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Introduction

In this essay, we will discuss the following question.

If w is the solution to an elliptic equation (or system) with “nice”
coefficients, how “nice” does u have to be?

This problem (the regularity problem) is very well understood in the case of elliptic equa-
tions, when the solution u is a map from R™ to R. However, methods which work in
this case may not translate to more general situations. We will examine this problem for
linear elliptic equations, and two generalisations of this, namely elliptic systems (where
the solution is a map u : R™ — R™), and harmonic maps (where the solution is a map
between Riemannian manifolds, but we restrict to the equation analogous to Au = 0).

Our main focus will be on the method of freezing coefficients, which can be used to
establish regularity results for both equations and systems in almost exactly the same way,
and can also be used to give a regularity result for harmonic maps. However, this method
relies heavily on having continuous coefficients, so we will examine a second method which
works when the coefficients are merely bounded. This method cannot be easily adapted
to systems, but still has applications for harmonic maps.

Each of our main sections is dedicated to a particular situation. In §1, we look at the
scalar case, giving an introduction to freezing coefficients, and taking a detailed look at
our second method. We give a more in-depth exploration of freezing coefficients in §2,
which is dedicated to systems, and examine how to adapt the method to give boundary
regularity. In §3, we look at examples which show that some of the results we have found
do not hold in more general situations. Finally, §4 is about harmonic maps, and we see
how both methods can be applied to give regularity and partial regularity results in this
case.



1 Elliptic equations

1.1 The problem

In this section, we are interested in equations with the form

—6j (azjazu) + bl&u +cu = f — 8jgj in Q,

1.1
u=20 on 0f), (1.1)

where a;;,b;, ¢, f, g; : @ — R are defined on a domain {2 C R™, and the solution is a map
u : €2 — R. Here we adopt the convention that repeated indices are summed over. We
also require the a;; to be symmetric (ie. a;; = aj; for all 4, j) and uniformly elliptic, that
is there must be A\, A € R such that

MEP < agi(2)685 < AlgJ? V¢ e R™

for almost all = € 2. Note this means that the a;; are bounded, with ||a|| ;) < A.
We are interested in weak solutions to (1.1), that is functions v € H'(Q) which satisfy

/ a;;0;u0jp + b;0up + cup = / o+ 9050 Vo € Hy(Q2),
Q Q

where as usual H' is the space of L? functions with weak derivatives in L?, and H} is
the closure of the space C2° (of compactly supported smooth functions) in H'. The weak
formulation of the boundary condition is u € Hy ().

To simplify the discussion, we consider only the case where the lower-order coefficients
are all zero, giving the equation

—0;(a;j0u) = f — 0,9, in €2,
1.2
u=20 on 0f2. (1.2)

1.2 The method of freezing coefficients

We begin with the method of freezing coefficients. These ideas can be extended to systems
with minimal changes, so we give a brief discussion here, and postpone the details to §2.

The main requirement of this method is that the coefficients a;; are continuous. Then
we see that a;;(x) should not vary too much compared to a;; := a;;(zo) on a sufficiently
small ball B,(z9) C Q. It is therefore reasonable to expect a weak solution u of the
equation —0;(a;;(z)0u) = f — 0;¢; to be close to a weak solution w of @;;0;;w = 0 on
B,(xg), if we also have u = w on dB,(xy).

Now @;;0;jw = 0 is an elliptic equation with constant coefficients, so it has a unique
weak solution w with w = u on 092 [GTO01, theorem 8.3], and we have the following result
[HL11, Lemma 3.10].

Lemma 1.1. If (a;;) is a symmetric constant positive definite matriz such that
AP < a6 < AlEJ? V¢ € R™
for some 0 < A <A, and w € H'(B,(xy)) is a weak solution of

Eij&ijw =0 m Br(l’o),



then there ezists C = C'(\, A) such that

2 P\" 2
\umwmwwm)sc(;)qump o)

IA

C (p) |Dw — D, ||}

— 2
||Dw—Dwr07PHL2(Bp ,

(z0)) L2(Br (o))

for each 0 < p <r. Here we define Uy, , := \Br ol fBr (zg) U JOT €ach u € LY (B, (z0)).

By bounding u — w, we can use the first part of this result to control the behaviour
of u on B,.(xg). Then by considering all balls with centres in some subset of {2, we obtain
the following result! (see §2.4 for the proof of this in a more general setting).

Theorem 1.2. Suppose u satisfies (1.2), where the a;; € C*(Q) are bounded and uniformly
elliptic, f € L1(Q2) for some q € (%, m), and g € LI(Q) for each j, where ¢ > m.

Then u € Cp2(Q) for a = min{2— 2l= %}7 and for each Q € Q there exists
C = C’(/\,A,m,aij,q,q’,ﬁ) such that

Hu”co,a(ﬁ) <C <HU”H1(Q) + HfHLq(Q) + ||9||Lq'(9)) :

Here, we write Qe Qif Qis open with compact closure in €2, and u € CZOOS‘(Q) if
u € C%(Q) for each Q2 € Q. We write 9/l e @y = 2_; 191l L 0

The same technique can be used to give the following result.? Note that this gives
higher regularity for u, so requires the coefficients to be more regular.

Theorem 1.3. Suppose u satisfies (1.2), where the a;; € C%*(Q) are bounded and uni-

formly elliptic, f € LY(QY) for some ¢ >m, and g; =0. Let o =1 — T

Then Du € C’loo’?(Q), and for each Q € Q there exists C = C(A,A,m,a44,q, (NZ) such
that
IDulloy < C (ullis gy + 1 ller)

This requires both parts of the conclusion of lemma 1.1 because we want to bound
||Du — mzo,pH; (B,(x0))’ and the extra terms require some additional estimates, but the
structure of the pr(gof is otherwise the same as that of theorem 1.2.

Suppose we have a stronger version of theorem 1.3, which holds whenever a;;,g; €
CZOO;"(Q) (see [GTO1, theorem 8.32]). Then we can apply a bootstrap argument (adapted
from [Eval0, §8.3.2]) to show that the solution is “one step more regular” than that of
the coefficients.

Suppose u solves
/Qaijaz‘uajSO = /Qf@ + 905 Vo € Hy(9),

with a;j,g; € CLY(Q), f € C¥(Q) for some a € (0,1). Then certainly u € C2%(Q).
Further, we have that u € H?_(Q) by [Eval0, §8.3, theorem 1], so if we test the equation

loc

[HL11, theorem 3.8], case ¢ = 0, adapted to a general domain € and the case g # 0, conclusion
adapted to give C%% norm.
2[HL11, theorem 3.13], adapted from the textbook in the same way as theorem 1.2.
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against —0gp for ¢ € C°(12), then we can integrate by parts to give

/ —a;;O;udy0;p = / — [0k — 9;0k05
Q

Q

/ azjaz((?ku)ajgo + 8;@((11])821@]@ = / —fakQO + 3kgj8jg0
Q Q
Q Q

Now 0Okg; — foir — Ok(ai;)0iu € CIOO’CO‘ (Q), so applying our stronger version of theorem 1.3
to Opu gives that u € C%(9Q).

From here, we can repeat this argument to see that if a;;, g; € C’;ZCO‘(Q), fe Cl]f);l’a(Q)
for some o € (0,1), k € N, then u € CTH*(Q).

loc

1.3 Bounded coefficients

Our second method gives a more powerful result - we have Holder continuity of solutions
in the case of bounded coefficients. We will outline the idea by following [HL11, §4],
beginning with the following theorem.?

Theorem 1.4. Suppose u is a subsolution of (1.2) on B,, where the a;; € L>*(B,) are
bounded and uniformly elliptic, and f = 0. That is,

r

Then vt := min{u, 0} is locally bounded on B,, and there exists* C = C (m, %) such that

1 —-m
ot s, < Ao [

for each 0 € (0,1).

Proof forr =1, § = 1. Write v = u™, and set vy = min{v,k} for k > 0 (we will later
send k — 00).
For 3> 0 and n € C3(B;) to be determined, we will test (1.3) against the H] function

=1 (vgv — k7).
Note that

Dy = 772(5715_117%@ + U,’va) + 277D77(v,fv — kP
= 20} (BDvy + Dv) + 2nDn(viv — K,

since Duy = 0 in the set {v # vi}, so vDvy = v Duy.

3[HL11, theorem 4.1, method 2], simplified to the case ¢ = f = 0, p = 2, given for B, C R™ instead
of Bl.

4[HL11] gives that C' depends on A, A separately, but the dependence we have stated follows from the
given proof and is needed later on.



Now D¢ = 0 outside {u > 0}, and Du = Dv in {u > 0}, so

0 2 / aij@-uﬁj(p
By

= / @ij@-uﬁjcp
{u>0}

= / a;;00(Bdjvr + j0)n’vy + 2/ ai;Op0m(vgv — k)
{u>0} {u>0}

— / a;j(BOvE 0k, + @vajv)n Uk + 2/ aijﬁivﬁjn(v,fv — kPt
{u>0}

{u>0}

>\ /{ (BIDE+ DR =2 o] /{ Dol Dl (o)
u> u>0

A
> )\/ (8| Dugl? + |Dv|2)772v,f—2A/ (X Dol + 2 Dajzer)ef
{u>0} sy 4A A

2A?
A (Do gk ) - 25 [ b
{u>0} {u>0}

where for the fourth line we used that 9;v, = 0;v wherever 0;v;, # 0.
Hence

2 1 2 ﬂ 2A° 2,2 B
Bl Dvg|* + §|DU| Sz | Dn|*v vy (1.4)
{u>0} {u>0}

Note that if w = v,’fﬂ v, then

2
|Dw|* = ‘6 szlvak—l—v,f/QDv

2
= 5—vk|ka|2 + ﬁv,f|ka|2 + vy, |Dv|2

< (1+ B) (B|Dvil* + | Dv|?) v

Combining this with (1.4) gives

/ ID(wn)? < / Dupr?
{u>0} {u>0}

<(1+9) / (BIDwl? + [Duf?) o]
{u>0}

1
20+5) [ (mDm? ; —|Dv|2) 7o’
{u>0} 2

AN 2,2 8
<c(3)-aem [ o
:C-(1+B)/ w?| D).

{u>0}

m

Write x = -5 if m > 2 and take arbitrary x > 2 if m < 2. Then the Sobolev
inequality gives [|wn| 2 < C[D(wn)] 2, so

2 2 2 2
HwnHsz(BR) <C HD(wn)HB(BR) <C-(1+5) ||D77HL2(BR) ||w||L2(BR) :
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Then if 0 < p < R < 1, we take 1 to be a cut-off function with

2
n=1in B, n = 0 outside Bg, |Dn| < ——,
R—p

giving
2 2 2 ’ 2
”wHL?X(Bp) < Hwnllex(BR) <C-(1+0) R—, P ||w||L2(BR) :

o212

Now v, < v and w = v, SO

1
X
(B+2)x 2 1+p 2 143 / 42
v < Jlw <C w <C——— verey
(ka ) ellinien = O 1w = CR=5

provided the final integral is bounded. Writing v = 5+ 2 > 2 and sending & — oo then
gives

Cy g
olionia < (o) Mol (15)

where we allow [|v]|, g, = co.
For the final step, we iterate by setting

=2, =g+

fori=10,1,---, so (1.5) gives
i+3 iy X
HUHL%H(B”H) < (2 x C) ’ ”UHL%’(BTZ.) :
Now >-(i +3)x % d_ix ", . x " are all finite, so by iteration we have
HU”L’H(B%) < HUHLW(BTZ.) <C HUHLQ(Bl)

for each 7. Sending i — oo gives the result for r =1, 6 = %
O

Proof for general v, . Suppose u : B, — R is a subsolution of —0;(a;;0;u) = 0, and
y € By,. Then B_g),(y) € B,, so if

v:B; = R, v(z) =u((l—0)re+vy),

then v is a subsolution of —0;(a;;0;u) = 0 in By, where a;;(z) := a;;((1 — 0)raz +y) for
each 4, j. The a;; are uniformly elliptic, with the same X\, A as the a;;, so applying the
result above gives

<C- | < C((1 =0 ([t Fags,

2 T 2
||u ||L°°(B%(1_9)T(y)) = HU HLOO(B%) HLQ(Bl) )

Finally, By, is contained in a finite union of balls B %(I—B)T(yi) with y; € By, for each 7, so
the result follows. O

We also have the following result, which can be obtained via direct calculation [HL11,
theorem 4.10].



