) in a normal neighbourhood Br0(x0) of M and the usual coordinates
(y1, . . . , yN) on RN , and write u = (u1, . . . , uN). Since u is continuous and weakly har-
monic, it satisfies the weak form of (4.2), so∫

Br0 (x0)

∑
β

[
− gij∂iu

β∂jφ
β + φβgijΓβ

γδ(u)∂iu
γ∂ju

δ
]
dx = 0 (4.6)

for each φ ∈ H1
0 (Br0(x0),RN).

Now if g0 is the Euclidean metric on RN , then
∑

β ∂iu
β∂jφ

β = g0
(
∂iu

β∂yβ , ∂jφ
γ∂yγ

)
for fixed i, j. However, u takes values in N , so ∂iu

β∂yβ is tangent to N , and we can
replace ∂jφ

γ∂yγ with its projection hγδ∂jφ
δ∂yδ onto the tangent space to N . Hence∑

β

∂iu
β∂jφ

β = g0
(
∂iu

β∂yβ , ∂jφ
γ∂yγ

)
= hβγ∂iu

β∂jφ
γ.

So if we write ⟨∇u,∇φ⟩ := gijhβγ∂iu
β∂jφ

γ, then for each r ∈ (0, r0) we have∣∣∣∣∫
Br(x0)

⟨∇u,∇φ⟩ dvolg
∣∣∣∣ =

∣∣∣∣∣
∫
Br(x0)

∑
β

gij∂iu
β∂jφ

β dvolg

∣∣∣∣∣
=

∣∣∣∣∣
∫
Br(x0)

∑
β

φβΓβ
γδ(u)g

ij∂iu
γ∂ju

δ dvolg

∣∣∣∣∣
≤ C1 sup

Br(x0)

|φ|
∫
Br(x0)

gijhγδ∂iu
γ∂ju

δ dvolg

= C1 sup
Br(x0)

|φ|
∫
Br(x0)

e(u) dvolg, (4.7)

13Note that when N is compact, the condition u ∈ L∞(M,N ) is automatically satisfied.
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where C1 depends only on the behaviour of h and embedding of N into RN near u(x0).
This is a coordinate-independent statement on N , so we are free to change coordi-

nates. Hence we assume (by decreasing r0 if necessary) that u(Br0(x0)) lies in a normal
neighbourhood of u(x0) with normal coordinates (y1, . . . , yn), and that r < 1. We now
write u = (u1, . . . , un).

If |x| ≤ r, then the normality of the coordinates and Hölder continuity of u gives

|gij(x)− δij| ≤ C2r
2,

|hβγ(u(x))− δβγ| ≤ C3r
2α,

(4.8)

where C2 depends only on the behaviour of g near x0, and C3 depends only on ∥u∥C0,α

and the behaviour of h near u(x0).
Further, gij = δij at x0, and the Γβ

γδ are all 0 at u(x0). We want to freeze coefficients as
we did in §2.4, but this time our equation has coefficients depending on both x and u(x),
so we need to freeze coefficients in both the domain and codomain. Plugging gij = δij
and Γβ

γδ = 0 into (4.6) gives ∑
i

∂2
i v = 0.

Take v to be the unique weak solution to this on Br(x0) with v = u on ∂Br(x0).
In §2.4, we set φ = u− v in the equation for u. Doing this with (4.7) gives∣∣∣∣∫

Br(x0)

⟨∇u,∇(u− v)⟩ dvolg
∣∣∣∣ ≤ C1 sup

Br(x0)

|u− v|
∫
Br(x0)

e(u) dvolg. (4.9)

Further, the maximum principle gives

max
Br(x0)

v = max
∂Br(x0)

v = max
∂Br(x0)

u ≤ max
Br(x0)

u,

min
Br(x0)

v = min
∂Br(x0)

v = min
∂Br(x0)

u ≥ min
Br(x0)

u,

so
osc

Br(x0)
v ≤ osc

Br(x0)
u ≤ Crα,

where C = 2α ∥u∥C0,α . Hence if x̃ ∈ ∂Br(x0), then

sup
x∈Br(x0)

|u(x)− v(x)| ≤ sup
x∈Br(x0)

|u(x)− u(x̃)|+ |u(x̃)− v(x̃)|+ sup
x∈Br(x0)

|v(x̃)− v(x)|

≤ Crα + 0 + Crα.

