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0. Introduction.

The angel game, as described in [BeCG], has two players the “angel” and the “devil”
who play alternately on the 2-dimensional integer lattice, Z2. We refer to lattice points as
vertices, and write o = (0,0) for the origin. The angel has a certain fixed power p. (We
refer to it as a p-angel.) It starts the game at the origin, and at each play moves to another
vertex so that the change in each coordinate is at most p in absolute value. On its turn,
the devil can “block” any vertex other than that currently occupied by the angel. Once a
vertex has been blocked, it remains blocked forever. The angel is not subsequently allowed
to visit any blocked vertex. The aim of the devil is to trap the angel so that its only legal
move is to remain where it is. (Of course, it would be sufficient to trap it within some
bounded set.) Since the game is infinite, we speak of the angel as “escaping” if it never
loses, i.e. is never trapped. (There is a finite version played on a square board, where the
angel wins if it reaches the edge of the board starting from the centre.)

In [BeCG] it was asked if there is some p € N such that the angel of power p can
always escape. We shall show that, in fact, the 4-angel has a computable winning strategy.
A formal statement for that case is as follows.

Given n € N, write I(n) = [-n,n] N Z and W (n) = (I(n))?. We write o(n) for the
location of the angel at time n, and A(n) for the set of all vertices that have been blocked
at time n. Thus, ¢(0) = o, o(n) ¢ A(n), and o(n + 1) — o(n) € W(p). We start with
A(0) =0, and A(n + 1) is obtained from A(n) by adding a single vertex other than o(n).
Thus |A(n)| = n.

Theorem 0 :  There is a computable function ¢, which takes as input n € N and
A C W (4n), and outputs some ¢(n, A) € W (4), such that if at time n the angel (of power
4) moves from o(n) to o(n+ 1) = a(n) + ¢(n, W(4n) N (A(n) — o(n)), then the angel is
never trapped.

In particular, at any given time, n, the angel need only take into account those vertices
that have been blocked up to that point in the square, o(n)+ W (4n), centred at its current
location (which we have translated back to the origin in the above statement). While the
strategy is computable, it is superexponential in n, and thus not a very practical algorithm.

In fact, we will present the argument for a 5-angel which is conceptually a little
simpler. In this case, in Theorem 0, W (4n) can be replaced by W (3n). The case of the
4-angel only calls for slight modification as we discuss in Section 1.

It seems quite likely that a variation could also cope with a 3-angel, though this adds
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some technical complications. We give a brief discussion of how this might work at the
end of Section 3.

The game that pits a 1-angel (or “king”) against the devil, also known as “quadraphage” |}
has been attributed to David Silverman [S] and Richard Epstein [E], and is discussed in
[G]. In [BeCG] it is shown that the devil has a winning strategy against the 1-angel, indeed
on any finite square board bigger than 35 x 35 (see also [KuP]). They observe that it was
not known if there exists k such that k-angel can always excape on an infinite board. They
state that Korner had shown that for sufficiently large dimension d, in the same game
played in Z¢, a sufficiently powerful angel could escape. However, it seems that no account
of this has been published. The 2-dimensional game was further publicised by Conway.
Some partial results are given in [C]. Winning strategies for the angel in dimension d = 3
have recently been described independently by Kutz [Ku| and by Bollobds and Leader
[BoL], the former, for an angel of power 13. Though the details are different, both use a
strategy involving iterated interpolation. There are reasons to suppose that such a strategy
cannot work in dimension d = 2, at least without some significant modification (see the
discussion in [Ku]). The argument we give here is somewhat different. Some related games,
for example, where the devil only blocks a vertex for some specified time, are discussed in
[BoLl].

To summarise our stategy, we mention an earlier general observation of Conway. If the
angel can win, then it can win without ever returning any vertex previously visited. The
basic idea behind this is that, if the angel is following some particular winning strategy,
and notices that at some point that some hypothetical future sequence of devil moves
would force it to return to its current location, then it simply pretends that this sequence
has already been played, and proceeds from that new position instead. Turning this idea
around, one could modify the rules to explicitly allow the angel to return to any vertex
it had previously visited. This makes the game easier. The angel need no longer worry
about traps, and one can give a relatively simple strategy. Basically, the angel heads north
whenever it can, but skirts around any obstacle it encounters, keeping it on its left hand
side. The angel may well have to return to previously visited vertices, but a principle
similar to that Conway allows it to shortcut any such loops. In so doing, it will also be
playing according to the rules of the original game.

We note that two other entirely independent solutions to the angel problem have been
produced, by Kloster [KI] and by Mathé [M]. Both of these give winning strategies for the
angel of power 2.

I am grateful to Imre Leader, Oddvar Kloster and the referee for their helpful com-
ments on earlier drafts of this paper.

1. Some variations.

Rather than tackle the angel game directly as described, we deal first with a couple of
variations. An angel strategy for these will give rise to an angel strategy for the original.
The first two observations are fairly trivial, and can be thought of as just as expository
tools.
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First note that we allow the devil to pass (i.e. not play anywhere on its turn). This
cannot be to the devil’'s advantage, but the option is introduced to simplify later discus-
sions.

Conversely, the angel can employ the services of a “demon” who, on the angel’s turn,
may block any set of vertices at the angel’s behest (not including the vertex currently
occupied by the angel). This seems to play into the hands of the devil, though the policy
may serve to remind the angel of any devil traps the angel may have noticed, thereby
simplifying the description of its subsequent strategy.