Theorem 1.5. If u € H'(By) is a bounded weak solution of —;(a;;0;u) = 0, where the
a;; € L>®(Bs) are bounded and uniformly elliptic, then
<
oscu < yoscu
2
for some v =~ (m, %), where oscq u := ess supg u — ess info u.

By dilation, theorem 1.5 holds on any Bs,, B, Br, with the same 7.
Combining theorems 1.4 and 1.5 yields the following ([HL11, theorem 4.11] - given
without proof in [HL11], so we give our own proof here).

Theorem 1.6. If u € H'(By) is a weak solution of —0;(a;;0;u) = 0, where the a;; €
L*>(By) are bounded and uniformly elliptic, then u € C’O’a(B%), with

[ullcoas,) < Cllullgzs,)

N

for some o = « (m, %), c==C (m, %)
Proof. We begin with our key estimate. Take any z € By, k > 0. Now Bi(z) C Bs, and
u is bounded on B§ by theorem 1.4 (applied to 4u), so theorem 1.5 gives

osc u<vy osc u<---< vk osc u < fykoscu < 2’yksupu.
BQ*Z*k(Z) 32,1,k (Z) B%(Z) Bé B%

First, we show that u € CO(B%). Set a(z) = ess infp, ,,, () u, b(2) = ess supp . oy u
for each z € By, so ag(z) is increasing, by (z) is decreasing. Additionally,

0 <bp(z) —ap(z) = L, 0sC <C HuHLQ(Bl)’yk — 0,

—2—k (%

_ 1
T |By—24k(2)] f32—2+k(2
then ap < ¢ < bg, so ¢ — w uniformly. The ¢, are all continuous functions, so u is
continuous. Finally, cx(u) — w a.e. by the Lebesgue differentiation theorem

Finally, we show that @ € C%**(B.1). Given z,y € By with |z —y| < 3, take z = 53¢

1
2 27

and k& € N such that 2737% < ‘9”2;2”' < 2727% Then

SO ay, b, — w uniformly for some w : B% — R. Further, if ¢(2) ) Uy

ulr) —u < osc w= osc u<2y"esssu U,
) T € oo T oS s g
and v* < 472z — yﬁ% Now v < 1 so —ﬁ% > 0, so we get a = a(v) € (0,1) such that
M <’ (m, %) ess sup u.
|z —yl|* Bs
4
Ifz,y € B, |z —y| > 3, then
M < 27%gupw = 21 7% ess sup u.
|$ - y| B% B%

sup [a(z)| + sup DT

x€B, z,y€EB1 |.T - y|a Bg
b b3 1

Finally, theorem 1.4 gives
<C (m, %) ess supu < C (m, %) HuHLQ(Bl) )



The following result is an easy consequence of this (see [HL11, lemma 4.12]).

Lemma 1.7. If w € HY(B,) is a weak solution of —9;(a;;0;w) = 0, where the a;; €
L>®(B,) are bounded and uniformly elliptic, then there exist « = « (m, %) € (0,1), C =

C (m, %) such that
—24

2 p\m 2 2
IDwlls, <€ (2)" 7 IDwIE e,

forany 0 < p <.

This has the same conclusion as lemma 1.1, but does not require constant coeffi-
cients. This means that we can use the method outlined in §1.2, but without freezing

the coefficients, so we do not need continuity of the a;;. This gives the following result
[HL11, theorem 4.13].

Theorem 1.8. Suppose u satisfies (1.2), where the a;; € L>(§2) are bounded and uni-
formly elliptic, and f € LI(S2) for some q € (g, m).
Then u € C%(Q) for some a = a (m, %, q) € (0,1), and for each Q2 € ) there exists

loc N

C'=C(\Am,qQ) such that

lull @ < € (Nulley + 1 lLey ) -

Unfortunately, theorem 1.4 does not hold for systems (see §3.1), so we cannot get an
analogue of lemma 1.7, even when u is bounded, and the method does not carry over to
the systems case. However, this idea can be applied in other contexts, so we will see it
again in §4.5.



2 Elliptic systems

In §1.2, we briefly examined the method of freezing coefficients. We will now explore
this idea in more detail in the context of elliptic systems, following the structure of the
proof in [HL11, §3]. In [HL11], the proof is given in the scalar case for B; C R™, so we
have adapted it to work for systems and any domain @ C R™, using ideas from [Giu03|
and [Gia83] to assist this goal. We have also extended it to allow the case g # 0 (see
(2.1)). We have restricted to equations with only leading-order coefficients to streamline
the discussion. In the rest of this section, we discuss an extension of the method to give
boundary regularity.

2.1 The problem

Suppose u : Q© — R™ for Q C R™. We write u(z) = (u'(x),...u™(x)), and consider the
problem - '
—8j(14268iua) = fﬁ — 8]9%, in Q,

(2.1)
u=>0 on 02,
where we require this to hold for each 8. We use the convention that repeated indices in
upper and lower pairs are summed over, and take 7,7 =1,...,m,and o, B =1,...,n.

We assume that the coefficients Agﬁ € L>(Q) of the system are symmetric in 7, j and
in «, 8, and that they are bounded and uniformly elliptic, that is there exist A, A such
that -

AEP < AZy(2)€0€) < AJEP VEeR™
for almost all x € .
The weak formulation of (2.1) is

/Q A ()0 y0° = / o’ T @07 Ve e HIQLRY, (2.2)

with u € H}(Q,R"). The notation (-, R") indicates that functions in the relevant function
space have codomain R", although we will suppress this notation where convenient.

2.2 Campanato spaces

The method of freezing coefficients will give us integral estimates for the solution u, but we
wish to conclude that u is locally a-Holder continuous. This means we need an integral
characterisation of C%* functions, so we give the characterisation from [Giu03, §2.3],
beginning with the following definition.

Definition 2.1. Let Q@ C R™, 1 < p < oo, and A > 0. Then the Campanato space
LPA(2,R™) is the space of functions u € LP(£2, R") such that

= 8D 77 |u = T Mg, oy <
>0

where Q,.(zo) :== QN B,(z0), and

_ 1 /
Ugoyr ‘= T U.
’ 12, (o) Q- (z0)

The associated norm 1is
[ull oo = [ul, \ + llull s -

10



Remark 2.1. In [Giu03], this definition is given using cubes instead of balls, although it
is noted that this gives an isomorphic space.

Remark 2.2. If r > ¢, then

rA Ju — Ewo,rngp(gr(m)) <e [ — W Izp(g) )

so [u] . only depends on the behaviour for small values of r.

We will also need the following assumption on ).

Definition 2.2. We say (2 C R™ has no external cusps if there exists A > 0 such that
Q2 (z0)| > A|B,(20)]

for each 7y € Q and 0 < 7 < 1, where we recall from definition 2.1 that ,(z¢) :=
Qn Br (ZL’())

Now we have the following theorem [Tah15, theorem 18.12].5

Theorem 2.1. Let 2 C R™ be a bounded open set with no external cusps, and suppose
m < A< m+p, sothat o := ’\’Tm € (0,1]. Then the spaces LPQ,R™) and C%*(Q, R")
are isomorphic. In particular, there is C' = C(p, A, \,m) such that

[ullco. < Cllull 2oa
for each u € LPA(Q,R).

In [Tah15], the dependence of the constant is not mentioned explicitly. However, we
will later need the fact that it is independent of A\, so we sketch the proof here to show
where the constant comes from.

Proof (sketch). First, we have that if x € Q, 0 < p < r < min{1, diam(2)}, then there is
C = C(p, A, \,m) such that

(U — Ty P < Cr°7 [, (2.3)

5

(see [Tahlb, proof of lemmas 18.7, 18.8, and case 1 in subsequent calculations]).

Then given 0 < R < 1, (2.3) can be used to show that the sequence of averages (U, o-ig)
converges uniformly to a limit @ which is independent of the choice of R. The %, 5-ig are
all continuous, so @ is continuous, and @ = u a.e. by the Lebesgue differentiation theorem.

Hence it is enough to show that @ is Holder continuous. If x,y € Q, r := |x — y| < %,
then

[u(x) —u(y)| < [u() = Ueor| + [Ue2r = Uyor| + [ty,2r — U(y)].
Then (2.3) immediately gives a bound on the first and third terms. Integrating

mx,?r - ﬂy,2r| < Wr,?r —u(z)| + W(Z) - ﬂy,2r|

over z € Qy.(z) N Q2 (y), and using (2.3) and the fact that Q has no external cusps, gives
a bound for the second term. Hence we have that

[u(z) —aly)| < Cr 7 [u], -

)

]

5A similar result is also in [Giu03, §2.3], but it requires Q to have no internal cusps instead. This
cannot be correct, as the example we give in §3.4 is for a domain with no internal cusps.

11



2.3 Additional preliminary results

We now collect the other preliminary results we need to prove our main theorem.
First, we need the following analogue of lemma 1.1 [Gia83, §III, theorem 2.1].

Lemma 2.2. Suppose w € H'(B,(x0),R") is a weak solution of
ﬁgﬂaﬁjwa =0 in B,(xy) for each B,
where the lejﬁ are constants, symmetric in 1,7 and «, 3, such that
NP < ALere] < Al vEeR™

for some 0 < A < A. Then there exists C = C(\, A) such that

2 PA™ 2
[w]|72(8, 20y < C <;) 1wz, (2 »

e PN N — P
1w = Wag 125, 00y < € <F) 0 =a0r 1125, o
for each 0 < p <r.

Finally, we will need the following technical lemma (special case of [HL11, Lemma
3.4]).5

Lemma 2.3. Given constants A, B,a, 3 > 0 with 5 < «, there exist constants € > 0,
C' > 0 depending only on A, «, 3, such that if ¢ : [0, R] — [0, 00) is an increasing function,

and
o(p) < A ((g)a + e) o(r) + BrP

for each 0 < p <r < R, then

for each 0 <r < R.

Proof. Note that for 7 € (0,1), r < R, we have that
o(tr) < A(t%+¢) p(r) + Brf

Without loss of generality, assume that 24 > 1, so we can take 7 € (0,1) such that
7@ = 24, where v := aT”Lﬁ Assume ¢ < 7.
Then
o(1r) < 2A7%(r) + Brf = 77p(r) + BrP.

For k € N, taking r = 7% R gives

cp(TkHR) < T”gp(rkR) + BT*PR5,

SNote that [HL11, Lemma 3.4] requires the exponent v of % in the conclusion to be different to the
exponent 8 of r, with v > 3. In the subsequent proof of the analogue to our theorem 2.4, the text requires
v = B, so we have amended the proof of this lemma to allow this.

12



so that

k—1
o(T*"R) < 7™ p(R) + BR® Z I H(k=1-9)B
=0
k—1
_ Tk'yﬁ,O(R) + B(Tk:—lR),B ZTj(’Y—/B)

J=0

1
< Tl”go(R) + B(Tk_lR)B

- 1—mF

2A
— kv . k—1p\g
T go(R)+2A_1 B(T"'R)”,

where we used v — 8 = a — v and 77(®=7) = 24 for the final step.
Now given any 0 < r < R, choose k such that 7F+1 < 5 < 7%. Then the above gives

1 /r\7 1 2A
wlr) < = (E) PR+ m5pp 1 B

< ;ﬂ ((}%)690(3) + Brﬁ) :

so the result follows with ¢ = 7, C' = 772%.

