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0. Introduction.

The main aim of this paper is to prove a finiteness result for atoroidal surface bundles
over surfaces. It can be viewed from a number of different perspectives, and one can give
several essentially equivalent statements. This, and related questions, have been considered
by a number of authors. See [R] for a recent survey.

First, we express it in group theoretical terms. By a surface group we mean the
fundamental group of a closed orientable surface other than the 2-sphere. By a surface-
by-surface group, we mean a group G, with a normal subgroup, N , such that both N and
G/N are surface groups. We refer to these as the fibre and base groups respectively. One
can show that there are only finitely many choices of fibre for a given such group [J,Hi].
However, it will be convenient for us to regard the fibre subgroup as constituting part of
the structure of a surface-by-surface group, and so we can bypass this particular issue. We
refer to the genera of the respective surfaces as the fibre genus and base genus. We say
that such group is atoroidal if it contains no free abelian subgroup of rank 2. We show:

Theorem 0 : There are only finitely many isomorphism classes of atoroidal surface-by-
surface groups with any given base and fibre genera.

Here an isomorphism is assumed to respect the fibre subgroups. (Though by the
earlier observation, this does not alter the strength of the statement.) Our argument does
not give a computable bound on this number.

Daniel Groves informs me that he has an independent argument for Theorem 0, as
well as the more general statement for one-ended groups, which we discuss later.

It is important to note that, in fact, no atoroidal surface-by-surface groups are known
to exist at all. This is a well known question, which is the main theme of the survey [R]. It
is easily seen, however, that atoroidal surface-by-surface groups cannot exist if either the
fibre or base has genus 1. In the former case, it is sufficient to note that SL(2,Z) has no
surface subgroup. In the latter case, we would get a rank-2 free abelian subgroup of the
mapping class group. However, the centraliser of any pseudoanosov element is virtually
cyclic, and so any free abelian subgroup must contain a non-pseudoanosov element, which
contradicts the atoroidal assumption. Therefore, in this paper, we shall be assuming
that both fibre and base genera are at least 2. We remark that one can eliminate the
orientability assumption for the base surface. This is a consequence of a more general
result as discussed in [Bow5] (see also [DaF]). It seems likely that one can also remove the
orientability assumption for the fibre, though since many of the available results for the
curve complex etc. refer only to orientable surface, we shall not consider that case here.
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Recall that the mapping class group of an orientable surface can be identified with the
outer automorphism group of the fundamental group. (We are allowing orientation revers-
ing mapping classes.) Any surface-by-surface group gives us a monodromy homomorphism
from the base group, Γ, to the mapping class group, M, of the fibre surface. Conversely,
one can reconstruct a unique surface-by-surface group from such a homomorphism (see
[Hi], or the discussion in Section 1). In the atoroidal case this homomorphism is injective,
and its image is “purely pseudoanosov”, that is, every non-trivial element is pseudoanosov.
Thus Theorem 0 is equivalent to saying that there are only finitely many conjugacy classes
of purely pseudoanosov surface subgroups of M of given genus.

The existence of surface subgroups is already non-trivial (see [GoH]). Examples of
surface subgroups that are “almost” purely pseudoanosov are constructed in [LR]. From
this point of view, the theory is parallel to the theory of kleinian groups and that of Gromov
hyperbolic groups [Gr]. There are analogues of Theorem 0 in the context of hyperbolic
and relatively hyperbolic groups, see [De,Da]. Some general aspects of the geometry of
subgroups of M are discussed in [Mo].

In this language, we can generalise Theorem 0 to the case where Γ is a finitely presented
one-ended group. The statement again says that there are only finitely many copies of Γ in
M up to conjugacy. This statement is proven in [Bow5] using Theorem 8.1 of this paper.
In fact, Dahmani and Fujiwara have independently obtained this result from Theorem
8.1 by different methods. As mentioned earlier, Daniel Groves informs me that he has a
different approach to this.

Theorem 0 can also be viewed from the perspective of 4-manifolds. Detailed back-
ground material can be found in [Hi]. Here we are interested in smooth surface bundles over
surfaces. Their fundamental groups are surface-by-surface groups. Indeed every surface-
by-surface group arises in this way. Theorem 0 then states that there are only finitely
many such bundles up to homotopy equivalence respecting the fibre class. In fact such a
homotopy equivalence implies the existence of a bundle isomorphism. In particular, two
equivalent bundles are diffeomorphic. We remark that any closed smooth 4-manifold with
surface-by-surface fundamental group is topologically s-cobordant to such a surface bundle.
See [Hi] for a discussion of these matters.