Slightly less trivially, we can also consider a devil of weakness w (or w-devil) for any
w € N. Such a devil must visit a vertex w times (on separate plays) before it becomes
blocked. If w > 1, such a devil may visit the vertex currently occupied by the angel,
provided it has been there at most w — 2 times before. Thus, at any given moment, each
vertex has a weight associated to it which counts the number of devil visits there.

We note:

Lemma 1.1 : If a 1-angel can always escape from a k?-devil, then a (2k — 1)-angel can
always escape from in against a 1-devil.

Proof : Divide the lattice Z? into square arrays of k x k vertices, which become the
vertices of a new lattice. We regard all the vertices in a given square as equivalent. Such a
square is only blocked if all the vertices there are blocked. Thus a 1-devil in the old game
acts as a k2-devil in the new. Any l-angel move in the new game gives a (2k — 1)-angel
move in the old. &

To simplify our account, we will further restrict the angel moves so that one coordinate
is always fixed while the other is either incremented or decremented by 1, i.e. it takes exactly
one step in one of the four “cardinal” directions. Such a move is sometimes called a duke
move. We therefore arrive at our first variant game:

Game 1 : The angel moves as a duke against a devil of weakness w, for some fixed
w € N. The goal of the angel is to avoid being trapped.

As before, the angel can employ a demon, and we can allow the devil to pass.

We will show that the angel wins Game 1. To make our analysis work, we will need
w > 5. Since 22 < 5 < 32, this means taking k£ = 3, and so corresponds to an angel of
power p = 2.3 — 1 =5 in the original game. Given this, we may as well take w = 9, which
gives slightly better inequalities.

In fact, w = 5 can also cope with a 4-angel. In other words, if a duke can always escape
from a 5-devil, then a 4-angel can escape from a 1-devil. To see this, instead of cutting
the integer lattice into square arrays, we cut it into crosses. In other words, take the set
{(0,0),(0,1),(0,—1),(1,0),(—1,0)}, and all its translates under the the group generated
by [(z,y) — (x+2,y+1)] and [(z,y) — (z — 1,y +2)]. Now duke moves turn into 4-angel
moves. However, since the square array is conceptually simpler, we will stick with that for
the purposes of exposition.
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We now move on to a further modification, whose rules allow the angel to backtrack
out of any trap.

Definition : At any given time, a vertex is safe if it was visited by the angel before it
was visited w times by either the devil or the demon.

Once a vertex is made safe, it remains safe forever. This does not prevent the devil or
demon returning there, but such a visit will have no effect on legality of any subsequent
angel move in the new game.

We now have:

Game 2 : The rules are as with Game 1, except that now, the angel is allowed to return
to any vertex already made safe. The goal of the angel is now more challenging: it must
trace out a “circuitous trail” satisfying (L) below.

We postpone the definition of a “circuitous trail” until Section 2. For the moment,
we just make the following remarks. In general, a trial will mean formally a sequence
of vertices with consecutive vertices adjacent. (Though we will frequently view it as a
continuous path with the edges filled in.) An arc is an injective trail, i.e. no vertex is
visited more than once. If a trail starts and finishes at the same point, we refer to it as
a loop. It will be the case that any subtrail of a circuitous trail is circuitous (so the devil
could definitely win at this game if it forced the angel into a non-circuitous trail). Among
other properties, any semi-infinite circuitous trail, 7, has the form = = JUUfil vi, where o
is a semi-infinite arc, and where ~; is a loop based at the ith vertex, (i), of . Moreover,
vi Ny = 0if i # 5. (We allow for ; = {o(i)}.) Here, the notation o U J;y; means
that each ~; is traversed before proceeding to the next vertex of 0. We see that such a
decomposition is unique, and refer to o as the spine of x.

Condition (L) gives a metric constraint on the loops.

(L) For each i, the length of 7; is at most i.

The actual bound, i, is an artifact of the proof. Any computable bound would serve
to give some angel strategy in the original game.

We note that the initial segment of 7 from ¢(0) to o (i), including the loop, 7;, lies
inside the square o (i) + W (i). (This observation is used in Section 4.)

We aim to show:

Proposition 1.2 : In Game 2, the angel has a winning strategy (against a 5-devil). <

To get from here back to Game 1, the idea is that the angel employs a “phantom”
who plays to the rules of Game 2. The phantom warns the angel of traps by performing
loops in some circuitous trail. The angel then shortcuts these loops, following the spine
of the phantom’s trail. Since the spine is an arc, none of these vertices were made safe by
the phantom, and so remain unblocked by the devil and demon. The angel moves are thus
in accordance with the rules of Game 1. (This is analogous to the observation of Conway
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that, mentioned in the introduction, that an angel need never repeat a vertex.) The details
of this are described in Section 4.

2. Circuitous trails.

We want to describe the basic properties expected of the trail traced out by the angel
in Game 2. We begin with some elementary graph theory.

Let II be a connected locally finite graph. For us, an arc is an injective trail, and
a circuit is an injective cycle (closed trail). We generally think of a cycle as a cyclically
ordered set of vertices, where the basepoint is unimportant. If we want to stress that is
has a preferred basepoint, we will refer to it as a loop.

Recall that a cut verter is a vertex that separates II. A subgraph is 2-vertex connected
if it has no cut vertex. A block is a maximal 2-vertex connected subgraph. A bridge is
an edge that separates II. Note that a bridge is a block connecting two cut vertices.
Two blocks meet, if at all, in a single cut vertex. The blocks are arranged in a treelike
manner (more precisely the blocks and cut vertices together form a bipartite tree, where
the membership relation is interpreted as adjacency), see, for example, [Bo] for details.