2.4 The main theorem

We now give our adaptation of [HL11, theorem 3.8], the main theorem of this section.
We begin by assuming that the coefficients Afjﬁ are uniformly continuous, so we can find
a “modulus of continuity”” 7 : [0,00) — [0, 00) such that for each i, j, a, 3,

|Agﬂ(x) — Achﬁ(y)| < 7(§) whenever |z —y| <. (2.4)

Theorem 2.4. Suppose Q@ C R™ is bounded, and u satisfies (2.2), where the Agﬁ €
C°(Q,R™) are bounded, uniformly elliptic, and uniformly continuous, f € L1($,R") for
some q € (%, m), and g € L9 (Q,R™) for some ¢ > m.

Then u € C¥(Q) for a = min {2 -1 m}) and for each Q € Q there exists C

loc q

depending only on A\, A, m, 7, q, ¢, dist(ﬁ,@@) such that®

fullenc@y < € (Il + 1wy o)
where T is as defined in (2.4).

Proof. Fix xg,r such that B,.(zg) C €, and write Z’o‘fﬁ = Agﬁ(zo) € R for each i, j, «, S.
Then there is a unique solution w € H'(B,(xy), R") to the “frozen” equation

/B ( )ggﬁ@waajgoﬁ =0 Vo € Hy(B,.(x0),R") (2.5)
r{Zo

"This definition is slightly different to that taken in [HL11], but ensures that 7 is increasing, which
we will need later.
8In [HL11], the dependence on m, ¢ is not mentioned, however it does follow from the given proof.
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with v —w € Hi(B,(z), R™) (see [Gia83, §I, thoerem 3.1]).
Note that if w solves (2.5), then so does Dw, so writing v = v — w and using lemma
2.2 gives that

2 2
1Dl 725,20y < 21D 3205, (a0)) + 2 1PV 7205, 20))
P\™ 2 2
<C (;) IDws, () + 211DV 1725, (20
PN 2 2 2
< c(;) (21Dull}, ) + 21D1, ) + 21DV 25,00

p m
< ((8) " 1Dul 225000 + 1005, ) 2.6)

CEO

where C' depends on A, A. So we want to estimate ”DUHiZ(BT(zO))'
Note that given ¢ € H} (B, (7o), R"), we have from (2.2) and (2.5) that

/ gg[a@iva JQOﬁ:/ ggﬂ@uo‘ jQOB
B (x0) B (z0)
:/( )((Agﬁ—Agﬁ)au 0 + fod” + gh0i")
Byr(xg

Now v € HJ(B,(z0),R"), so we can set ¢ = v and use the fact that 7 is increasing to
give

/ ggﬂ&vaajvﬁ - / <<Agﬁ - ggﬁ) D d;0° + fau’ + géaj?}ﬂ)
Br(z0) Br(zo)
= / (20) (7(r) 090" + fov® + gh0;0°)
By (xzo

< C(m) (7(r) 1Dll oy 1DV 25, o

+ 1 v, o 101 22 By o)) F 1191l 2208, (o)) 1PV 228, (20 )7
(2.7)

where v = +2, 2* = . We chose these exponents for the second term because 2* is

the largest possible exponent in the Sobolev inequality ||v|| ;.- < C'||Dvl|;2, which gives
the smallest possible exponent « for f, and hence the largest possible o (once g is taken
into account), which we can see from the following calculation.

T ( /B W)W
1-2 2\ 5
]_q'v . %
( [ (f ) )
C
C

o

2

< Cm) (v ><*"> (/ mq)
= Clm)r 25 || £112, g - (2.8)
Similarly,
1912y < Cmyr™ 2200 g2 (2.9)
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So returning to (2.7), using the Sobolev inequality mentioned above and uniform
ellipticity, and then substituting (2.8), (2.9) with a = min {2 -21- —} gives

/B ( )MDUP <C (T(T) ”DU/HLQ(BT(I())) + ”fHL“/(BT(:L‘O)) + HgHLQ(BT(xD))> HDUHLQ(BT(:E()))
r\Z0o

1D 128, 2oy < C ( (M) 1Dull p2(s, woy) + 1 2380y + HQHH(BT(QUO)))
2 m— o 2 2
101325, oy < € (T DU s, oy + 1722 (I ey + N9lEre) ) -

Now we can substitute this into (2.6) to get

1Dl 25, a0y < CON ) (((2) 4 70)) DU gy + 77 220F2) - (2.10)

where F:= || f () + 19l 70 @) N

Finally, we apply lemma 2. 3 with p(t) = |]Du||L2(B (x0))- Note that if g € 2 € Q then
Bi(zo) C Q for each t € [0, R] provided R < dist(, ). Then we get C, ¢ depending
on? C(\,A), m, m — 2+ 2a (that is depending on A, A, m, ¢), such that if 7(R) < ¢ then

1

2 m— o
”DUHLQ(Br(ﬂCO)) < CymtH (Rm—2+2a

D750 +F2> . (2.11)

Hence if we take Ry such that Ry < dist(Q, 99), 7(Ry) < ¢, then for each r < Ry we get
HDUH;(BT@O)) < C(A A, m, 7, q, dist(Q, 9Q))r™m 22 (HDUHH + F2)

Now for zg € ﬁ, take ro > 0 such that B, (z) C Q). Then for each r < ro, we have
Q,.(zo) = B.(z0), so we may use the Poincaré-Wirtinger inequality

—12
[ =Tl 725, (zy)) < C(m)r 2HDUHL2 (20))

(see [Eval0, §5.8.1]) to give

—(m+2a — 2 —(m+2a 2
plmt2e) [|uw — uwo,r”m(@(m)) < COpmte) 2 HDUHL2(BT([L'Q))

—(m— @ 2
= Cr= "2 Dull o g ag

< C<)‘a Aa m,T,dq, dlSt(§7 aQ)) (HDu”i?(Q) + F2> )
So u € L2™22(()), with

||u||[,27m+2‘1(f~2) = [u]2,m+2a + HUHLQ(Q) < C()‘7A7m7 T?deiSt(QvﬁQ)) <||UHH1(Q) + F) :
(2.12)

However, we need ) to have no external cusps to apply theorem 2.1.
We add our own note about how to handle this. Write § = 1 dist(£2, 092), and take

Q = Bs(Q) := {z € R™ : dist(z, Q) < §}.

9Note that this is the only point in this proof which gives dependence on gq.
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Then dist(ﬁ, 00) = %dist(ﬁ, 9Q), and if = € Q then there is 7 € Q such that z € Bs(z) C
Q. Now R R
2-(2)] = [0 By(x)| = |Bs(x) N By ()| = 27| B, ()|

for 0 < r <26, and
Q. ()| > |Bs(%) N By (@)| > | B5(@)| > 6™r ™| B, ()]

for 20 < r <1, so taking A = min {27™,0™} gives that Q) has no external cusps.
Now L2mT22(Q)) C L£2™T22(Q)), so using theorem 2.1, and applying (2.12) to €, gives
that u € C%*(Q), with
[ull co.c@y < C(6, @, m) |ull p2.minag

= C(dist(Q2, 09),m, ) [l g2im+2a @)
C(/\7 Av m,T,q, dlSt(Q, 89)) (”uHHl(Q) + F) ’

IN

Recalling that F' = ||f||iq(ﬂ) + ||g||iq/(9) gives the result. O

~ This theorem does not quite match theorem 1.2, as we are requiring the coefficients
Als to be uniformly continuous. However, we add our own note that if the A7, are

continuous on 2 and we fix some € 2, then we can find Q such that Q € € Q € Q. Then
the A Jﬁ are uniformly continuous in Q so we can apply theorem 2.4 in Q to see that

2
[ull oo < C (HuHHl(Q) 1l o) + HgHLq’(Q)> :
This gives the following result.

Theorem 2.5. Suppose the conditions of theorem 2.4 hold with the Agﬁ € C°(Q,R") not
necessarily uniformly continuous. Then the conclusion of theorem 2.4 also holds, with the
constant C' now depending on the Aaﬂ, m, q, and dist(2, 02).

We may also obtain regularity results for the derivatives of u in the same way as in
§1.2. Note that in theorem 1.3 we require a;; € C%*(€Q). The argument used to obtain

theorem 2.5 can be used here to replace this with the condition a;; € C2¥(9).

2.5 Boundary regularity

Theorem 2.4 only gives interior regularity, so we give our own exploration of how to adapt
this proof to get boundary regularity. B

In the proof, we only restrict zy to lie in 2 € 2 because we need R > 0 such that
Br(zg) C Q for each zp. In the context of boundary regularity, it is natural to replace
B,(xo) with Q,.(zo) to avoid this issue. This leads us to ask whether (with suitable
assumptions on 2) we can get an analogous result to lemma 2.2 with B,(z¢), B, (zo)
replaced with Q,(x¢), (o).

Also, when using this lemma in our proof, we take w = u on 99, where u € H (),
so we can restrict to the case when w = 0 on 0f2. Hence we need the following analogue
of lemma 2.2.
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Remark 2.3. Let 2 C R™ be a Lipschitz domain, and K;Jﬁ be constants, symmetric in 7, j
and «, 3, such that o
MEP < AZere) <A vEeRr™

«

for some 0 < A < A. Let w € H'(Q,(z0), R") be a weak solution of
Egﬁ&jwa =0 for each (2.13)

in Q,(zg), with u = 0 on 99 in the sense of trace. Then it is reasonable to expect!® that
there exists C' = C(\, A, Q) such that

2 PN™ 2
HDwHLQ(Qp(a:O)) <C (;) “Dw“L?(QT(xo))

for each 0 < p <r < diam(€Q).

Unfortunately, we did not have time to obtain a proof of this.

It may be the case that this is true for more general domains (using a suitable notion
of “w =0 on 9Q”). In that case, we would probably need to impose a cusp condition.
However, when applying this to boundary regularity, we wish to apply theorem 2.1 to
obtain Hoélder continuity, which already has a cusp condition which we need to impose.

Theorem 2.6. Let 2 C R™ be such that the conclusion of remark 2.5 holds. Suppose u
satisfies (2.2), where the Ay € CO(Q,R™) are bounded and uniformly continuous, T is as
defined in (2.4), and f € LY(Q,R") for some q € (%5, m).