Combining this with (4.9), we have∣∣∣∣∫
Br(x0)

⟨∇u,∇(u− v)⟩ dvolg
∣∣∣∣ ≤ C(C1, ∥u∥C0,α)r

α

∫
Br(x0)

e(u) dvolg. (4.10)

We can also take φ = u−v in the equation for v. If we write ∂v ·∂φ :=
∑

i,β ∂iv
β∂iφ

β,
then this equation is ∫

Br(x0)

∂v · ∂φ dx = 0 ∀φ ∈ H1
0 (Br(x0)),
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and setting φ = u− v gives∫
Br(x0)

|∂(u− v)|2 dx =

∫
Br(x0)

∂u · ∂(u− v) dx. (4.11)

Now if |x| ≤ r, then |
√

det g(x)− 1| ≤ Cr by (4.8), so

|gijhβγ(u)
√

det g − δijδβγ| ≤ C(C2, C3)r
min{1,2α}.

Noting that if α ∈ (0, 1) then α ≤ min(2α, 1), we have∣∣∣∣∣
∫
Br(x0)

∂u · ∂(u− v) dx−
∫
Br(x0)

⟨∇u,∇(u− v)⟩ dvolg

∣∣∣∣∣
=

∣∣∣∣∣∑
i,j

∫
Br(x0)

(
δijδβγ − gijhβγ(u)

√
det g

)
∂iu

β ∂j(u− v)γ dx

∣∣∣∣∣
≤ C(C2, C3)r

α

∫
Br(x0)

|∂u||∂(u− v)| dx

≤ Crα
∫
Br(x0)

(
|∂u|2 + |∂v|2

)
dx

≤ Crα
∫
Br(x0)

|∂u|2 dx,

where for the final inequality we used the fact that v is energy minimising.
Combining this with (4.10) and (4.11), we get∫

Br(x0)

|∂(u− v)|2 dx =

∫
Br(x0)

∂(u− v) · ∂u dx

≤
∫
Br(x0)

⟨∇(u− v),∇u⟩ dvolg + C(C2, C3) r
α

∫
Br(x0)

|∂u|2 dx

≤ C(C1, ∥u∥C0,α) r
α

∫
Br(x0)

e(u) dvolg + C(C2, C3) r
α

∫
Br(x0)

|∂u|2 dx

≤ C(C1, C2, C3, ∥u∥C0,α) r
α

∫
Br(x0)

|∂u|2 dx, (4.12)

where we used (4.8) for the final inequality.
This inequality is better for smaller values of r, which suggests that we iterate.14

We aim to compare A r
2
(u) to Ar(u), where we write Aρ(·) = 1

|Bρ(x0)|

∫
Bρ(x0)

|∂ · |2 dx for
convenience.

Note that for any w, we have

A r
2
(w) =

2n

|Br(x0)|

∫
B r

2
(x0)

|∂w|2 dx ≤ 2n

|Br(x0)|

∫
Br(x0)

|∂w|2 dx = 2nAr(w).

14If we don’t have Hölder continuity, then the analogue of (4.12) we obtain is missing the factor of rα,
which prevents us from iterating.
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If w = v, we can improve this. Note that

∆|∂v|2 =
∑
j

∂2
j |∂v|2

=
∑
i,j,β

2
((

∂i∂jv
β
)2

+ ∂iv
β∂i∂

2
j v

β
)

= 2
∑
β

(
|D2vβ|2 +

∑
i

∂iv
β∂i(∆vβ)

)
≥ 0,

so |∂v|2 is subharmonic, giving us the mean value inequality

d

dρ

(
1

Bρ(x0)

∫
Bρ(x0)

|∂v|2 dx

)
≥ 0 for 0 ≤ ρ ≤ r.

In particular, A r
2
(v) ≤ Ar(v).

Finally, the energy minimising property of v gives that for any ρ, w,

Aρ(v) ≤ Aρ(w).

Now

|∂u|2 = ∂u · ∂(u− v) + ∂(u− v) · ∂v + |∂v|2 ≤ |∂(u− v)|(|∂u|+ |∂v|) + |∂v|2.