We note:

Lemma 2.1 : The following are equivalent:
(1) Each block of 11 is either a bridge or a circuit.
(2) Each edge of 11 is contained in at most one circuit.

(3) Any pair of distinct vertices of Il are separated by some set of at most two edges. <

Definition : We refer to a graph satisfying any of the above as a cactus.

In practice it is mainly (1) that we will be using,.
We note that any connected subgraph of a cactus is a cactus, and that a graph is a
cactus if and only if every finite connected subgraph is.

Definition : We say that two vertices of a graph are uniquely connected if there is precisely
one arc that connects them.

Now let I' be any connected locally finite graph, with vertex set V(I'). (In practice,
it will be the infinite planar grid.) Suppose that 7 is a (possibily infinite) trail in I'. We
write II for its image in I'. Consider the condition:

(P1) No edge of II is traversed twice in the same direction by 7.

For a trail satisfying (P1), we refer to those edges of II that are traversed twice (in
opposite directions) as double edges. The remainder are directed.
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Definition : We say that a trail, 7, satisfying (P1) is circuitous if its image II is a cactus
and every double edge of II is a bridge.

It is easily verified that:

Lemma 2.2 : Any subtrail of a circuitous trail is circuitous. &

It is also worth noting that a trail is circuitous if and only if every finite subtrail is.
Definition : The spine of a circuitous trail, 7, is the union of all directed bridges of II.

Now since, by assumption, the edges of each circuit of II are directed, it is easily seen
that m must eventually leave any circuit for the last time by the same vertex at which it
first entered. It follows that the spine, o, must be either empty, or an arc. In the latter
case, it must have the same endpoints as .

We also note that the edges of each block must be consistently oriented (to give a
directed circuit). It follows easily that:

Lemma 2.3 : If 7 is finite, then its endpoints are uniquely connected in II. &

Indeed, its spine, o, is the unique arc connecting them. Note that (with the convention
of Section 1), we can write m = o UlJ, i, where ~; is a (possibly trivial) loop based at o (7).
Indeed, the same is true of a semi-infinite circuitous trail. Note that a loop, ~;, might pass
more than once through its basepoint (in which case the basepoint will be a cut vertex of
its image).

The following is needed in Section 4. Here V is used to denote concatenation of two
trails.

Lemma 2.4 : Suppose that m = 7’ V p is a finite or semi-infinite circuitous trail where 7’
and p are subtrails concatenated at some vertex x. Let o and ¢’ be the spines of m and 7’
respectively, and suppose that p never returns to o’ after leaving x. Then p never returns
ton’', and o/ C 0.

Proof : It is enough to show that z € 0. We know that x lies in some loop, v, of 7. Let
y € o be its basepoint. Now any trail from x back to the initial vertex must pass via y,
and so, in particular, y € ¢’. Also, the endpoint of o cannot lie strictly inside a loop of
7, and so p must also pass by y. Since p never returns to ¢’, it follows that x = y. Thus,
x € o, and the rest is easy. O

Note, in particular, that every loop of 7’ is also a loop of .

We now consider specifically the case of the integer lattice, Z2, in the plane, R?. This
is the vertex set, V(I') = Z2, of the the 1-skeleton, I, of a square tessellation of the plane.
We think of I' as a regular 4-valent graph.

We shall refer the first and second coordinates as “Easterly” and “Northerly” respec-
tively.
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Definition : The height of a vertex of I' is its Northerly coordinate.

Note that any z € V(I') has four neighbours to the East, North, West and South,
going around the “cardinal directions” in an “anticlockwise” sense. We shall denote these
neighbours respectively by x + E, x + N, x + W and = + S, or simply write E, N, W and
S, where the reference point is clear from context. We write D(z) = {E,N, W, S}.

If A C D(z), then the cyclic orientation allows us to speak of clockwise and anticlock-
wise successors in A. For example, if A = {N, W,S}, then N has clockwise successor S
and anticlockwise successor W, etc. If A is a singleton, then this is both the clockwise and
anticlockwise successor of itself.

We can also speak about relative directions. Suppose we are at x and facing in some
cardinal direction, F, which we call Forward. The cardinal directions going anticlockwise
are then Forward, Left, Back and Right, or abbreviated to F, L, B and R.

If e is an edge of I' directed from = to y, we write e = xy, and refer to x and y and
the tail and head of e respectively. If we are facing in this direction, then y =z 4+ F.

Suppose that 7 is a trail in I' satisfying (P1) above. To save worrying about endpoints,
we will assume, for the moment, that 7 is bi-infinite. Let II C I'" be the image of 7. Given
x € V(I'), let D(x,7) = D(z) N V(II). In other words, those neighbours of x visited at
some time by 7 (not necessarily directly to or from x).

Consider the following condition:

(P2) Each time 7 arrives at some vertex z € V(I') from some y € D(z, ), then it imme-
diately leaves by the clockwise successor of y in D(x, 7).

Here is a more intuitive description of (P2). Let & be the trail in R? obtained by
pushing 7 slightly to the Left. In particular, 7, does not pass through any vertex of Z?2,
but rather skirts around it on the left. (For example, if 7 immediately doubles back at
some vertex, x, then 7 will make a semicircular clockwise turn around z before returning
on the other side.) The condition (P2) is now equivalent to saying that 7 is embedded.
Indeed it is a boundary component of a small regular neighbourhood of II in R2.