Then u € L>™T2%(Q), where o = 2 — %, and there ezists C'(\, A, Q,m,T,q) such that

lllgomsaaqgy < € (ellzay + 171 o) -

Proof. This time, we fix 2o € Q and some r > 0. If we set Zgﬁ = Agﬁ(xo), then as before
we have a unique solution w € H'(Q,.(zo), R™) to

/Q ( )Zgﬂaiwa i’ =0 Ve Hy(Q(x0),R")
(L0

with v —w € Hg(Q,(x0), R").
Further, since u € H}(Q), u—w € H}(Q,(7)), both u and u —w are in the H' closure
of the set
{u e C™(Q,.(x9)) : dist(suppu, 9Q) > 0},

so w is also in this set, and we can use remark 2.3.
From here, we continue as in the proof of theorem 2.4 with B,(x), B, (o) replaced
with Q,(x¢), Q-(20), until we get an analogue of (2.10), that is

p m m— (0%
1Dl (0, oy < CONAL ) (70) + (£)7) 1Dl a(0, gy + 7752 1 1) -

10]Gia83, §VIII.2] mentions that if 9 is smooth, then the method used to prove theorem 2.4 “can
be straightforwardly extended up to the boundary”, citing [Cam65]. This paper is in Italian so we were
unable to read it, but it makes it seem plausible that this holds in this case. Certainly the result can
be obtained when §2,.(z¢) is a half-ball by taking an odd extension. From here we could proceed by
“flattening the boundary”, as described in [Eval0, §C.1].
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Again, we apply lemma 2.3, this time setting p(t) = ||Du||§/2(gt($0))' Again, this gives

C, € depending on C'(\, A), m, m — 2 + 2« (that is, on A\, A, m, ¢), such that if 7(R) < ¢

then
1

2 m— « 2 2
1D < 20 ( itz 1Dl + W)

So we can take Ry such that 7(Ry) < egThen for r < Ry we get
2 m—2+42a 2 2
HDUHL2(BT($0)) < C()\7A797m77—7 Q)T 2 <HDUHL2(Q) + HfHLQ(Q)) :

Finally, since u € H}(Q,(x)), its extension by 0 is in H}(B,(xp)). Hence we can apply
the Poincaré-Wirtinger inequality from [Eval0O, §5.8.1] as before to conclude that u €

L2m+2e(0) with

HUHLQJM-?&(()) S C()‘7A797m77—7 q) (HuHHl(Q) + Hf“LQ(Q)> :
]

If © C R™ is Lipschitz and bounded, then it has no external cusps. Hence if the
conditions of theorem 2.6 hold, then theorem 2.1 gives that u € C%*(Q) for a = 2 — =
and

lullcoay < C (el gy + 1 lzaey )

so we recover an analogue of theorem 2.4.
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3 Counterexamples

We devote this section to examples which show that certain assumptions cannot be
dropped from the theorems we have seen in §1 and 2.

In all calculations, sums will be shown explicitly and lower indices will be used to
avoid confusion.

3.1 A system with bounded coefficients

Theorem 1.4 gives that elliptic equations with bounded coefficients have locally bounded
solutions, but this is not true for systems, as can be seen from an example due to De Giorgi
[DG68]. We found this example in [Gia83, §2.3], where only the system and associated
solution are given, so we present our own calculations to explain the reasoning behind it.
We aim to find a system which has
x

ER

u: By — R™, u(z) =

as a solution, where v > 1 is to be determined and B; C R™. Note that u is discontinuous,
and is unbounded when v > 1.
We will need the following lemma ([Gia83, §II, lemma 3.1], special case).

Lemma 3.1. Suppose Q C R™ is bounded, m > 2, and u € H'(Q) N C*(Q\{zo}, R"),
where xo € ). Then if u is a classical solution of

D 0(ALy(x, u(x)) Ojug) =0 Va, (3.1)
i,5,8

in Q\{zo}, and 3
Als(@,u(x)) € L=(Q) N CH(Q\{o})

for each i, 7, a, B, then u is a weak solution of (3.1) in €.

This means we need v € H'(By,R™), so we must take v < 2. Already this means
that in order to have v > 1 we must have m > 3.

We look for a system with coefficients Ai{jﬁ depending only on x. In that case, a
classical solution to (3.1) must satisfy

> AY(x) Ojug + > AL () djus =0 Va
1,5, ,5,8

We will need the following derivatives.

1 T
9 = —c—"
¢ (mc) ‘Tl

I A 7 I NN L I

Ojup = 0 (w) = P T p

;%3 xg x; X
T R T

Oijug = (v +2)

First, we note that if we take the usual Laplacian, that is if A9 of = = 0;;0q3, then
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> 0i(61j0as05us) = Y Ouq
,5,8 i
2

Lo Ly L
—Z< (y+2) |v+4_7|x|7+2_ Oia: = —5'>

7|x‘w+2 e 7|$|7+2 e

x|z

a xa .Ta
- 2 _ ) PO
(v + )|:U|,y+4 M T A pe
e
= _7(m - ’Y) ’xh_;_g :

Next, we wish to find an additional term which will cancel this out. The resulting
operator must be elliptic and bounded, and a simple way to do this is to take A7, =

0ij0ap + agajﬁ for some choice of bounded coefficients a’ (z), as this gives

PORGACCED SICHIES O DT I (R FA P [CE

7.7 @ /B Z7a

A first guess for a, is If:Tc for some ¢ > 0, since

Talpg Tl T 5
) (_) _ il | Tp
Azl x|z | | |
However, multiplying this with d;ug gives terms which are multiplied by a single copy of
x;, and will not cancel out easily.

So it is better to try ag = ‘7;‘”“ We need ¢ < 2 for this to be bounded, and if ¢ < 2

then it is continuous, so u cannot be a solution to the associated system by theorem 2.4.
Hence we take ¢ = 2, and calculate for x # 0

3 S0y + 30 o,

4
1,5, 0,5, | |
. xX; I'].I'al'ﬁ Tl B xs o X o ZT; .
S e U U )
7j
TITTaTp  TiTalp — TiTaXg T,T;%8 TiT;Tq ;T 1
+ 2 + + bij + dia + 525) (—7 + —5.5)
;( [ ||* e[t | |* jzp+2 - fzr
2,..2,..2 2 2 2
2 (b0 + 2 350 st st~ et
Z7J7
Tq |z|?z 28 ;T3 1
+ % 2] (—4 e +Mmx;jrg + T;x + ToT;Tg + T2 —7W + |x|V§JB
Ta S e £ .
— e 9 _ _ _
s (20 D~
|:)3| x;Ts x xg
+Z |x|7+4 ( |m|]2 + (m + 3)z;24 |]|2 + 0
‘/'EOL
= W(V(V =1+ (=4+m+3)(=v+1))
o

= —(m =) ~ =)
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This suggests we take

v(m —7) TiliTaly
ym—v)—(m—-1) |z
Unfortunately, when 1 <~ < 7, we have

Ads = 0ij0ap —

m

oy =m) sm=%) _(_m Y
y(y—m)+m—1 = 2(m—2)—m+1 <m—2) > 1

So if
1 A 1l 1=a=1
xz(—,O,...,O)GBl, i e
2 0 otherwise,
then ( )
y(m -~
A 55 =All = -1 <0,
2 Akt = A= e D

1,5,0,
so the system is not elliptic.
However, we can continue to adjust the coefficients a’, chosen above. Note that

TiZq T2 T T
o () w e e,

|z[? [t 2 [

and that 0;ugd;s collapses nicely once summed, that is
T;T 1 1
> Quugdis =Y |~V + s ) s = (1= 1)
= Juﬂ JB " ( 7|x|7+2 + |$|7 Jﬁ) JB ( 7)|l‘|7

This suggests that “ﬁ;‘d ;s would also work well as a term of Aa5> S0 we try

AT = 5,605 + (clam +Cy TT;) (015][3 + szﬂfﬁ) .

Next we calculate

XT;r €T,
> m; 8js0hup + > 0 |l|§ 0;80;ug

1,5,8 1,5,8
: 2; ( 27;765 * rch? E 5) b (it + o)
2 (v D vt ~vpata 1)
o 3 (2 e ) X (et + )

3,8
2

2
Ly l’/g x/g 1
2 || <7<7+ )!93|”+2 ap 7|W>

T To | Ta 3 1
—9 —
! ( 2 " IxP) 2 ( ez r:cw)
Lo

= (=7(m =7) + (m = 1)(m - 7))W,
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xX; xg Z; %5
D ialgus + Y 0T P P 5005

2
03,8 2] 03,8
;T Liljlg T e L oo T o
-3 e (20 D5 s s — )
x,;xwg s Z; T;Tp 1
+ (—2 J i + 5)5 (— —+—545)
2 IP'7 o] Vel Tl
= ZBW (’Y(’Y+2) [ _7|x|v+2(sja - ‘ | +2 Oap = |z |7+2 Ojp
j7
1 To ik x ;T 1
) a™j 5 B 5@ L 5 ' iadod B 5.
+§;mw( o Rl a2 ) T e T ap
1 xax% xaxﬂ xg xaxﬁ
= = 2 - - 50{
2 TP (0 D~ s~ s
1 xax% xax% g xaxﬁ g LB
"2 P (295~ et~ 2+ o et
Lo Lo
=00+ =y pEt @ -y oy - 2Rl
Lo
=7 - 1)W7
and
Z 5ia5j,38ijuﬁ + Z ai(sia(sjb’ajuﬂ
1,5, ,5,8

/[:7j7/3

2
aly Z; Z; Ty
‘E:( 1+ s ~ e = gt )

Lo
:(7(7+2)—7—’Y—m’7)W

—_— xa
= —y(m — V)W'

S0 if A, = 83605 + (C1ia + G382 ) (Crdjs + €272 ), then

> 0 Ay (1)0u5) = (—v(m—’y)—Cfv(m—’yHClCz(—’y(m—v)Jr(
3,8

+ GGy = 1) = C(y(m = 7) = (m — 1))

Hence, if the term in the brackets is zero, then lemma 3.1 gives that u(z) =

solution to our system on B;. Provided C7,Cs > 0,the system will be elhptlc

22

- T8 xp T Z;
= Z@ﬁjﬁ (7(7 +2) 2[4 - ”mez 0ij — ’YW@B - ’YWfSJB

—7))

= is a weak



Rewriting this condition gives

O:—”y(m—’y)(l+C2+0102+C’2)+C’102(m2—m—m’y+fy+'y2—’y)+03(m—1)
= —y(m —7)(1 + C} + C1Cy + C3) + C1Cy(m(m — 1) — y(m — 7)) + C5(m — 1)

(
= ( )(1+(C1—|—C2) )—i—Cz( — )(C1m—|—02).
We write v = % (1 — d) for d > 0, giving
mTQ(l —d)(1+d)(1+ (C + C3)*) = Co(m — 1)(Crm + Cy)
m?(1 — d?)(1 + (C1 + C3)?) = 4Cy(m — 1)(Cym + Cy)
m2d?(1 4+ (C1 + Cy)?) = m*(1 + (C} + Cp)?) — 4Cy(m — 1)(Cym + Cs)
(1 + (Ch + Co)%) =1+ m 2(Cim — Cy(m — 2))?,

1+ (C + Cy)?

By varying C, C, we can obtain any value of d € (0,1), and hence any v € (0, ).
Therefore, any function u € H'(B;,R™) of the form u(z) = z|z|77,y € (1,%), is a
solution to an elliptic system with bounded coefficients. In particular, taking C} = m — 2,
C5 = m gives De Giorgi’s example, that is the elliptic system

Z/ auﬁaz(pa: )

i,5,0,

ij Tily ;T
Aofﬁ = 5ij§045 + <( )5104 +m-— ’ ‘2 ) ((m 2)5Jﬁ +m | ’f) )

which has the discontinuous and unbounded solution u € H'(By,R™) given by

T m 1
@) = o 725(1—\/m>-

3.2 A system with smooth coefficients depending on u

. \/1+ (Cy — m=2C,)?

Theorem 2.4 gives that elliptic systems with continuous coefficients depending only on z
have Holder continuous solutions. In §4, we will look at harmonic maps, and the systems
which these solve have coefficients depending on u(z) also. An example due to Giusti and
Miranda [GM68] shows that theorem 2.4 does not hold in this case. Again, we found this
in [Gia83, §2.3], where only the system and associated solution are given, so we present
it alongside our own calculations.

This time, we seek a system of the form (3.1) with smooth coefficients AZB depending
only on u, with solution

u: By - R™ u(r) = —.