There are many related questions concerning geometric, symplectic and complex struc-
tures on surface bundles, see [Hi,R] and further references therein. For example it is not
known if any hyperbolic 4-manifold can be a surface bundle. Indeed it appears to be
unknown if every hyperbolic 4-manifold is finitely covered by a surface bundle (cf. the
virtual fibre conjecture for hyperbolic 3-manifolds). Certainly, there can only be finitely
many surface bundles admitting a hyperbolic structure for fixed genera, since the genera
determine the Euler characteristic, hence the volume, and there are only finitely many hy-
perbolic 4-manifolds of any given volume [W]. (This can be generalised with little change
to 4-manifolds of uniformly pinched negative curvature.) It is also known that a surface
bundle cannot admit any complex hyperbolic structure [K]. We also note an analogous
statement to Theorem 0 from complex analysis, which is discussed in [Mc]. This deals
with holomorphic fibrations, where “atoroidal” is replaced by a notion of “truly varying”,
and the base is assumed to have fixed conformal structure.

Our point of view in this paper ties in with the large scale geometry of Teichmüller
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space. This general area has seen a great deal of activity recently, notably linked to the
curve complex [Ha], and its application to the solution of Thurston’s Ending Lamination
Conjecture for hyperbolic 3-manifolds [MaM1,MaM2,Mi2,BrCM]. We make much use of
these ideas. We base our arguments on a simplified presentation of some of that work to
be found in [Bow4].

Although most of the argument is combinatorial, we need to make an appeal to hyper-
bolic geometry in Section 6. This is needed to find a suitable basepoint for our construction,
that is, a set of curves filling the fibre surface with respect to which the monodomies are
controlled. This introduces a non-constructive element into the proceedings. It would be
nice to find a means of bypassing this, but it is complicated by the fact that, a-priori,
a combinatorial model for a hyperbolic 3-manifold is not canonical, and so cannot be
assumed invariant under a cyclic monodromy action.

I am grateful to Thomas Delzant for some early discussions about this, and related,
questions while I was visiting Strasbourg. The first draft of this paper was written at
the University of Southampton. I thank the referee for some very detailed comments and
suggestions.

1. Fibrations.

We discuss the background to the main theorem, and its relation to 3-manifolds. We
shall describe this mainly from the point of view of surface bundles over surfaces.

Going down a dimension, the case of surface fibrations over a circle are very much
better understood. Let Σ be a closed surface, and let M be the mapping class group of
Σ. Thus M is the group of self homeomorphisms of Σ (or equivalently, self homotopy
equivalences) up to homotopy. Let X(Σ) be the set of essential simple closed curves in Σ
defined up to homotopy. Note that M acts on X(Σ) with finite quotient.

Suppose that Σ −→ N −→ S1 is a surface bundle. There is a natural cyclic cover
M ∼= Σ × R so that N = M/Z. If we choose a preferred homotopy class of homotopy
equivalence Σ −→ M , then we get a homomorphism from Z to M. The image of 1 gives
the “monodromy” φ ∈ M of N . We write N = Mφ — the mapping torus of φ. Thus Mφ

is determined by φ up to homeomorphism commuting with projection to S1. If we allow
ourselves to vary the preferred class Σ −→M , then it only depends on the conjugacy class
of φ in M.

If there is some n ∈ Z\{0} and some α ∈ X(Σ) with φnα = α, then we get an essential
torus in Mφ, i.e. a π1-injective map of S1 × S1 into Mφ, and hence a Z ⊕ Z subgroup of
π1(Mφ). (We can assume that φn respects an orientation of α.) The converse to this is
also true, and is not hard to see by “cut and paste” arguments, but it also follows from
Theorem 1.1 below.

Key to understanding this is the Nielsen-Thurston classification of surface automor-
phism. We say that φ ∈ M is pseudoanosov if given any α ∈ X(Σ) and n ∈ Z with
φnα = α, then n = 0.

The fibred case of Thurston’s hyperbolisation theorem [T1,O1] states:
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Theorem 1.1 : If φ ∈ M is pseudoanosov, then Mφ admits a (unique) hyperbolic
structure.

(This, of course, implies that Mφ is atoroidal.)

In this case, the cyclic cover, M ∼= Σ × R is a “doubly degenerate” kleinian group.
Much is now understood about the geometry of such groups in the light of the work on
the Ending Lamination Conjecture. This is discussed further in Section 5.

We now move on to consider surface bundles over surfaces. Suppose that S is a closed
surface of genus at least 2, and that Σ −→ Π −→ S is a Σ-bundle. Let Σ −→ Π̃ −→ S̃
be the cover corresponding to the universal cover, S̃, of S. Thus the covering group,
Γ ∼= π1(S) acts on Π̃ with Π = Π̃/Γ.