Lemma 2.5 : Any bi-infinite trail satisfying (P1) and (P2) is circuitous.

Proof : Let m be such a trail, and IT its image. Let C' be a complementary region, i.e. a
component of RZ\II. Its boundary determines a trail, v, in I'. (Consider the corresponding
boundary component of a small regular neighbourhood of II in R2.) Of course, a-priori,
~ might not be embedded in II, and 7 may enter and leave the image of  several times.)
Note that the orientation of R? determines “clockwise” and “anticlockwise” directions for
~. If C' is bounded, then v is a closed cycle.

Suppose that e is an edge of v, and is directed so that C' is on its left, i.e. consistent
with the anticlockwise orientation of ~. (At this stage, we can allow e to be a double
edge.) Now proceeding around =, applying (P2), we see that all the edges of v have an
anticlockwise direction (or maybe some are also double edges). But it now follows that
consecutive edges of v must also be consecutive in m, since there is nowhere else for 7 to
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go, without violating (P2). Since 7 is not a closed trail, this is a contradiction. From this,
we conclude that the boundary of any bounded complementary component is a clockwise
cycle. Again, by (P2), we see that its image has no cut vertices, and so it must be a circuit.
(Of course, m, might enter and leave this circuit several times.)

In particular, this means that the region to the left of any directed (or double) edge
is unbounded. The regions on either side of any double edge are unbounded, and so any
double edge is a bridge. (Retrospectively, we see that it was the same component on both
sides.)

Suppose that ~ is a clockwise circuit bounding a region C. Now each complementary
region meeting C' in at least one edge is unbounded, and so there can be no arc outside
C connecting two distinct vertices of . It follows that any connected subgraph strictly
containing v must have a cut vertex. In other words, v is a block of II.

This shows that any edge of II that is not a bridge lies in such a block. In other words,
every block of II is either a bridge or a circuit, so II is a cactus. &

Of course, the hypotheses (P1) and (P2) together are somewhat stronger than being
circuitous. What we eventually require of m will be that is it circuitous and satisfies the
metric constraint (L) described in Section 1.

In order to deduce (L) we will need some more lemmas about a trail satisfying (P1)
and (P2).

First, we give some definitions. Let a be a finite subtrail of 7. (The initial discussion
makes sense for any trail a in I'.)

Definition : The Northward displacement, v(«), of « is the height of the terminal point
minus the height of the initial point.

We call an edge horizontal if it is directed either W or E, and vertical otherwise.

The Southward migration of « is defined as m(«) = r(a) 4+ 2s(a), where r(«) is the number
of horizontal edges in «, and s(«) is the number of edges directed South.

The length, (), of « is the total number of edges in a.
We record the following simple observation for future reference:

Lemma 2.6 : v(a) =Il(a) — m(a). &

We borrow the follow terminology, rather liberally, from go. A liberty of a directed
edge e = zy of 7 is the set {z + L,y + L} \ V(II) (where y = x + F). If 7 immediately
doubles back along e after reaching y, then we refer to y + F as a terminal liberty. Note
that if 7 satisfies (P2), then this cannot lie in V/(II).

Definition : If « is a subtrail of 7, then the set of liberties of « is the union of the liberties
of all edges of o that are directed S, W, or E, together with the terminal liberties of any
edge directed S, W or E along which o immediately doubles back.
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We write A(«) for the set of liberties of . Thus, A(a) N V/(II)
definition of A(«) depends on the ambient trail, m.) Let A = A\(«) = |

. (Note that the
(@)l

=l

Lemma 2.7 : Suppose that 7 is a bi-infinite trail satisfying (P1) and (P2) and that «
is a finite subtrail beginning with a Northerly edge, from which we either turn right or
double back. Then m(a) < 4\(«).

(If we remove the clause about starting on a Northerly edge, we would have to include
an additive constant.) The actual bound 4|A(«)| is a bit delicate. However, it is very
easy to give some linear bound. Any linear bound would suffice to make our analysis work
against a sufficiently weak devil.

Lemma 2.7 is easier to see if we consider a closed cycle, rather than a trail. Since there
are an equal number of N and S edges, we can count each just once. Moreover, suppose for
the moment we are also counting liberties of Northerly edges. In this case, the inequality
becomes m < 4\+4. To see this, note that m is just the lotal length of the trail. Moreover
each liberty is adjacent, on the left, to at most 4 vertices along our trail. Now counting
liberties to the left of a vertex, we get 0, 1, 2 or 3, depending on whether we turned L, F,
R or B, at that point. Writing I, f, » and b respectively for the numbers of such vertices,
we get m =1+ f4+r+band f+2r+3b < 4\ Now t = —r —2b is the total left turning of
the trail, which for a closed cycle equals 4. Thus m = (f +2r+3b) +4 < 4\ +t =4\ + 4,
as claimed. Now, suppose we rule out any liberty that arises only from a Northerly edge
(as in the defintion given). We get the same inequality: since going due West from such a
liberty, we will come to another liberty before we come a vertex of our trail, which allows
us to do a different trade off. We trade one quarter of this new liberty instead of one
quarter of the old against the same vertex.

The case of a trail can be dealt with by a similar argument, though the details get
a bit more involved. (We need to worry a bit more about Northerly liberties, and total
turning.) In fact, when we come to apply the result, we could allow ourselves to include
Northerly liberties other than those blocked by the demon. Moreover, it is easy to see that
at most half of the vertices in the trail can be Left turns. The latter observation gives rise
to a very simply argument to give a multiplicative factor of 8, say, which would allow our
proof to work (with slightly worse inequalites) against a devil of weakness 9. For these
reasons, we omit the details here.