Again, we need m > 3 to have u € H*(B;,R™).
As before, we begin with the usual Laplacian, and setting v = 1 in our previous
computation gives

Z&-((Siﬁa[g@juﬂ) = —1(m — 1)‘;L’|—1+2 = —(m — 1)—
1,5,8



Again we want coefficients Aijﬁ = 0ij0a8 + afxa%, now for smooth a’,(u). As before, a

. /L .
first guess is al, = u, = i, but
9 Talp . inxaazg xp 5 T 5
NP ) = 7 P
x x x
has terms which do not sum nicely.
; i _ mx iJ _ TiTjTaZg
A better guess is a!, = uu, = hp SO that A0y = UljUaUy = —m—- From

previous computations, we have

TiT;T024 Lo
> o ( |ﬂ i auﬁ) —(1(m—1) — (m — 1))‘3:’—1+2 = 0.
,5,8

We appear to have found an appropriate system, but taking Agﬁ = U;u;uqug does not
satisfy the ellipticity condition

ALsELEL > NEP.

We try the same trick as before, and take
Agﬂ = 5ij6aﬁ + (Cl5m + Cguiua) (Cléjﬁ -+ CQUjUB) .

Then, again making use of previous calculations, we have

Z@i (Uiuafﬂajuﬁ) =(=1(m—=1)+ (m—1)(m 1))| Tuz = (m —2)(m — 1) |w[3’

Y |z
Us; Uﬁ Ty
,3,8
Zai (0iabp05ug) = —1(m — 1)L =—(m— 1)95_04
L J J |x‘1+2 |$|37
1,5,8
SO N N
0; (A305up) = (—(m — 1) — CF(m — 1) + C1Cy(m — 1) (m — 2))@

Setting this equal to 0 and dividing by m — 1 gives
1= 01(02<m — 2) — Ol),

so taking C), =1, Cy = % gives the required system.
However, while a!, = w,u, is smooth, it is not unbounded as u varies. But by not-

ing that |u| = 1 when u = fa7» we can adjust the coefficients al, without re-doing the
calculations above. In particular,

i Uil

1+ |ul?

gives smooth, bounded coefficients.
This gives Giusti and Miranda’s example, which is the elliptic system

2)djupdipa =0,
3 [ Aot
4

i,5,0,

g U U 4 U;U
A9 = 6.5, Siar Lo« 5; dB )
o J B+( +m—2 1+|u\2)(35+m—2 1+ |ul?

Applying lemma 3.1 shows it has the discontinuous solution u € H'(B;, R™) given by




3.3 Extending the counterexamples

The example in §3.1 only applies when n = m > 3, so we give our own extension of this
example to any m,n > 3.
In all cases, we take a system of the form

Z Z / Agﬁ(x)ﬁjwﬁigoa =0 Vo € Hy(By,R"),
ij=1a,8=1"B1
or equivalently

ij=1 =1

n

/B A (2)0jupdip =0 Vo € Hy(By), a=1,...,n.
1

If n > m, then set

TiTq

=t () (-0

|2

Ty b m 1 1
Uy = ——  where =—(1—4/——M |,
iz 7T 1+ (2m — 2)2

with the convention that x;, = 0 for k > m.
Note that the system is still elliptic, and that 0;us = 0 when 8 > m.
Then for each p € H}(B;), a < m, we have

> /B1 AlsOjusdio =y /Bl AZsOus0ip = 0,

i,j=1 p=1 i,5,8=1

from §3.1. When a > m, we have

Aa{ﬂ = 05008 + ((m —2)-0+m |z[2 ) ((m = 2)d;5+m |Jx|2ﬂ> = 0ij0as,

SN [ aouwoe-Y [ owde=Y [ 0-05-0
ij=1p=1"7B1 i=1 7 B1 i=1 7 B1
Hence v is an unbounded discontinuous solution to the system given above.
If m > n, then given x € R™, write = := (21,...,x,) € R". We take

T 7.7
Aofﬁ = 5@']‘5@6 + ((n - 2>5ioc + TLW) ((n - 2)5j5 +n |%’2 ) J

%a h n 1 1
Uy, = ——  where =—|1—y/—,
FE T3 1+ (2n— 2)2

again with the convention that 7, = 0 for £ > n. Note that d;ug = 0 for j > n.
Now if ¢ > n, then

g 0-Zq T;T
Afly = 6ijlap + ((n —2)-0+ ”—x) ((n —2)0;5 + ”%xﬁ) = 040as;

|z |z?
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SO

/B AT Djusdp =Y Z/B A 05u505

1,j=1 g=1 i=1 j,4=1
= > / A Do+ Y Y / 8:100p0; 15050
ij,p=1"B1 i=n+1j,8=1"B1
= / AL dpusdip+ > Y / 0 - 6030;130;0
i,j,8=17B1 i=n+1j,5=1"B1
= Z /B Agﬁﬁjulg&go
ij,p=1" b1

from §3.1, so u is an unbounded discontinuous solution to our system.

Note that when n > m, u is only discontinuous at a point, but when m > n, the
singular set is By N {x1,...,zy = 0}, which has Hausdorff dimension'* m — n. We can
generate further examples with larger singular sets as follows.

Given x € R™, write T := (z1, x9, x3), and set

TiTa T7s
Aciﬁ — 67Lj5aﬁ + (51@ ‘I‘ 3W) ((%5 + 3&?) ,

Tq n 3 <1 1 >
Uy = == where = — - .
EE 773 V17

Then d;ug = 0 whenever j > 3 or 8 > 3, and if ¢ > 3 or @ > 3 then Agﬁ = 05008
So u is a solution of the associated system, by similar calculations to those above. Hence
we have an elliptic system with bounded coefficients, whose solution has a singular set of
Hausdorff dimension m — 3.

This procedure can also be carried out with the example in §3.2.

From this, it is reasonable to guess that we can establish partial reqularity results -
that is, solutions to elliptic systems with “nice” coefficients should themselves be “nice”
outside a singular set of Hausdorff dimension some constant amount less than that of the
domain. This indeed turns out to be true in many cases (see for example [Giu03, §9]).

3.4 The Campanato space for a domain with a cusp

Theorem 2.1 gives that if  has no external cusps, then the spaces C%%(2) and LPm+Pe
are isomorphic. To see that the inclusion C%¥(Q2) C LP™+P*(Q)) holds for any domain €,
we note that for fixed y = (y1,...,ym) € 2, 1 <p < o0, r > 0, we have

/ () — 1y, [P de < C(p) / lu(z) — £ de VE € R (3.2)
Qr(y)

Qr(y)

*3%

A definition of Hausdorff dimension can be found in ***  although the precise definition is not

important here
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(see [Giu03, remark 2.2]). Hence if u € C%*(2), then

pmmRe / u(x) =Ty, [P dw < Crom P / [u(z) —ul(y)” dz
Qr(y) )

<O sup u(x) — u(y)l”

z€Qr(y)
_ P
o 1) = 0
syeq | —ylPe
=C ||u||g0,a(9) -

We give our own example to show that the assumption on €2 is required for the reverse
inclusion.

Fix any m > 2, p € [1,00) and a € (0,1). Then for 5§ > 1, v € (0,«) to be chosen
later, define 2 C R™, u: 2 — R by

Q={(21,7) eRxR™ ' : 0 <2y < 1,|7] <2}, w(xy,T) = z7.

Now u ¢ C%*(Q), so our aim is to find 3 such that u € £P™P*(Q). We will bound
(%) = r—mP fﬂr(y) |u(x) — [P dz for fixed y € Q by separating into cases (see figure
3.1). By remark 2.2, we may consider only r < 1.

0<r<y v <r<uy p<r<l
Figure 3.1: The different cases for our calculation.
Case 1 (0 <r <w). Using (3.2) with £ = y] gives

morm e [ e - P

Qr(y)
< Cr P Q. (y)] sup Ja] =yl P
z€Qr(y)
p
= Cr " " Q. (y) (ﬂlp |(y1 + 1) — le)
t|<r

= Cr ()| (9] = (g — 1))
Now = € (0,1) so 1 — = < (1 — =), giving that y] — (y1 —r)? < y;~'r. Hence
() < Crmm )y 20, (y).
If r <47, then Q.(y) C B,(y) and 7'~ < g7 g0
(¥) < OrP=0) y=?(1-1) < ¢ <y1/3(17a)7(177)>p‘
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And if r > ylﬁ, then
0 (y) C{(21, ) : |21 — | <7 |7 < (1 + 7)),
which has volume Cr(y; + r)?m=1 < Crylﬁ(m_l), S0

(*) < Oy~ (m=1+p(1-a) yf(m—l)—p(l—w)'

Depending on the sign of —(m — 1) +p(1 — ), this either achieves its maximum at r =
or r = y;. Hence

p
() < C'max { (yf(l_“)_(1—7)> ’ yiﬁ—l)(m—l)—p(a—v)} '

Case 2 (y; <r <1). Now
O (y) C{(21,7) e RXR™ ' 0 < 2y < 2r,|7| < 22}

Using this, and (3.2) with £ = 0, gives

2r
(*) < C«r—m—pa/ tPm=1) v q¢
0

— OpB-Dm=1)=pla—)

Depending on the sign of —(m — 1)+ p(1 — «), this either achieves its maximum at r = y;
or r =1, giving
<*> < C'max {yiﬁ—l)(m—l)—P(a—v) 1} '

Combining both cases gives that for fixed y € €,

p
sup P / lu(z) — @y, | de < C max { <ylﬁ(1—a)—(l—'y)> B Dm=D=pla=), 1} ’
r>0 Qr(y)

SO

[u]g/\ < C sup max { <y1/3(1—a)—(1—7)>p’ y§6—1)(m—1)—p(a—7)’ 1} .
7 y1€(0,1)

This is finite if 5(1 —a) — (1 —7), (8 —1)(m —1) — p(a — 7y) are both non-negative, that
is if

a— pla—7)
>1 —-1>—7.
pz +1—0¢’ b — m-1
So if
P
> 1 £ _
g > +max{1_a,m_1}(a v),

then u € LPHP(Q)).

We can also show that if u € LP™TP*(Q)), then § must satisfy the inequality above.
To do this, we use remark 2.1 to equivalently take ,.(y) = QN Q,(y), where Q,(y) is the
cube of side length 2r centred at y and aligned with the axes. Given u € LP™*P*(Q)), for
some fixed m > 2, pe[l,00),0<v<a,<1, > 1, we carry out two calculations.
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Calculation 1. Take r € (0,1). Then Q,.(0) ={x € Q:0 < x; <r}, and
[ tAm=Dr 4t Blm—1)+1

Tor = e Bm -1+ 149

~ 1/~
. m—1)+1
Now write C' = (%) € (0,1), so

r_m_po‘/ lu(z) — o, [P dz = r_m_p“/ A=) (Cr)Y — P dt
0, (0) 0
16
> prmope / A= ((Cr)Y — )P dt
0

icr
~ ~ 2
zwﬂﬁ%@wv—@cmwf/ £ gy
0
— Cr(ﬁ—l)(m—l)—p(a—v)’

where C' > 0 is independent of 7. Now if > 0, then the function y — 7= |lu — Ty, .,
is continuous, so

[u];/\ > sup P |u — ﬂy,r”iﬁ(m(y)) [u]sz
zoES)
= zs;le% N Ju Uy,rHLP(QT(y))

> OpB-Dm=1)=p(a—7)
for each r > 0. Hence (8 — 1)(m — 1) — p(aw — 7y) > 0, that is
g>1+4+—L
m —

1(04—7)-

(Qr(v))

Calculation 2. Take y; € (0,1), and set y = (y1,0,0,...,0), r = (%yl)’g. Then (y, —7)7 >

(2r'/8 — BV =1 s0 Q.(y) = Q,(y). Further,

y1+r 1
Uy,r = (QT)_m/ (2r)" 17 dt = Myt Dr (i +7r) = (g —r)).
yi—r

Now for v € (0,1), we have

L+ = - ) =207+ 1) -

L+ 87 + (g1 — 5)7) < 20y + 137

by concavity of s — s7. Integrating this inequality, noting that (y;+0)7"!—(y;—0)7*! = 0,

dividing by 2(7 4 1)s and taking s = r then gives
Uy, <Y1

Hence

y1+r
r_m_po‘/ lu(x) — Ty, [Pde =r~"" (2r)" Y — P dt
r(y)

yi—r

y1+r
_1 pOé/ _uyr pdt
yi+s
y1+r
e [ iy
1+2
1W(( + ) )”
=T — .
= hn 5 Yy
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Now for s < y;, v < 1, we have

d . o
ZEKM+6V—yD:7@h+@”12T17ﬁ1-

Integrating this inequality, noting that (y; +0)” —y] = 0, and taking s = § <y gives

™\7 —
(n+35) =l zCcOu ™

SO

[ul?, > o / fu(x) — Ty, P da
' Q(y)

> CrPe (yY_lr)p
_ Oy Pu-=(-)

for each y; > 0, where C' > 0 is independent of y;. Hence 5(1 —a) — (1 —~) > 0, that is

(a—7).