Integrating this over B r
2
(x0) and using Cauchy-Schwarz gives

A r
2
(u) ≤

√
A r

2
(u− v)

(√
A r

2
(u) +

√
A r

2
(v)
)
+ A r

2
(v)

≤ C
√
Ar(u− v)

(√
A r

2
(u) +

√
Ar(v)

)
+ Ar(v)

≤ C
√

Ar(u− v)
(√

A r
2
(u) +

√
Ar(u)

)
+ Ar(u).

Then (4.12) gives that

A r
2
(u) ≤ Cr

α
2

√
Ar(u)

(√
A r

2
(u) +

√
Ar(u)

)
+ Ar(u)

≤ Cr
α
2

(
C

2
Ar(u) +

1

2C
A r

2
(u)

)
+
(
1 + Cr

α
2

)
Ar(u)

≤ Cr
α
2

(
C

4
Ar(u) +

1

C
A r

2
(u)

)
+
(
1 + Cr

α
2

)
Ar(u)

≤
(
1− r

α
2

)−1 (
1 + Cr

α
2

)
Ar(u)

≤
(
1 + Cr

α
2

)
Ar(u),

where C depends only on C1, C2, C3, ∥u∥C0,α .
If we set ri = 2−ir0, then

1

|Bri(x0)|

∫
Bri (x0)

|∂u|2 dx ≤
∞∏
j=0

(
1 + Cr

α
2
0 2

iα
2

) 1

|Br0(x0)|

∫
Br0 (x0)

|∂u|2 dx,
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by iteration, so for each 0 < r < r0 we have

1

|Br(x0)|

∫
Br(x0)

|∂u|2 dx ≤ C.

Applying (4.8) for the final time gives that

1

|Br(x0)|

∫
Br(x0)

e(u) dvolg ≤ C
1

|Br(x0)|

∫
Br(x0)

|∂u|2 dx ≤ C

for each 0 < r < r0.
Now x0 was arbitrary and C does not depend on x0 (only on u and the local behaviour

of g, h). This means that e(u) = ⟨∇u,∇u⟩ is locally bounded, so ∇u is a L∞
loc function,

and u is therefore locally Lipschitz.

Once we have that u is Lipschitz, the conclusion of theorem 4.1 follows from a bootstrap
argument, which we will briefly outline, first in the case where g, h are C∞, following part
of [HW08, §4.2]. We have that ∇u ∈ L∞

loc, so working in local coordinates, as u is a
weak solution of (4.2), this means that ∆Mu ∈ L∞

loc. We can then apply regularity
results for systems similar to those we have seen so far (see [Mor08, theorem 6.2.5]) to
get that u ∈ W 2,p

loc for each 1 ≤ p < ∞. Then given any 1 ≤ p′ < ∞, we see that

gij(x)Γα
βγ(u(x))∂iu

β∂ju
γ ∈ W 1,p′

loc because Du ∈ W 1,2p′

loc . Hence (4.2) gives that ∆Mu ∈
W 1,2p′

loc , so again applying regularity results gives that u ∈ W 3,p
loc for each 1 ≤ p < ∞.

Repeating this process, we see that u ∈ W k,p
loc for any 1 ≤ p < ∞, k ∈ N, so u is smooth.

In the case where g, h are not C∞, this process stops after some number of iterations,
giving that u is locally W k,p for some k ∈ N. In order to recover theorem 4.1, we must
carry out this process with results which give local Ck,α regularity of u, similar to the
results obtained at the end of §1.2.

This means that the regularity problem for harmonic maps can be reduced to the
question of continuity. We briefly outline the situation regarding this, following ideas
from [Hél02, §1.5].

In the case m (= dimM) = 1, note that any map u ∈ D is in H1(M, BR) for

R = ∥u∥L∞((M)), BR ⊆ RN . Then u ∈ C0, 1
2 (M) by Morrey’s inequality, so any harmonic

map u : M → N is continuous, hence smooth.
If m = 2, we cannot use the argument above. However, provided N is compact

and without boundary, it is still true that all weakly harmonic maps are continuous
[Hél02, §4.1].

When m ≥ 3, the picture is much more complicated. The possibility of a regularity
result for all weakly harmonic maps has been ruled out by the construction by Rivière of
(finite energy) weakly harmonic maps with value in S2 [Riv95]. However, the picture for
minimizing and stationary maps is more favourable - minimising maps must be continuous
outside a singular set of Hausdorff dimension at most m − 3, and stationary maps must
be continuous outside a singular set of Hausdorff dimension at most m− 2.