3. A strategy for Game 2.

We give a strategy for the angel in Game 2, so that it traces out a trail satisfying (P1)
and (P2) of Section 2, and so, in particular, is circuitous. Recall that, in Game 2, a vertex
is blocked if it is visited by the devil w or blocked by the demon, before being visited by
the angel. For our inequalities, we will assume w > 9, though only w > 5 is needed for the
general argument to work.

Let o_ be the ray heading directly South of the origin, o, i.e. o_ = {0} x (—o0,0].
We deem these vertices to be safe, and all of the vertices immediately to the West (i.e.
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{=1} x (—00,0]) to be blocked by the demon. In other words, we imagine the angel to
have traversed o_ from time —oo, arriving at the origin at time 0. (This is compatible
with the algorithm below.)

Of course, this is an artificial construction which serves only to streamline the expo-
sition. In retrospect, we will see that the angel remains in the positive quadrant, [0, 00)?,
so that the safety of o_ is of no practical use.

Once the devil has made its first move (at time 1), the angel proceeds according to
the following algorithm. Let us suppose that the angel has arrived at its current position
x, and is facing in the direction of its last move (deemed to be N at the start). It now
proceeds as follows:

(A1) If L unblocked, it goes L.

If L is blocked, but F is not, it goes F.

If L and F are both blocked, but R is not, it goes R.
If L, F and R are all blocked, it goes to B.

(A2) If at the end of its move it is at some point y, and has never been strictly further
North than y, then it instructs the demon to block y + W if this point is not already safe
or already blocked by the devil.

In (A2) by “strictly further North”, we mean any point with strictly greater Northerly
coordinate, regardless of its Easterly coordinate. Note that (A1) is telling us to go to the
clockwise successor of its previous position, among those adjacent vertices that are not
blocked. The final option of doubling back is always available as a last resort in this game.
Note that if (A2) is applied, this must have been our first arrival at y, and the move must
in fact, have been to the North. It cannot have been to the West, since had we previously
visited y 4+ E, then y would have been blocked on our first arrival there.

Let w1 be the trail traced out by an angel following the above strategy, for some set
of devil moves, and let m = o0_ U 74, be the bi-infinite trail.

As we have formulated it, we are allowing the angel to play first. To get us started,
we note that the first w moves will take us directly North.

The general idea is that our trail, 7, will always have blocked vertices to its left. These
prevent 7 from looping around in an anticlockwise sense and rejoining itself from the left.
It can still loop around in a clockwise sense, and rejoin itself from the right. When it
does, it must immediately turn left, and possibly retrace its steps some distance, before
branching out on a new adventure to the left (relative to the direction we are currently
facing). While we are heading North, the vertices on the left may have been blocked by
the demon, but while we are going in other directions, they must all have been blocked by
the devil. Since it takes the devil several visits to block any given vertex, we can quickly
overtake the devil, thereby controlling the length of such meanders.

At least, that’s the basic idea. Some of the details of the local analysis are a bit messy.
We begin with:
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Lemma 3.1 : If the angel turns to the left at some point x, then the diagonal point
x 4+ B + L was blocked at the time it arrived at x (from x + B).

Proof : Let y = x + B. Suppose, for contradiction, that x + B+ L = y + L. was unblocked
at the time of our arrival at z. The fact that we did not go to y + L (which is unblocked)
immediately after y means that we have must have just come from there. In other words,
we made a left turn at y. But now, by the same argument applied to the previous vertex,
we see that we must have turned left there as well. Iterating back in time, we see that we
must have been in an infinite anticlockwise circuit around the four points, y, x, x + L, y+ L,
again giving a contradiction. &

Lemma 3.2 :  Suppose that the angel has arrived for the first time at some point
x € V(I'), and that it has never previously been strictly further North of . Then the
previous move was either E or N. If it was N, then the point x + W cannot have been safe
at the time the angel arrived at x (and so was blocked by the demon on the arrival at x if
it was not already blocked by the devil).

We are allowing the angel to have previously visited other points at the same height
as T.

Proof : We cannot have come directly from x + E, otherwise x would have been blocked
by the demon on our arrival at 4+ E. Thus, our previous move was E or N.

Suppose it was N. In other words, we have just come from z + S. Suppose, for
contradiction, that x + W was safe at the time of our arrival at . Consider the first time
at which the angel arrived at y = x + W. We cannot have arrived at y from y + W, or we
would have gone immediately on to y + N or to x = y + E, either way contradicting our
assumptions. Thus, we got there from y 4+ S. Now y + W cannot have been blocked at this
time, or again we would have gone on to y + N or to z. In particular, it was not blocked
by the demon on our arrival at y. Thus, we must have been to z = y + W at some even
earlier time. Moreover, we must have made a left turn at y, so Lemma 3.1 tells us that
z+S=y+S+ W =y + B+ L must have been blocked at the time of our arrival at y,
and hence also at our first arrival time at z. In particular, we cannot have got to z from
there, and so we must have got to z first from z + W. But now, since we did not go N
from z, z + N must have been blocked. Thus, we should have proceeded on to y. But we
have already observed that we got to y first from y + S, thereby giving a contradiction. <

Definition : A move is progressive if it takes the angel strictly further North than it has
previously been.

An immediate consequence of Lemma 3.2, is that the angel will make a progressive

move whenever it is possible, i.e. if N is not blocked and strictly further North than the
angel has ever been.