1
521+1

These calculations show that given m > 2, p € [1,00), 0 < v < a,< 1, § > 1, if we
define Q C R™, u : Q2 — R by

Q={(z1,7) e RxR™ ' :0< 2y <1,|7] < 2P}, u(xy, T) = ]

then

1 P
pmpe () >1 — — ).
u€ L Q) < pg> —l—max{l_a, _1}(a v)

Hence the “pointiness” of the cusps of {2 regulates the regularity of u € LP"1P((Q).
It seems reasonable to expect that something similar holds in general. In particular,
we suggest the following.

It 2 has at worst C%8 cusps, that is there exists A > 0 such that for each
7o € Qand 0 < r < min{1,diam(Q)}, we have |[Q,(zo)| > Arfm=D+1 then

Lomtre(Q)y C C°7(Q2),  where = a — min {1 —a, - 1} (B—1).
p

Returning to §2.5, this would mean that we could relax the condition that {2 has no
external cusps (provided we don’t run into the cusp condition mentioned after remark
2.3), and still be able to use theorem 2.6 to conclude that solutions of elliptic systems
with uniformly continuous coefficients are Holder continuous. Unfortunately, we did not
have time to explore this any further, but [GL23] would be our starting point for further
exploration in this direction.

3.5 Boundary regularity

The original aim of finding the example in §3.4 was to construct an example to show that
the cusp condition is needed to apply theorem 2.6 to Holder continuity. While we can find
equations of the desired form which have u (as defined in §3.4) as a solution (for example
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by noting that for any ¢, we can have Au € L%(2) by taking g sufficiently large), we do
not have that v is equal to zero on the boundary.
If we adapt u to get appropriate boundary conditions, for example by taking

(@, @) = 27(1 — 21)(1 — 277 |7]2),
then
Bu= (2= Da7 ~ (y — 28)(y — 28 - Da} P2
— ((+ Dy = (= 28+ Dy — 20027 )

+2(m 1) (217 = 2],

Now if z € Q (with Q as in §3.4), then z;2’|Z|? < 1, so the first term behaves like
% and the second term behaves like z]~'. Now

1
/ xf{(v—2) dr — / #9072 g,
Q t=0

so by making f large we can ensure the first two terms are in L9(2) for our desired q.

]

However, the third term (which comes from derivatives with respect to xs, ..., x,,) is only
in L9(€2) when (3 is small. This prevents us from adjusting S to get the first terms in
Li(Q).

This suggests adding an “adjustment” term to our equation to cancel the third term,
but we were unable to find an appropriate adjustment which is uniformly continuous.
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4 Harmonic Maps

In §1, we studied elliptic equations, where the solution u is a map from 2 C R™ to R,
and in §2, we studied elliptic systems, where the solution is a map from Q2 C R™ to
R™. We now consider the situation where the solution is a map between Riemannian
manifolds, but we will restrict our attention to those which satisfy an analogue of the
equation Au = 0. These are known as harmonic maps.

Examples of harmonic maps include geodesics and minimal surfaces (see §4.2), but
they also include other situations, for example the behaviour of nematic liquid crystals
[Hél02, introduction]|. These can be thought of as thin rod-shaped molecules which want
to be parallel to each other. Considering their direction (a unit-length vector) at each
point in space gives a map to the unit sphere which minimises some variational energy,
and this turns out to be very close to the energy given in definition 4.1.

4.1 Defining harmonic maps

Suppose we have Riemannian manifolds M, N of dimensions m,n, with C' Riemannian
metrics g, h respectively.

We begin by defining harmonic maps M — R, following [Hél02, §1.1]. Given local
coordinates (z!,...,2™) on U C M, and a function u : U — R, we define the Laplacian
by .

Apmu = —th@- ( detgg”(x)@u) ,
where ¢;;(z) = g(x) (0, 0,), and g (z) is the (i, )™ element of the inverse matrix of
(gi7). It is clear from a routine calculation that this is coordinate-independent.

Note that if M = R™ with the Euclidean metric, then g;; = d;;, and Apu =
\/LI&- (V16;;0;u) = O?u, giving the usual Laplacian.

Then we say that v : M — R" is harmonic if each component u® : M — R satisfies
A Mua =0.

To help move on to the general case, note that if 2 C R™, then harmonic maps
Q — R™ are critical points of the energy functional u — [, [Dul*dz =7, | [o(0iu®)? dz.
Trying an analogous expression for functions u : M — R", we see that if

e(u) == Zg”(w)@iuo@jua, E(u) := /M e(u) dvol,

where dvol, = \/det g(x) dz'...dz™, then e(u) is coordinate-independent, and harmonic
maps are critical points of E.

This suggests the following definition of harmonic maps M — N [SY97, §IX.1].
Note we are retaining the convention that repeated indices are summed over, with 7, j =
1,...mand o, =1,...,n.

Definition 4.1. Given a C"! function u : (M, g) — (N, h), and local coordinates z', ... z™
on M, y',...,y" on N, the energy density is

e(u) == g (x) hos(u(x))Ou05u”,

where we write u = (u',...,u"), gij = g (0pi,00), hap = h(ﬁya,ayg). Then u is a
harmonic map if it is a critical point of the energy functional

Bu) = /M e (u) dvol,. (41)
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Note that e(u) = try(u*h), so this is coordinate-independent.
Further, if V is the Levi-Civita connection on A with Christoffel symbols '3, in the
coordinates ¥, . .., y,, then the Euler-Lagrange equations for (4.1) are

Apu® + g"j(:n)lﬂ%ﬁy(u(a:))é’iwgajuV =0 Va, (4.2)

so we can also take this as the definition of harmonic maps (see [Hél02, §1.2]).
If = R", then all the Christoffel symbols are 0, giving our previous definition of
harmonic maps into R"™.
Additionally, if A is isometrically embedded in RY, we have an alternative formulation
of (4.2), namely
Apu + ¢ B(u(x)) (9u, ju) = 0, (4.3)

where B is the second fundamental form of N (see [Hél02, (1.17), lemma 1.2.4]).

4.2 Examples
In order to motivate our discussion, we give a few examples of harmonic maps.

Example 4.1 (Geodesics [Hél02, example 1.2.6]). If M = [0, L] C R with coordinate t,
then (4.2) becomes
i+ T5 (w)i’d" =0 Vo

These are the geodesic equations for curves in (N, h).

Example 4.2 (Minimal submanifolds [HW08, §2.2, example 7]). If u : M — N is an
isometric immersion, then it can be shown that w is harmonic if and only if M is a minimal

submanifold of N.

Example 4.3 (Holomorphic maps (adapted from [HWO08, §2.2, example 10])). If M =
N = C, with complex coordinate z = = + iy on M, then g;; = d;; and all the Christoffel
symbols for h are 0. Hence (4.2) becomes

0= (85 + 85) u = 0;0,u,
So holomorphic and antiholomorphic maps are harmonic.

Example 4.4 (Maps into the sphere (adapted from [HWO08, §3.1, example])). Suppose
N = S" C R with the round metric. The second fundamental form of S™ C R**! is

B(p)(X,Y) = (X, Y)p,
where (-, -) is the usual inner product on R"*. So (4.3) becomes
Apu = —e(u)u, (4.4)

where e(u) := 3" ¢ 0;u*d;u®.
Now if M = B™™ C R"™! is the unit ball, then (4.4) becomes

Au = —|Dul?u,

which has weak solution x +— ‘% This suggests that it would be useful to find a weak
formulation of definition 4.1, and also that maps satisfying such a definition may not be
continuous.
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4.3 Different notions of weakly harmonic maps

We now seek a notion of weakly harmonic maps. As mentioned in [SY97, §IX.1], it makes
sense to first restrict our attention to maps with finite energy. Recalling that

E(u) = //vt 97 (2) hap(u(x))0u®0;u” dvoly,

we see that our maps should be bounded (to control h,g(u)) with derivatives in L? (to
control d;u® - d;u”), so they should be in the space

LM, N) N HY (M, ).

Unfortunately, we don’t have a good notion of what this space means, since we want to
work in local coordinates, but this requires continuity (to assume that the image of an open
set in M is contained in a coordinate chart of '), which we want to avoid imposing. We
can get around this by isometrically embedding N in RY (although a smooth embedding
can be used instead [SY97, §IX.1]), and considering maps u : M — R¥ taking values in
N almost everywhere, giving the space

D:={ue L*M,RY)NH' (M,R") : u(z) € N ae.}.

We could now give a weak formulation of (4.2), but again this requires local coordinates
on N, and hence continuity. However, the weak formulation of (4.3) makes sense without
assuming continuity, and if u is continuous then the two weak formulations agree. This
suggests the following definition [SY97, §IX.1].

Definition 4.2. A map u € D is weakly harmonic if
/ Z [gijaiuo‘ﬁjgoa + ¢ B*(u(x)) (05, @-u)] dvol, =0 (4.5)
M (e
for each coordinate patch U C M, and any ¢ € H}(U,RY) N L>(U,RY).1? (Recall that

B is the second fundamental form of the embedding of N in R™.)

There are other weak formulations of definition 4.1, so we briefly outline two such
formulations from [HWO08, §3.1]. A map u € D is called minimising if any v € D such
that v = u outside a compact subset of M, satisfies E(v) > E(u). And a weakly harmonic
map is called stationary if it is stationary with respect to a larger class of deformations
than those used to find the Euler-Lagrange equations for (4.1). We have the inclusions

{minimising maps} C {stationary maps} C {weakly harmonic maps},

and these are strict in general.

12Tn [SY97], ¢ is restricted to C°(U,RY), but we have opted for the more general class of functions
used in [Hél02, definition 1.4.9], as this will be useful to us later on. Note that this gives an equivalent
definition.
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4.4 Regularity of continuous weakly harmonic maps, via freez-
ing coefficients

We begin with the following surprising theorem [Hél02, theorem 1.5.1].

Theorem 4.1. Suppose N is compact without boundary, and uw € H'(M,N) is a con-
tinuous harmonic map.'® Then u is smooth, that is if the metric on M is C**, and the
metric on N is Cb, then u is C'™{kB+1ae

The difficult step in the proof of this theorem is showing that w is Lipschitz [HWO08,
§4.1]. We will prove the weaker statement that Holder continuous weakly harmonic maps
are Lipschitz continuous, because it shows another freezing coefficients argument. The
idea is that the continuity of v means we can assume that the image of a small set in M
lies in a single coordinate patch in A/, and therefore work in local coordinates. We cannot
use theorem 2.4 here, since our coefficients depend on u as well as x (see §3.2), but we
can choose coordinates in such a way that the frozen equation has a nice form.

Proposition 4.2. If a weakly harmonic map u : M — N is a-Holder continuous for
some « € (0,1), then w is locally Lipschitz.

The following proof is from [SY97, §IX.7], with some parts reordered and additional
explanation added for clarity.