It turns out that the example u : B3 → S2, B1 ⊆ R3, x 7→ x
|x| is a minimising map

[Hél02, §1.5]. This shows that the result for minimising maps is optimal.
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4.5 Scalar methods applied to the energy

To finish this section, we follow [SY97, §IX.4], to see how ideas similar to those in §1.3
can be applied to the energy of harmonic maps, and how this gives us interesting results
about harmonic maps themselves.

We begin with the Bochner formula for harmonic maps ([SY97, §IX.4],[EL78, pg 12]),

1

2
∆Me(u) = |∇(du)|2 −

∑
i,j

h(RiemN (u∗ei, u∗ej)u∗ei, u∗ej) +
∑
α

RicciM(u∗θα, u
∗θα).

Here ∇ is the pullback of the connection on N , e1, . . . , em is an orthonormal basis for
TM , and θ1, . . . , θn is an orthonormal basis for T ∗N . Suppose M is compact, so we can
bound the third term from below by −C|du|2 = −Ce(u). Hence if N has nonpositive
sectional curvature, then discarding the first two terms gives

∆Me(u) ≥ −C(M)e(u). (4.13)

Alternatively, the second term is also bounded from below, this time by −C(N )|du|4 =
−Ce(u)2, so if e(u) ≤ 1, then we can discard the first term and bound e(u)2 by e(u) to
get

∆Me(u) ≥ −C0(M,N )e(u). (4.14)

This lets us use the following generalisation of theorem 1.4 [Mor08, theorem 5.3.1].

Theorem 4.3. Suppose w ∈ H1
loc(Ω) ∩ L2(Ω) satisfies w ≥ 1 in Ω ⊆ Rm. Suppose also

that
−∂i(aij∂jw + biw) + ci∂iw + dw ≤ 0

in the weak sense in Ω, where the coefficients aij ∈ L∞(Ω), bi, ci ∈ Lm(Ω), d ∈ L
n
2 (Ω) are

such that
λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rm

for almost all x ∈ Ω, and

∥bi∥2Lm(Br(x))
+ ∥ci∥2Lm(Br(x))

+ ∥d∥
L

m
2 (Br(x))

≤ C1r
µ

for each Br(x) ⊆ Ω.
Then w ∈ L∞

loc(Ω), and there exists C = C(m,λ,Λ, C1, µ) such that if 0 < ρ ≤ R and
BR+ρ(x0) ⊆ Ω, then

∥w∥2L∞(BR(x0))
≤ Cρ−m ∥w∥2L2(BR+ρ(x0))

for each x ∈ BR(x0).

We give our own explanation for how this applies in our case.
Suppose u ∈ C2(Ω,N ) is a harmonic map with respect to the Euclidean metric g0 on

a compact set Ω ⊆ Rm, and that e(u) ≤ 1, so that (4.14) gives −∆e(u) − C0e(u) ≤ 0.
Now e(u) is defined using only the first derivatives of u, so e(u) ∈ C1(Ω).

Given ε ∈ (0, 1), write vε =
1
ε
(e(u) + ε) ∈ C1(Ω), so that

−∆vε − C0vε =
1

ε
(−∆Me(u)− C0e(u)− C0ε) ≤ 0

in the weak sense, and 1 ≤ vε ≤ Mε, ∂ivε ≤ Mε for each i, where Mε =
1
ε
∥e(u)∥C1(Ω).

40



Next, take wε ≥ 0 such that w2
ε = vε. Then wε ∈ C1(Ω) because vε stays away from

0, so by compactness of Ω we have that wε ∈ H1
loc(Ω) ∩ L2(Ω). Further, 1 ≤ wε ≤

√
Mε,

∂ivε ≤
√
Mε for each i, so

0 ≥ −∆M(w2
ε)− C0w

2
ε

= −2wε∆Mwε − 2|∇wε|2 − C0w
2
ε

≥
√

Mε

(
− 2∆wε − 2

∑
i

∂iwε − C0wε

)
,

again in the weak sense. Dividing by
√
Mε gives that

−2∆wε − 2
∑
i

∂iwε − C0wε ≤ 0,

so we can apply theorem 4.3 to get

|wε(x)|2 ≤ C(m,C0)ρ
−m

∫
BR+ρ(x0)

w2
ε

whenever 0 < ρ ≤ R, BR+ρ(x0) ⊆ Ω, x ∈ BR(x0).
Finally, substituting w2

ε = vε =
1
ε
(e(u) + ε) and multiplying by 1

ε
gives

e(u)(x) + ε ≤ Cρ−m

∫
BR+ρ(x0)