11
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Lemma 3.3 : 7 satisfies (P1).

Proof : If not, let f’ be the first edge of 7 to be superimposed on some previous edge, f,
of 7 oriented in the same direction. We write fy for the underlying edge of II. Let e’ and
e be the edges of m immediately prior to f’ and f respectively. By assumption, these are
distinct in II. Let = be the common vertex. Now 7 can never have doubled back at = (since
there are at least two unblocked exits), and so e, ¢/ and fy are all distinct. Now if €’ is
the clockwise successor of e among {e, ¢/, fo}, then we should have followed e immediately
by €', or perhaps by the fourth incident edge, if this were also unblocked. Similarly, if e is
the clockwise successor of ¢’ among {e, e, fo}, we get the same contradiction on swapping
e and €. &

Lemma 3.4 : 7 satisfies (P2).

Proof : Let z be a vertex of m. Since all the adjacent vertices of z in II are unblocked
(perhaps made safe by the angel), then, by rule (Al) each exiting edge is a clockwise
successor of the corresponding entering edge (among the incident edges of IT). This is
precisely (P2). &

Lemma 3.5 : 7 never enters any vertex directly to the West of the head of any progressive
edge (i.e. with the same Northerly coordinate, but strictly smaller Easterly coordinate).

Proof : If it does, let z be the first vertex of 7w that lies to the West of the head of some
progressive edge of . Let e be this progressive edge. Let v be a most Northerly point
visited by the angel before arriving at z. Among such most Northerly points, we take v to
be most Westerly. Thus 7 leaves v to the East or South. Let o be the subtrail of © from
o to v and let 8 be the subtrail from v to z. Now, v is at least as far North as z, which in
turn is as far North as e. Thus, e lies in . Since m makes a right turn or doubles back at
v, in order to get to z, # must cross o_ U . In other words, the trail 7 must cross itself,
in contradiction to (P2). &

(In the above, we a formally using a principle of planar separation that we will use
again later. Let p be the embedded bi-infinite trail obtained from 7 by heading strictly
North from v rather than following the remainder of 7. Now there is a closed trail in the
plane that meets p only once: the horizonal trail from z to the head of e meets it once,
and then we can follow 7 around from e to v and then on to z without meeting it at all.
This gives the contradiction that p is non-trivial in locally finite Zs homology.)

Corollary 3.6 : The angel never goes strictly North West of the tail of any progressive
edge.

By “strictly North West”, we mean any point with strictly greater Northerly coordi-
nate, and strictly smaller Easterly coordinate.

12
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Proof : Let x be the tail of a progressive edge. By continuing inductively with Lemma
3.5, we see that all subsequent progressive edges must be to North East of z. But any
point to strictly North West of x is strictly West of the head of such and edge. &

In particular, this tells us that the angel always remains in the Easterly half-plane.
We may strengthen Corollary 3.6 as follows:

Lemma 3.7 : Suppose that, when the angel first arrives at some point x € V(I') it has
never been strictly further North. Then it never subsequently goes strictly further North
West of z.

Proof : If it does, let e be the first progressive edge taking us strictly North of x. By
Corollary 3.6, it is enough to show that the tail, z, of e does not lie strictly to the West of
x.

Suppose that it did (so in particular, x + N must have been blocked). Let a be the
subtrail of 7 from o to z, and 3 be the subtrail from x to z. By Lemma 3.2, we must have
arrived at x from « + W or  + S. In the former case, we next go z + W, x + S or =z + E.
In the latter case, again by Lemma 3.2, x + W was not safe at the time of our first arrival
at x, and so was blocked by the devil or demon. Since z + N must also have been blocked,
our subsequent move must have been either E or S. We now see, as in the proof of Lemma
3.5, that in order to get from x to z, # must cross a. In other words, 7 must cross itself,
giving a contradiction. &

Continuing with the same line of argument we obtain:

Lemma 3.8 : Suppose that when the angel visits some z € V(I'), the vertex y =z + W
is blocked by the demon according to rule (A2). Then the angel never visits y+ W or y+S
(before or after).

Proof : Note that this must be the first time the angel has visited x, and it has never
been strictly further North than x. We first show that it never visited y + W.

Suppose that the angel visits the vertex z = y + W for the first time before it gets to
x. Since it had never been further North, z + N must have been blocked (see the remark
after Lemma 3.2). However, z + E = y must have been unblocked, since, by assumption it
is subsequently blocked by the demon. Moreover, it cannot progress to y, or y would have
been safe on our arrival at . Now by Lemma 3.2, the angel must have arrived at z from
z+ W or z + S. But the former is not possible, or it would have progressed immediately
to y. Thus it must have arrived from z + S, and so by Lemma 3.2, 2+ W would have been
blocked by the demon at that time. Again the angel should have progressed to y, giving
the same contradiction.

Thus, if z is visited, it must be after our first arrival at z. In this case, let v be the
subtrail of 7 from o to z. If this never goes strictly North of x, then set v = z. If it does,
let v be the most Westerly point among the most Northerly points visited by ~ (cf. the
proof of Lemma 3.5). Either way, we see that m must turn right or double back at v. Now
v cuts v into two subtrails, v = aU 3, and x € . In order to get to z, we see that § would
have to cross «a, giving a contradiction, as usual.
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We now show that it never visits w = y 4+ S. If it did, this point is never blocked.
It follows, that immediately before going from = + S to x, we must have come from w.
But however we arrived at w (from w + E, w + S or w + W), we should have gone to y in
preference to z +S = w + E (cf. Lemma 3.1), giving a contradiction. &

Putting Lemmas 3.7 and 3.8 together, we see that if a point = is ever blocked by the
demon, then the angel never passes by x + N, x + W or = + E (before or after).