Note that any essential curve γ in S (not necessarily simple) determines a 3-manifold,
Mγ , fibring over the circle, together with preferred π1-injective homotopy class of maps
Mγ −→ Π. Clearly any essential torus in Mγ gives us an essential torus in Π.

In fact, any essential torus, h : ∆ −→ Π arises in this way (up to homotopy). To see
this, note that S is atoroidal, so we can homotope the projection of h(∆) to S into a closed
curve, γ in S. Since Σ is atoroidal, it follows that γ must be essential in S (otherwise we
could homotope h(∆) into a fibre of Π). We can now homotope h so that it factors through
the map Mγ −→ Π of the surface bundle Mγ . In particular, the monodromy of Mγ is not
pseudoanosov.

Suppose now that we choose a preferred class of homotopy equivalence Σ −→ Π̃. We
get a homomorphism φ : Γ −→ M, and hence an action of Γ on X(Σ).

From the above discussion, we see:

Lemma 1.2 : Π is atoroidal if and only if whenever g ∈ Γ and α ∈ X(Σ) satisfy
φ(g)α = α, then g is the identity.

In particular, the homomorphism φ is injective. This hypothesis on the monodromy
homomorphism, or its image, is commonly termed purely pseudoanosov .

Suppose that Σ −→ Π −→ S and Σ′ −→ Π′ −→ S′ are smooth surface bundles.
We say that they are bundle equivalent if there is a diffeomorphism, f : Π −→ Π′ and
g : S −→ S′ commuting with projections Π −→ S and Π′ −→ S′. If S = S′, we say they
are strongly equivalent if g can be taken to be the identity. The notion of equivalence
translates to isomorphism of fundamental groups respecting the fibre group (see [EE,Hi]).
(Indeed, this is clear if we replace “diffeomorphism” by “homotopy equivalence”, in the
above. One needs more work to promote homotopy equivalence to diffeomorphism, as
noted below.)

Clearly strongly equivalent bundles have monodromy homomorphisms that are conju-
gate in M. (The conjugacy is determined by the choices of homotopy equivalence Σ −→ Π̃
and Σ −→ Π̃′.) Conversely, the following follows from [EE].

Theorem 1.3 : Suppose that Π and Π′ are Σ-bundles over S and that the monodromy
homomorphisms of Γ to M are conjugate in M. Then Π and Π′ are strongly equivalent.
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We remark that if we are only interested in equivalence up to homotopy, this is much
easier. By choosing the homotopy equivalances Σ −→ Π̃ and Σ −→ Π̃′ appropriately, we
can assume these homomorphisms to be equal. One can now construct an equivalence on
the complement of a fibre π−1

S x, so that the map of base surfaces g : S \ {x} is homotopic
to the identity. To extend over the fibre up to homotopy, we use Lemma 1.4 below.

Lemma 1.4 : Any hoomotopy equivalence f : Σ×∂D −→ Σ×∂D extends to a homotopy
equivalence f : Σ ×D −→ Σ ×D. Here D denotes the closed disc.

Proof : It’s not hard to see that f({y}× ∂D) must be homotopically trivial in Σ×D for
any y ∈ Σ. We thus extend f over {y} ×D, and then to all of Σ ×D. ♦

Taking D to be a small regular neighbourhood of x ∈ S, we can now extend our
equivalence over the fibre.

To get a smooth equivalence one needs more. In [EE] is shown that the space of
diffeomorphisms homotopic to the identity is contractible. From that, one can modify the
above argument to give a diffeomorphism.

To deal with general equivalence of fibrations, we need to consider automorphisms of
S as well as Σ. We note the well known fact that the mapping class group of S can be
identified with the outer automorphism group of Γ ∼= π1(S). From this, and Lemma 1.2,
it is easily seen that two bundles are equivalent if and only if the monodromies Γ −→ M
are equal up to automorphism of S and conjugacy in M.

To apply this we make the following definition:

Definition : A standard set of generators of Γ is an ordered set, g1, g2, . . . , gn, where n
is twice the genus of S and [g1, g2][g3, g4] · · · [gn−1, gn] = 1.

There is exactly one standard set of generators up to automorphism of Γ.