(e(u) + ε) ≤ Cρ−m

∫
BR+ρ(x0)

e(u) + Cρ−m(R + ρ)mε.

Sending ε → 0 and rewriting ρ,R, we have shown that

sup
Bρ(x0)

e(u) ≤ C(R− ρ)−m

∫
BR(x0)

e(u)

whenever 0 < R − ρ ≤ R
2
, BR(x0) ⊆ Ω. We see that if R

2
≤ R − ρ < R, then

(
R
2

)−m ≤
(R− ρ)−m and ∅ ≠ B2ρ(x0) ⊆ BR(x0), so

sup
Bρ(x0)

e(u) ≤ C(ρ)−m

∫
B2ρ(x0)

e(u) ≤ C(R− ρ)−m

∫
BR(x0)

e(u).

Finally, we that e(u)(x0) ≤ C(R − ρ)−m
∫
BR(x0)

e(u) for each ρ > 0, so sending ρ → 0

gives the same result for ρ = 0. Noting that C0 depends on M = Ω, N , we have shown
the following.

Lemma 4.4. Let u ∈ C2(Ω,N ) be a harmonic map with respect to the Euclidean metric
g0 on a compact set Ω ⊆ Rm, such that e(u) ≤ 1. Then there exists C = C(m,Ω,N ) such
that

sup
Bρ(x0)

e(u) ≤ C(R− ρ)−m

∫
BR(x0)

e(u)

whenever 0 ≤ ρ < R, BR(x0) ⊆ Ω.

Note the same argument works when N is nonpositively curved, and in that case C
does not depend on N .

We will now use this to prove the main theorem of this subsection, following a proof
from [SY97, §IX.4]. We have rearranged it to show where the ideas come from, and added
additional explanation for clarity.
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Theorem 4.5. Suppose u ∈ C2(Br0 ,N ) is harmonic with respect to the Euclidean metric
g0 on Br0 ⊆ Rm, m ≥ 3. Then there exist ε > 0, C ≥ 0 depending only on m,N , such
that if

r2−m
0

∫
Br0

e(u) ≤ ε, (4.15)

then

sup
B r0

2

e(u) ≤ Cr−m
0

∫
Br0

e(u). (4.16)

Proof. We begin by stating the following lemma (consequence of [SY97, §IX, lemma 1.2]).

Lemma 4.6. If u is a stationary map from a domain Ω ⊆ Rm, m ≥ 3, to a manifold N ,
then for each x ∈ Ω and 0 < ρ < r < dist(x, ∂Ω) we have

r2−m

∫
Br(x)

e(u)− ρ2−m

∫
Bρ(x)

e(u) ≥ 0.

Hence

ρ2−m

∫
Bρ(x)

e(u) ≤ r2−m

∫
Br(x)

e(u)

whenever x ∈ Br0 and 0 < ρ < r < r0 − |x|.
Note that given r1 < r0, x ∈ Br1 , 0 < ρ ≤ r1 − |x|, by applying lemma 4.6 and

increasing the area of integration (see figure 4.1) we get

ρ2−m

∫
Bρ(x)

e(u) ≤
(
r0 + r1

2
− |x|

)2−m ∫
B 1

2 (r0+r1)−|x|(x)

e(u) ≤ C

(
r0

r0 − r1

)m−2

r2−m
0

∫
Br0

e(u),

r1

r0

ρ

Figure 4.1

and setting r1 =
3
4
r0 gives15

ρ2−m

∫
Bρ(x)

e(u) ≤ 4m−2Cr2−m
0

∫
Br0

e(u) (4.17)