Proof. First, we obtain an estimate which will be useful later. Take normal coordi-
nates (z!,...,2™) in a normal neighbourhood B, (o) of M and the usual coordinates
(yh,...,yN) on RV, and write u = (u',...,u"). Since u is continuous and weakly har-

monic, it satisfies the weak form of (4.2), so
/ Z [ — §70P0;0° + goﬁgijl“fé(u)aiﬁﬁjuﬂ dz =0 (4.6)
BTO (xo) B

for each ¢ € HE (B, (7o), RY).

Now if go is the Euclidean metric on RY, then 8 OuP0;0" = go (0;u0ys, 0;070,)
for fixed 4,j. However, u takes values in N, so &-uﬂﬁya is tangent to N, and we can
replace 9;¢70,» with its projection h.s50;¢°9,s onto the tangent space to N. Hence

> 0P0,0° = go (0°0,6, 0;070,) = hig, 0’007
B

So if we write (Vu, V) := g7 hg,0;u’0;¢", then for each r € (0,7,) we have

/ (Vu, V) dvol, | = / > 970 0;" dvol,
By(z0) B.(z0) %5

= / Z <p*6F§5(u)‘qijaﬂﬂajwS dvol,
r(

$0) B
< C sup |g| 97 hey 507 0;u° dvol,,
Br(zo)  JBy(xo)
= C sup |y e(u) dvol, (4.7)
BT‘('/'UO) Br(x())

13Note that when N is compact, the condition u € L>(M,N) is automatically satisfied.
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where C} depends only on the behaviour of & and embedding of A" into RY near u(x).
This is a coordinate-independent statement on N, so we are free to change coordi-
nates. Hence we assume (by decreasing 1 if necessary) that u(B,,(xo)) lies in a normal
neighbourhood of u(zy) with normal coordinates (y',...,y"), and that r < 1. We now
write v = (u', ..., u").
If |x| <, then the normality of the coordinates and Holder continuity of u gives

|gij () — dij < Cor?, (4.8)

|hsy (u(x)) — dg,| < Car™,

where Cy depends only on the behaviour of g near zy, and C3 depends only on ||u|| 0.
and the behaviour of h near u(x).

Further, g;; = d;; at ¢, and the F,f s are all 0 at u(xg). We want to freeze coefficients as

we did in §2.4, but this time our equation has coefficients depending on both = and u(z),

so we need to freeze coefficients in both the domain and codomain. Plugging g;; = d;;

and T = 0 into (4.6) gives
Z d?v = 0.

Take v to be the unique weak solution to this on B, (xy) with v = u on 0B, (zy).
In §2.4, we set ¢ = v — v in the equation for u. Doing this with (4.7) gives

/ (Vu,V(u—v))dvoly| <C) sup |u— v e(u) dvol,. (4.9)
By (zo)

By (z0) By (zo)

Further, the maximum principle gives

max v = max v = max u < max u,

Br(zo) 0Br (o) 9Br (o) Br(x0)
min v = min v = min w > min u,
By (20) 0Br (o) 9Br (o) B (z0)

SO
osc v< osc u<Cr®

Br($0) BT'(CCO)
where C' = 2% ||u|| c0... Hence if ¥ € 0B, (zy), then
sup |u(z) —v(z)| < sup fu(z) —w(@)] + [u(T) —v(@)] + sup |v(z) - v(z)]
x€Byr(z0) z€Br(z0) z€By(x0)

< Cr*4+ 0+ Cre.

Combining this with (4.9), we have

< C(C full o)™ / e(u) dvol,, (4.10)

By (z0)

/ (Vu, V(u—v)) dvol,
By (zo)

We can also take ¢ = u — v in the equation for v. If we write dv-9p ==}, 0;0° 0,0,
then this equation is

/ dv-pdr =0 Ve H(B,(x)),
By (zo)
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and setting ¢ = u — v gives

Ou —v)Pdr = ou - 0(u — v)dz. 4.11
AMJ( ) / (u—v) (4.11)

By (z0)
Now if || < r, then |\/det g(z) — 1| < Cr by (4.8), so

19" hgy (u)\/det g — 6505, < C(Cy, Cg)pmin{l2et,

Noting that if & € (0,1) then o < min(2a, 1), we have

/ ou - 0(u —v)dr — / (Vu,V(u —v)) dvol,
By (z0)

Br ((E())

Z/ ((51-]-(5/37 — 9" hg (u)y/det g) O’ 0;(u — v)" dw
ij (o)

< C(Cy, C3)T’a/ |Ou||0(u — v)| dz

B’V‘ (xO)

< Cra/ (|ou)® + |0v]?) d=
Br(x()

< Cro‘/ |Ou|? dz,
Br(ﬂfo)

where for the final inequality we used the fact that v is energy minimising.
Combining this with (4.10) and (4.11), we get

/ la(u—v)\de:/ O(u —v) - dudzx
BT(Z'O) BT(Z'O)

< / (V(u—v), Vu) dvol, + C(Cy, Cs) r® / |Ou|? dz
Br(wo)

BT‘ (10)

scwmwmmw{/

Br (IO)

e(u) dvol, + C(Cy, Cs) Ta/ |Ou|® d
BT‘(IO)

< C(Ch, 0y, Cs, |lufl o) ra/ |Ou|? dz, (4.12)

B (QC())

where we used (4.8) for the final inequality.
This inequality is better for smaller values of r, which suggests that we iterate.!*
. . _ 1 2
We aim to compare Az (u) to A,(u), where we write Ay(-) = EREnll pr(:co) |0 - |*dx for
convenience.
Note that for any w, we have
2n

2n
Az (w) = —/ ow|?dz < ——— |Ow|* dz = 2" A, (w).
’ | Br(20)| i, (@) | Br(z0)| J B, (o)

147f we don’t have Hélder continuity, then the analogue of (4.12) we obtain is missing the factor of 7%,
which prevents us from iterating.
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If w = v, we can improve this. Note that

Aldw|? = Zaﬂam?

_ Z ((@:0;0%)° + ow0,020°)
,5,8

=2) " <|D2uﬂ|2 + Z@ivﬁ@(Avﬁ)>
8 i
>0,

so |Ov|? is subharmonic, giving us the mean value inequality

d 1 / 5
— |Ov|*dz | >0 for0<p<r.
dp (Bﬂ(x(J) B,(z0)

In particular, Az (v) < A.(v).
Finally, the energy minimising property of v gives that for any p, w

Ay(v) < Ay(w).
Now
|Ou|* = 0u - O(u — v) + O(u — v) - Ov + |0v|* < |0(u — v)|(|0u| + |Ov]) + |Ov]*.

Integrating this over B (x0) and using Cauchy-Schwarz gives

Ay(w) < \JAs(u—v (\/A )+ /A5 (0)) + A5 (v)
scm(\/ 2 (1) + VA0)) + A(v)
< VA=) (/A5 () + VAW)) + An(w)

Then (4.12) gives that

As(u) < Cré /A, (u) (,/g )+ VAL + An(w)

< COr? <—A (u) + L4 (u )) +(1+0r2) A (u)

I\J

2C
A, (u) +

Ql-

Ag(u)) + (14 Cr2) A (u)

(1- r%)_l (1+Cr2) A, (u)
(1+ C’r%) A, (u),
where C' depends only on Cy, Cy, Cs, ||ul| co.q-

If we set r; = 27y, then

oo

1 / 2 5 i 1 2
—_ |Oul” dz < (1—1—07’222) —/ |0l dz,
|Br; (x0)| /5, (20) 11 " | Bro (£0)] J By (a0)

=0
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by iteration, so for each 0 < r < ry we have

1

—_— |Ou|*dx < C.
| B, (z0)| B (o)

Applying (4.8) for the final time gives that

1

—_— e(u) dvol, < C
|Br(20)] J B, (x0) ’

—_— |Ou*dz < C
| B (x0)| /B, (20)

for each 0 < r < ry.

Now xy was arbitrary and C' does not depend on xy (only on u and the local behaviour
of g, h). This means that e(u) = (Vu, Vu) is locally bounded, so Vu is a Lg2, function,
and u is therefore locally Lipschitz.

O

Once we have that u is Lipschitz, the conclusion of theorem 4.1 follows from a bootstrap
argument, which we will briefly outline, first in the case where g, h are C'*°, following part
of [HWO08, §4.2]. We have that Vu € L{°, so working in local coordinates, as u is a

weak solution of (4.2), this means that Ayu € LS. We can then apply regularity
results for systems similar to those we have seen so far (see [Mor08, theorem 6.2.5]) to
get that u € W/lif for each 1 < p < oo. Then given any 1 < p’ < oo, we see that
9 (2)T4, (u(x))du’d;u7 € WP because Du € WL . Hence (4.2) gives that Ayu €
Wb /, so again applying regularity results gives that u € W'licp for each 1 < p < .
Repeating this process, we see that u € I/V[Zf for any 1 < p < o0, k € N; so u is smooth.
In the case where g, h are not C°°, this process stops after some number of iterations,
giving that u is locally W*? for some k € N. In order to recover theorem 4.1, we must
carry out this process with results which give local C*® regularity of u, similar to the
results obtained at the end of §1.2.

This means that the regularity problem for harmonic maps can be reduced to the
question of continuity. We briefly outline the situation regarding this, following ideas
from [HéI02, §1.5].

In the case m (= dimM) = 1, note that any map u € D is in H'(M, Bg) for
R = ||ull oo ((ary)» Br € RY. Then u € C%2 (M) by Morrey’s inequality, so any harmonic
map u : M — N is continuous, hence smooth.

If m = 2, we cannot use the argument above. However, provided N is compact
and without boundary, it is still true that all weakly harmonic maps are continuous
[Hél02, §4.1].

When m > 3, the picture is much more complicated. The possibility of a regularity
result for all weakly harmonic maps has been ruled out by the construction by Riviere of
(finite energy) weakly harmonic maps with value in S? [Riv95]. However, the picture for
minimizing and stationary maps is more favourable - minimising maps must be continuous
outside a singular set of Hausdorff dimension at most m — 3, and stationary maps must
be continuous outside a singular set of Hausdorff dimension at most m — 2.

It turns out that the example u : B> — S?, B; C R3, z — 7] is a minimising map
[Hé102, §1.5]. This shows that the result for minimising maps is optimal.
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4.5 Scalar methods applied to the energy

To finish this section, we follow [SY97, §1X.4], to see how ideas similar to those in §1.3
can be applied to the energy of harmonic maps, and how this gives us interesting results

about harmonic maps themselves.
We begin with the Bochner formula for harmonic maps ([SY97, §1X.4],[EL78, pg 12]),

1

§AMe(u) = |V (du)|* — Z h(Riem™ (u,e;, uve;)une;, uee;) + Z Ricci™ (40, u*6,).
i:j o

Here V is the pullback of the connection on N, ey,...,e,, is an orthonormal basis for

TM, and 6., ...,0, is an orthonormal basis for T*N. Suppose M is compact, so we can

bound the third term from below by —Cldu|?> = —Ce(u). Hence if A has nonpositive
sectional curvature, then discarding the first two terms gives

Ape(u) > —=C(M)e(u). (4.13)

Alternatively, the second term is also bounded from below, this time by —C(N)|du|* =
—Ce(u)?, so if e(u) < 1, then we can discard the first term and bound e(u)? by e(u) to
get

Ape(u) > —Co(M, N)e(u). (4.14)

This lets us use the following generalisation of theorem 1.4 [Mor08, theorem 5.3.1].