Now suppose that « C 7 is a subtrail. Let A(a) be the set of liberties of a. By
definition, each liberty is to the N, E or S of some vertex of . Thus, by the above
observation, no such liberty can ever have been blocked by the demon.

In fact:

Lemma 3.9 : Ifa C 7 is a subtrail, then each element of A(«) was blocked by the devil
by the time the angel arrives at the terminal vertex.

Proof : We have already observed that no liberty was blocked by the demon, so it suffices
to show that they must all be blocked. This is a simple consequence of rule (Al). For
example, if e = xy is such an edge, if y + L is not blocked, then, we should go there on the
next move, so it cannot be a liberty. (We need some special consideration for the initial
and final edges.) Similary each terminal liberty must be blocked. &

Since the devil must visit any vertex w times before it is blocked, the following is an
immediate consequence:

Corollary 3.10 : If a C 7 is the subtrail of length n starting at o, then w|A(a)| < n.
¢

Lemma 3.11 : At time n, the height of the angel is at least (1 — %) n.

Proof : The height, h, is the Northward displacement of the trail a of length n from o.
By Lemma 2.6, h = I(a) — m(«), where [(a) and m(«) are, respectively, the length and
Southward migration of a. But I(a) = n, and by Lemma 2.7, m(a) < 4|A(«)|. Thus,

m(a) < 4n,andsoh>n—2n=(1—2)n, as claimed. O

Thus, if w > 5, we get h > . This is good enough to make subsequent arguments
work. We get better inequalities if we take w > 9, so that h > %” > 5.
One immediate consequence is that:

Proposition 3.12 : The angel remains in the positive (i.e. North East) quadrant.

In particular, it never returns to o_, justifying the assertion that, in retrospect, it
plays no role in the angel’s strategy.

Now, the trail 71 from o onward, is circuitous. We write it as o U U;’io vi, where ~;
is a loop based at o(i).
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Lemma 3.13 : I(v;) <.

Proof : Let h be the height of the basepoint, x = o(i). Let n and n’ be first and last
times respectively at which the angel passes by x. Thus n > ¢, and I(7;) = n’ —n. Clearly,
h < i, and by the above, n’ < 2h, son’ < 2i. Thus, I(y;) =n'—n<2i—-n<2i—i=1i {

We have verified property (L) of Section 2, thereby proving Proposition 1.2.

It’s also worth noting that, even if we were to abandon the game at some finite stage,
the angel will still have followed a circuitous trail satisfying (L). We need not modify our
analysis. We can simply continue the angel moves deeming the devil to pass, and note
that any subtrail of a circuitous trail is circuitous. The proof of Lemma 3.13 goes through
unchanged.

As remarked in the introduction, it is likely that the argument can be modified to
deal with w = 4, though the details become a bit complicated. The basic idea would be to
allow the angel to make diagonal moves as well as duke moves (i.e. like a king). We can
think of this as almost equivalent to making two successive duke moves without waiting
for the devil to play, if the latter move is L or R. With an appropriately modified definition
of “Southward migration” it seems one gets a multiplicative factor of 3, in the analogue of
Lemma 2.7, which is then good enough. Of course, the arguments of Section 4 would also
need modification. Thus, there is a reasonable hope of dealing with 3-angel. A 2-angel,
however, would be a completely different matter.

4. Back to the original game.

The angel wants to use its understanding of Game 2 to play Game 1. To this end, the
angel employs a “phantom” and two demons. The phantom plays according to the rules
and strategy of Game 2 as already laid out, using the first demon for the purpose of rule
(A2). The angel also controls the second demon, using it to block the phantom in a similar
manner to the devil. The idea is that the phantom will warn the angel in advance of any
traps the devil may have set. It does this by performing a loop of its circuitous trail. The
angel can then follow the spine of such a trail, without fear of being trapped. Moreover,
the angel moves will be in accordance with the rules of Game 1.

For the purposes of planning its strategy and measuring time, the phantom imagines
that it is playing against both the devil and the second demon. It then chooses its moves
according to rules (Al) and (A2). (For the purposes of rule (A2), it borrows the first
demon, so these don’t count as devil moves for the phantom.) Now the analysis of Section
3 applies, with words “angel” replaced by “phantom” and “devil” replaced by “devil and
second demon”. In particular, we know that the phantom will trace out a circuitous trail
satisfying (L). Note that the angel and phantom are working to different times. It is the
angel’s time that we are really interested in.

To be more precise, we proceed inductively. The angel and phantom both start at o.
Let us suppose that at (angel) time 4, the angel and phantom have both arrived at the
same point x. We assume that the phantom has been following the strategy of Game 2
against the devil and second demon. In particular, it must have followed a circuitous trail.
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We also assume that the angel has followed the spine of the phantom’s trail up to that
point. Moreover, we assume that no subsequent sequence of devil moves could ever return
the phantom to any vertex previously visited by the angel (other than z).