15Note that [SY97] has
(
3
4

)m−2
in the expression below, and the original paper [Sch84] containing this

proof has
(
4
3

)m−2
. We have corrected this here.
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for any x ∈ Br1 and 0 < ρ ≤ r1 − |x|.
Now take some Bρ0(x0) ⊆ Br1 to be fixed later. We aim to use lemma 4.4, so we must

rescale u. Given a > 0, write ρ1 = aρ0, and consider the map v : (Bρ1 , g0) → N given by
v(y) = u

(
1
a
y + x0

)
, which is also harmonic. Then for each y ∈ Bρ1 , if x = f(y) then

e(v)(y) =
∑
i,j

δijhαβ(v(y))∂yiv
α(y)∂yjv

β(y)

=
∑
i,j

δijhαβ(u(x)) ·
1

a
∂xiuα(x) · 1

a
∂xjuβ(x)

=
1

a2
e(u)(x).

Note that if a =
√
e0, where e0 = supBρ0 (x0) e(u), then e(v) ≤ 1. Assume for now

that ρ1 ≤ 1, that is that
√
e0 ρ0 ≤ 1. Then we can instead take a = (ρ0)

−1 ≥ √
e0 to

get a harmonic map v : B1 → N with energy at most 1 (and rescaling to B1 avoids the
dependence of C on Ω in lemma 4.4). Then using lemma 4.4 with R = ρ1, ρ = 0 gives

ρ20 e(u)(x0) = e(v)(0)

≤ C(m,N )

∫
B1

e(v)

≤ Cρ−m
0

∫
Bρ0 (x)

ρ20 e(u)

≤ 4m−2Cr2−m
0

∫
Br0

e(u),

where for the last line we used (4.17). So if e0 ≤ ρ−2
0 , then

ρ20 e(u)(x0) ≤ C(m,N ) r2−m
0

∫
Br0

e(u).

Now we choose x0. Given r2 < r1, note that the function x 7→ e(u)(x) is continuous
on Br2 , so we take x0 to be the point where it attains its maximum (possibly on ∂Br2).

We could set r2 = 1
2
r0, ρ0 = 1

4
r0 to get (4.16), but the condition ρ1 ≤ 1 becomes

supBρ0 (x0) e(u) ≤ ρ−2
0 . This still contains a supremum, so is not what we want. Instead,

we wait to fix r2. We could take ρ0 = r1 − r2, but it will be helpful to instead set
ρ0 =

1
2
(r1 − r2), so that r1 − (r2 + ρ0) = ρ0 (see figure 4.2).

This gives
1

4
(r1 − r2)

2 sup
Br2

e(u) ≤ Cr2−m
0

∫
Br0

e(u).

The function r 7→ (r1− r)2 supBr
e(u) is continuous on [0, r1], so attains its maximum,

and is 0 at r1. We take r2 < r1 to be the point where this maximum is attained, so that

sup
Br

e(u) ≤ C

(
r1 − r

r0

)−2

· r−m
0

∫
Br0

e(u) (4.18)

for each r ≤ r1. Setting r2 = r0
2

and recalling that r1 = 3r0
4

gives (4.16), provided
e0 = supBρ0 (x0) e(u) ≤ ρ−2

0 .
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r2+ρ0

ρ0
ρ0

ρ0

Figure 4.2

Now we return to this condition. Suppose e0 ≥ ρ−2
0 , so that taking a =

√
e0 and

rescaling as above gives ρ1 > 1. Then v|B1 is a harmonic map with energy at most 1, so
applying lemma 4.4 on B1 and using (4.17) gives

e−1
0 e(u)(x0) = e(v)(0)

≤ C(m,N )

∫
B1

e(v)

= C (
√
e0)

m

∫
B

e
− 1

2
0

(x0)

e−1
0 e(u)

= Ce
− 1

2
(2−m)

0

∫
B√

e0
(x0)

e(u)

≤ 4m−2Cr2−m
0

∫
Br0

e(u).