Theorem 4.3. Suppose w € H. () N L*(Q) satisfies w > 1 in Q C R™. Suppose also

loc
that
in the weak sense in Q, where the coefficients a;; € L>®(Q), by, ¢; € L™(Q), d € L3 () are
such that
NEP? < ay(@)6:g; < AP VEeR™

for almost all x € €2, and
2 2
||bi||Lm(BT(x)) + ||Ci||Lm(Br(x)) + ||d||L%(BT(z)) < Cyr*

for each B,(x) C Q.
Then w € L2.(Y), and there exists C' = C(m, \, A, Cy, ) such that if 0 < p < R and

loc

Bri,(z9) € Q, then
2 —m 2
[l (Baoy < C0™™ 10ll2 (B4 o))
for each x € Br(xy).
We give our own explanation for how this applies in our case.
Suppose u € | C?*(Q,/N) is a harmonic map with respect to the Euclidean metric gy on
a compact set 2 C R™, and that e(u) < 1, so that (4.14) gives —Ae(u) — Cpe(u) < 0.

Now e(u) is defined using only the first derivatives of u, so e(u) € C*(Q).
Given ¢ € (0,1), write v. = £(e(u) +¢) € C*(Q), so that

1
—Av, — Cov. = g(—AMe(u) — Coe(u) — Coe) <0
in the weak sense, and 1 < v, < M,, djv. < M, for each i, where M, =1 ()l e q)-
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Next, take w. > 0 such that w? = v.. Then w. € C*(Q) because v. stays away from

0, so by COHIp&CtHESS of Q we have that w. € HL (Q) N L?(Q). Further, 1 < w, < /M,

loc
0;v. < v/ M, for each i, so

0> —Apm(w?) — Cow?
= 2w, Apw, — 2|Vuw,|* — Cow?

> \/M(—QA'LUE —223¢w5—00ws)a

again in the weak sense. Dividing by /M. gives that

—2Aw, — 2 Z dw. — Coyw,. < 0,

so we can apply theorem 4.3 to get

hu«xMQszcxnucanfﬂj/“ w?

Brp(w0)

whenever 0 < p < R, Bpy,(z9) € Q, x € Br(xo).

Finally, substituting w? = v, = 1(e(u) + ¢) and multiplying by 1 gives

e

e(u)(z) +e < Cp_m/

BRr+p(0)

(e(u) +¢) < C’p_m/ e(u) + Cp™™(R + p)"e.

Br+p(zo)

Sending € — 0 and rewriting p, R, we have shown that

&deSC@—mmA;)dw

Bp(xo)

whenever 0 < R — p < %, Br(zo) € . We see that if % < R —p < R, then (%)7m <
(R—p)™™ and 0 # Bay(0) € Br(x), s0

wpdwscwrﬁé()wosaR—m%/ e(u).

By (o) Br(zo)

Finally, we that e(u)(zo) < C(R — p)™™ fBR(CUO) e(u) for each p > 0, so sending p — 0

gives the same result for p = 0. Noting that Cy depends on M = Q. A/, we have shown
the following.

Lemma 4.4. Let u € C%*(Q,N) be a harmonic map with respect to the Euclidean metric
go on a compact set Q CR™, such that e(u) < 1. Then there exists C' = C(m,Q,N) such
that
sup e(w) < C(R-p) ™ [ etw

Br(zo)

BP(IO)

whenever 0 < p < R, Br(zg) C .

Note the same argument works when N is nonpositively curved, and in that case C
does not depend on N.

We will now use this to prove the main theorem of this subsection, following a proof
from [SY97, §1X.4]. We have rearranged it to show where the ideas come from, and added
additional explanation for clarity.
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Theorem 4.5. Suppose u € C*(B,,,N) is harmonic with respect to the Buclidean metric
go on B,y CR™ m > 3. Then there exist ¢ > 0, C > 0 depending only on m, N, such
that if

g " /B e(u) <e, (4.15)

then
sup e(u) < C’rom/ e(u). (4.16)
B

Bry o

Proof. We begin by stating the following lemma (consequence of [SY97, §IX, lemma 1.2]).

Lemma 4.6. If u is a stationary map from a domain Q C R™, m > 3, to a manifold N,
then for each v € Q and 0 < p < r < dist(z, 02) we have

r2_m/ e(u) — pz_m/ e(u) > 0.
By (z) By(z)

p2_m/ e(u) < rz_m/ e(u)
By (x) By (x)

whenever z € B,, and 0 < p <71 < rg— |z|.
Note that given r; < rg, z € B, 0 < p < r; — |z|, by applying lemma 4.6 and
increasing the area of integration (see figure 4.1) we get

2—m m—2
i [ e<u>s(’“°+“—|x|) / e<u>so( L ) i [ et
B,(z) 2 B To—"N B

70

Hence

L (rotry) -1 (®)

Figure 4.1

and setting r1 = 3ry gives'

p2_m/ e(u) < 4m 2 Crg_m/ e(u) (4.17)
Bp(x)

By,

5Note that [SY97] has (%)WF2 in the expression below, and the original paper [Sch84] containing this

proof has (%)M_Q. We have corrected this here.
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for any x € B,, and 0 < p < r; — |z|.

Now take some B, (o) C B,, to be fixed later. We aim to use lemma 4.4, so we must
rescale u. Given a > 0, write p; = apg, and consider the map v : (B,,, go) — N given by
v(y) = u (2y + x0), which is also harmonic. Then for each y € B,,, if x = f(y) then

e(v)(y) = Z Bijhas(v(y))dyv® (y)dy v’ (y)

= Zéwhag(u(:v)) : é xiua(f) ’ éaﬂuﬂ(l‘)

1
= e(u)(x).

Note that if @ = /eg, where ey = supg, (,,) €(u), then e(v) < 1. Assume for now
that p; < 1, that is that \/egpo < 1. Then we can instead take a = (pg)~' > /e to
get a harmonic map v : By — N with energy at most 1 (and rescaling to B; avoids the
dependence of C' on () in lemma 4.4). Then using lemma 4.4 with R = p;, p = 0 gives

po e(u)(x0) = e(v)(0)
< C’(m,/\/)/ e(v)

B1

<Cpp™ / poe(u)
BPO (z)

§4m_207“§_m/ e(u),

By,

where for the last line we used (4.17). So if ey < py?, then

g e(u)(x0) < Clm, )2 / e(u).

0

Now we choose zy. Given ry < 11, note that the function = +— e(u)(z) is continuous
on B,,, so we take x to be the point where it attains its maximum (possibly on 0B,,).

We could set ry = %7“0, po = iro to get (4.16), but the condition p; < 1 becomes
SUDB, (o) e(u) < py?. This still contains a supremum, so is not what we want. Instead,
we wait to fix ro. We could take py = r; — ry, but it will be helpful to instead set
po = 3(r1 —r2), so that ry — (12 + po) = po (see figure 4.2).

This gives

1
é_l(rl —19)?supe(u) < Crgm/ e(u).
By, B,

The function 7 + (r; —r)*supy_e(u) is continuous on [0, 7], so attains its maximum,
and is 0 at ;. We take ry < r; to be the point where this maximum is attained, so that

sup e(u) < C (” _T)_Q-rom/B e(u) (4.18)

By To ro

for each r < ry. Setti_nzg ry = 7 and recalling that r, = 3421 gives (4.16), provided
€0 = SUPp, (z) €(U) < Py~
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Figure 4.2

Now we return to this condition. Suppose ey > py?, so that taking a = /ey and
rescaling as above gives p; > 1. Then v|p, is a harmonic map with energy at most 1, so

applying lemma 4.4 on B; and using (4.17) gives
e ‘e(u)(zo) = e(v)(0)
<Cm ) [ elo)

B1

—ca) [ e
B _%(IO)

— Ceaé(%m) / e(u)
B

v@g (zo)
§4m20r§m/ e(u).

By,

But we also have
ep = sup e(u)
By (20)

< sup e(u)

Bra+ro

= %(7’1 — (ro+ po))2 sup e(u)

0 Bry+g
1

< —=(rp—r 2Supe U
(1= )i e(w
1 2

= —(2po)e(u)(z0)
Po

= de(u)(xo),

so combining these inequalities gives

1< C’rg_m/ e(u).
B

0

If we require that (4.15) holds for a suitable €, then we exclude this possibility.
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We add our own note that in the proof above, if we take r; = frg in (4.17) for
g € (0,1), avoid absorbing the resulting factor of =™ into the constant, and write
r = arg for o € (0, 8), then (4.18) becomes

1 m-2 L — Qrg -2 m
Elj}ze(u)g(j(—l—ﬁ) (—7“0 ) o /B e(u)

X - 0
- Ta—ar O,

70

1 m—2
1< (ﬂ) -CT%‘"‘/B e(u),

70

and (4.19) becomes

where C' is independent of «, 8. For fixed a, we have infgeqy(1 — 5)* (8 — a)™? =

C(m)(1 —a)™™, and if B € (0,1) then (1 — B)* ™™™ [, e(u) >3 ™ [, e(u), so we
T0 70

have shown the following.

Theorem 4.7. Suppose u satisfies the conditions of theorem 4.5. Then there exist € > 0,
C > 0 depending only on m, N, such that if

ro " / e(u) <e,
B

70

then .
<(C—————r™ .
sup e(u) < C 1oy o /B e(u)

Baro o

Hence we have an analogue of theorem 1.4 for the energy of harmonic maps. While
we have given the result for the Euclidean metric on subsets of R™, it can be obtained
in a more general case (for example, in [SY97, §IX.4], it is stated for the case when
ANoij < gi; < Ad;;). We also note that if AV is negatively curved, then (4.13) holds with no
condition on e(u), so the small energy condition can be dropped from theorem 4.5 in this
case.

We can use theorem 4.5 to prove the following [SY97, §IX, corollary 4.4].

Corollary 4.8. Suppose M, N are compact. Define the set
Fp = {u € C®°(M, N : u is harmonic, E(u) = / e(u) dvol, < A} :
M

Then any map u in the weak H' closure of Fy is smooth and harmonic outside some set
S which s relatively closed in the interior of M, and has Hausdorff dimension at most
m — 2.

Estimates like theorem 4.5 are very useful for proving other results, and hold in a wide
variety of cases. For example, it is remarked in [Lin99, proposition 1.4] that theorem 4.5
is true for stationary harmonic maps, and so corollary 4.8 also holds in this case.
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Conclusion

In this essay, we have examined two methods for establishing the regularity of elliptic
equations (or systems if the coefficients are continuous). The results we initially obtained
(theorems 1.4 and 2.4) couldn’t be immediately generalised to harmonic maps (as we saw
in §3.1 and §3.2), but the methods were still able to be adapted to give partial regularity
results, for example theorems 4.1 and 4.8.

We also looked at how the method of freezing coefficients can be adapted to give
boundary regularity, provided the conclusion of remark 2.3 is true. Unfortunately, we
were not able to prove the result in this remark. With more time, it would have been
interesting to explore techniques which we could have used to prove this. The question
of boundary regularity also prompted an exploration into Campanato spaces with the
intention of generating an example showing the necessity of a cusp assumption on 2.
Unfortunately, we did not obtain such an example, but the exploration did suggest a way
to extend the result we had obtained (see §3.4).

If we had more time, we would also have investigated applications of Campanato spaces
to harmonic maps, to better tie this topic in to our essay. In particular, Campanato spaces
can be defined on compact manifolds and behave as expected, at least in the scalar-valued
case [Gei88], so we hoped to try and adapt the proof of theorem 2.4, with the same choice
of coordinates as in the proof of theorem 4.1, to show that continuous harmonic maps
between compact manifolds are Hoélder continuous. This would have first required more
work to define Campanato spaces for maps between manifolds, which prevented us from
doing this.

We would also have enjoyed further exploring other topics, for example the partial
regularity results mentioned at the end of §4.4, or the applications of theorem 4.5 at the
end of §4.5. However, we hope that what we were able to explore was enough to showcase
the versatility of the methods we covered.
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