The devil now plays, and the angel has to decide where to go. It is possible that some
future sequence of devil moves will return the phantom to z. But by (L), any such sequence
must have length at most i. It must also therefore remain within a distance of i/2 of x.
Only (hypothetical) devil moves within this region will influence the phantom’s strategy.
Thus, the angel can search for all possible such sequences (where the phantom moves first,
in response to the move the devil just made). It chooses one such devil sequence of maximal
length (taking the empty sequence if no non-trivial sequence returns the phantom to z).
To get an explicit algorithm, the angel could choose the first such sequence in some fixed
a-priori enumeration of such sequences. The angel now instructs the second demon to
make precisely these moves. Meanwhile it sends the phantom off to continue its Game 2
strategy, confident in the knowledge that it will return to x once this process is complete.
(It does not really matter whether or not the second demon is given a final move after the
phantom has returned.) Once it does, the angel and phantom move together, applying
the Game 2 strategy (without waiting for devil to make another move). By the inductive
hypothesis, this cannot return us to any vertex previously visited by the angel. In fact, by
Lemma 2.4, it cannot have been previously visited by the phantom either. In other words
it was never made safe under the rules of Game 2, and so remains unblocked by the devil.
It is thus a legal move for the angel, by the rules of Game 1. Moreover, the angel has once
again followed the spine of the phantom’s trail, and we are back in the same situation as
before, with the angel’s time incremented by 1.

Note that at time 7, the phantom will have traced out a trail of radius at most ¢ about
its current location = = o (7). (This is a simple consequence of (L), as remarked in Section
1.) In particular, only devil moves in the square o (i) + W (i) have influenced our moves up
to this point. (The fact that the first w > 5 moves were North, means we don’t need to
bother add 1 to our radius bound.)

Referring back to the original game, where we divided our lattice into 3 x 3 squares,
this gives a square o (i) + W (31).

This does not quite prove Theorem 0 as we stated it, since it obliges the angel to
remember both where it started, and the order of devil moves. However, only the angel’s
current position and the set of vertices blocked by the devil at this stage should be rele-
vant. If the angel has forgotten the additional information, it is sufficient to reconstruct
some hypothetical starting point and order of play, and to base its next move on these.
Again only devil plays in o(i) + W (3i) are relevant here. (It won’t matter if this entails
superimposing o_ on top of devil moves outside this square, since this does not influence
our strategy anyway.)

To be more formal, the inductive hypothesis in the above set-up states that at a
given time i, there exists a point o = o(i) (the hypothetical origin) and a total order on
the set A(i) of blocked positions (the hypothetical order of devil plays) such that if the
angel and phantom had played to the above strategy, they would both have arrived at
the actual current location of the angel, and, moreover, the earlier inductive hypotheses
as laid out above, are satisfied in this hypothetical situation (interpreting in terms of the
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derived Game 1). The angel now plays, pretending this is really what happened. Since an
angel move is always non-trivial, by the above strategy, the angel is never trapped. Again,
in the above hypothetical reconstruction, only the square o (i) + W (3i) is relevant, and
the angel can choose that reconstruction that is minimal in some a-priori enumeration of
possibilities. This gives an explicit algorithm. We know inductively that a hypothetical
reconstruction exists at time ¢ + 1, even if we have forgotten once again what it is.

This proves Theorem 0, when 4-angel is replaced by 5-angel and W (4n) is replaced by
W (3n). For a 4-angel, we use crosses instead of 3 x 3 arrays, we take w = 5, and then (L)
becomes “I(vy;) < 44”. This time, the radii of the squares is determined by have the radius
bound of the loops, {(7;)/2 = 2i (rather than the length of the angel’s initial segment as
before). Only the multiplicative factors in the argument change.

5. Remarks.

While the above gives a resolution to the angel problem in the euclidean plane, it is
in some ways less than satisfactory. Since it involves a systematic search, it provides little
insight into the nature of the evasion procedure. Moreover, it makes essential use of planar
topology, in particular, variants of the rectilinear Jordan curve theorem. This means it
may not be very adaptable. It would be nice to have a broader perspective on the issue.

It seems natural to formulate the problem more generally. We have already referred
to the recent work on the 3-dimensional integer game by Kutz and Bollobas and Leader.
One might make the following, more general, definition.

Let T" be a connected uniformly locally finite graph (i.e. with a bound on the degree
of its vertices).

Definition : We say that I' is diabolical if the devil can trap an arbitrarily powerful angel
regardless of its starting position.

The definition is quite robust. Clearly any subgraph of a diabolical graph is diabolical.
More generally, the following statement is easily verified. Suppose that I' and I are
connected and uniformly locally finite, and that there exists a map f : V(I') — V(I")
such that the preimage of every point has bounded cardinality, and the images of any two
adjacent points are a bounded distance apart. If I is diabolical, then so is T'.

From this, we may conclude easily that diabolicity is quasi-isometry invariant among
uniformly locally finite graphs. Indeed the above statement is equivalent to subgraph
closure together with quasi-isometry invariance. (One can easily find a graph T and a
quasi-isometry I/ — I such that this quasi-isometry precomposed with an embedding
' — T and restricted to V(I") equals f.)

One can ask the general question of when a graph is diabolical. We have seen that Z?
is not. Neither is the 3-regular tree: it is easily seen that a 1-angel can escape.

To make this more tractable, we could restrict the question to finitely generated
groups. If view of quasi-isometry invariance, we can define a finitely generated group to
be diabolical if some (hence any) Cayley graph is. Recall that a group is virtually cyclic if
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it has and infinite cyclic subgroup of finite index. It seems natural to ask:
Question : Is every diabolical group finite or virtually cyclic?

From the main result of this paper, a diabolical group cannot contain any non-cyclic
free abelian subgroup or free subsemigroup. An attack on this question may take us into
the realm of exotic group theory.
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