But we also have

e0 = sup
Bρ0 (x0)

e(u)

≤ sup
Br2+ρ0

e(u)

=
1

ρ20
(r1 − (r2 + ρ0))

2 sup
Br2+ρ0

e(u)

≤ 1

ρ20
(r1 − r2)

2 sup
Br2

e(u)

=
1

ρ20
(2ρ0)

2e(u)(x0)

= 4 e(u)(x0),

so combining these inequalities gives

1 ≤ Cr2−m
0

∫
Br0

e(u). (4.19)

If we require that (4.15) holds for a suitable ε, then we exclude this possibility.
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We add our own note that in the proof above, if we take r1 = βr0 in (4.17) for
β ∈ (0, 1), avoid absorbing the resulting factor of β−m into the constant, and write
r = αr0 for α ∈ (0, β), then (4.18) becomes

sup
Bαr0

e(u) ≤ C

(
1

1− β

)m−2(
r1 − αr0

r0

)−2

r−m
0

∫
Br0

e(u)

=
1

(1− β)m−2(β − α)2
· Cr−m

0

∫
Br0

e(u),

and (4.19) becomes

1 ≤
(

1

1− β

)m−2

· Cr2−m
0

∫
Br0

e(u),

where C is independent of α, β. For fixed α, we have infβ∈(α,1)(1 − β)2−m(β − α)−2 =
C(m)(1 − α)−m, and if β ∈ (0, 1) then (1 − β)2−mr2−m

0

∫
Br0

e(u) > r2−m
0

∫
Br0

e(u), so we

have shown the following.

Theorem 4.7. Suppose u satisfies the conditions of theorem 4.5. Then there exist ε > 0,
C ≥ 0 depending only on m,N , such that if

r2−m
0

∫
Br0

e(u) ≤ ε,

then

sup
Bαr0

e(u) ≤ C
1

(1− α)m
r−m
0

∫
Br0

e(u).

Hence we have an analogue of theorem 1.4 for the energy of harmonic maps. While
we have given the result for the Euclidean metric on subsets of Rm, it can be obtained
in a more general case (for example, in [SY97, §IX.4], it is stated for the case when
λδij ≤ gij ≤ Λδij). We also note that if N is negatively curved, then (4.13) holds with no
condition on e(u), so the small energy condition can be dropped from theorem 4.5 in this
case.

We can use theorem 4.5 to prove the following [SY97, §IX, corollary 4.4].

Corollary 4.8. Suppose M, N are compact. Define the set

FΛ :=

{
u ∈ C∞(M,N : u is harmonic, E(u) =

∫
M

e(u) dvolg ≤ Λ

}
.

Then any map u in the weak H1 closure of FΛ is smooth and harmonic outside some set
S which is relatively closed in the interior of M, and has Hausdorff dimension at most
m− 2.

Estimates like theorem 4.5 are very useful for proving other results, and hold in a wide
variety of cases. For example, it is remarked in [Lin99, proposition 1.4] that theorem 4.5
is true for stationary harmonic maps, and so corollary 4.8 also holds in this case.
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Conclusion

In this essay, we have examined two methods for establishing the regularity of elliptic
equations (or systems if the coefficients are continuous). The results we initially obtained
(theorems 1.4 and 2.4) couldn’t be immediately generalised to harmonic maps (as we saw
in §3.1 and §3.2), but the methods were still able to be adapted to give partial regularity
results, for example theorems 4.1 and 4.8.

We also looked at how the method of freezing coefficients can be adapted to give
boundary regularity, provided the conclusion of remark 2.3 is true. Unfortunately, we
were not able to prove the result in this remark. With more time, it would have been
interesting to explore techniques which we could have used to prove this. The question
of boundary regularity also prompted an exploration into Campanato spaces with the
intention of generating an example showing the necessity of a cusp assumption on Ω.
Unfortunately, we did not obtain such an example, but the exploration did suggest a way
to extend the result we had obtained (see §3.4).

If we had more time, we would also have investigated applications of Campanato spaces
to harmonic maps, to better tie this topic in to our essay. In particular, Campanato spaces
can be defined on compact manifolds and behave as expected, at least in the scalar-valued
case [Gei88], so we hoped to try and adapt the proof of theorem 2.4, with the same choice
of coordinates as in the proof of theorem 4.1, to show that continuous harmonic maps
between compact manifolds are Hölder continuous. This would have first required more
work to define Campanato spaces for maps between manifolds, which prevented us from
doing this.

We would also have enjoyed further exploring other topics, for example the partial
regularity results mentioned at the end of §4.4, or the applications of theorem 4.5 at the
end of §4.5. However, we hope that what we were able to explore was enough to showcase
the versatility of the methods we covered.
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