We deduce:

Lemma 1.5 : Suppose that Π and Π′ are Σ-bundles over S and S′ respectively, with
monodromy homomorphisms φ : π1(S) −→ M and φ′ : π1(S

′) −→ M. Then Π and Π′

are equivalent if and only if there are standard generating sets, g1, . . . , gn for π1(S) and
g′1, . . . , g

′
n for π1(S

′) such that φ(gi) = φ′(g′i) for all i. ♦

The following is now a simple consequence:

Lemma 1.6 : Suppose that P is a set of Σ-bundles over a closed surface of given genus.
Suppose that there is a finite subset, M0 ⊆ M such that for any Π ∈ P, there is a standard
generating set, g1, . . . , gn, of the fundamental group of the base surface, such that, for all
i, φ(gi) ∈ M0, where φ is the monodromy homomorphism associated to Π. Then P meets
only finitely many equivalence classes. ♦

The aim of this paper is therefore to find such a set M0, when P is the set of all
atoroidal fibrations.
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We remark that, in fact, the assumption that the generating set is standard can be
dropped from the hypotheses of Lemma 1.6. It is sufficient to show there only finitely
many conjugacy classes of purely loxodromic subgroup. Once this is established, one could
arbitrarily choose a standard generating set for each. Their monodromies therefore all lie
in another finite set. However our methods give a standard generating set anyway, and
perhaps the statement is more natural in this form.

2. Outline of the proof.

We begin by considering a more general set up.

Let Γ, H, be finitely generated groups, let H be a set of monomorphisms from Γ to
H, and let A be a finite generating set of Γ. If we can find some finite subset F ⊆ H, such
that φ(A) ⊆ F for all φ ∈ H, then clearly H must be finite. This is equivalent to putting
a bound on the word length of φ(g) for all φ ∈ H and all g ∈ A, where word length is
measured in terms of a fixed finite generating set of H. Put another way, we are bounding
the maximal displacement of the identity in the Cayley graph G(H) of H, by elements of
this form. Typically, we will only want to control φ up to conjugacy in H (that is, up to
postcomposition by an inner automorphism of H). So for any given φ, it is enough to find
some vertex of G(H) whose maximal dispacement by φ(A) is bounded.

We can also allow ourselves to precompose by an element of Aut(Γ), which corresponds
to changing the generating set. Let A be an Aut(Γ)-invariant set of finite generating sets
of Γ. For the purposes of showing that H is finite up to such pre and post composition,
given φ ∈ H, it suffices to find some A ∈ A and some vertex x ∈ V (G(H)) whose maximal
displacement by φ(A) is bounded. This in turn shows that there are only finitely many
possiblities for φ(Γ) ≤ H up to conjugacy (cf. Lemma 1.6). In this setting, we do not need
any control on A — the set of all finite generating sets of Γ will do. Retrospectively, we
could reduce it to a set that is finite modulo Aut(Γ). In practice, however, we will need to
find such a cofinite A a-priori. One way of expressing this, for general finitely presented
groups, is in terms of bounding the “complexity” of a generating set, as in Section 8.
However, in this section, and most of the paper, we will restrict our attention to when Γ is
a surface group. We also remark that we can more conveniently work with Out(Γ) instead
of Aut(Γ), since any inner automorphism of Γ can be pushed over to H.

To be more specific, let S be a closed orientable surface, and let Γ = π1(S). Let χ be
a one-vertex triangulation, i.e. consisting of a single vertex at some x0 ∈ S, together with
a set, E(χ), of loops based at x0. (See Section 7 for more discussion.) Each (oriented)
ǫ ∈ E(χ) determines an element g(ǫ) ∈ Γ, and the set A(χ) = {g(ǫ) | ǫ ∈ E(χ)} generates
Γ. There are only finitely many possibilities for χ up to self-homeomorphism of S, hence
A is finite modulo Aut(Γ), or modulo Out(Γ) neglecting basepoints.

We are interested in the case where H is the mapping class group of a surface. But
to begin, we illustrate the idea with reference to a different but simpler case, namely the
fundamental group of closed hyperbolic manifold. One can then progressively adapt the
argument to hyperbolic groups, and finally via the curve complex, to the mapping class
group.
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Suppose that N is a closed hyperbolic manifold (of any dimension) and that H =
π1(N). Here a monomorphism, φ, from Γ to H determines a homotopy class of maps
from S to N . We use free homotopy since we are working modulo conjugation in H. We
begin with an arbitrary one-vertex triangulation, χ0. We can realise the homotopy class
so that each triangle of χ0 is sent to a geodesic triangle in N . (This is a well-known
construction due to Thurston and Bonahon [T1,Bon].) The pull-back path-metric, ρ, on
S, is hyperbolic, with cone singularity at the vertex x0. By choosing an arbitrary edge
of χ0 and sending it to a closed geodesic in N , we can arrange that the cone angle there
is at least 2π. The injectivity radius of (S, ρ) is bounded below by that of N . Now by
Gauss-Bonnet its area and hence its diameter of S is bounded above. From this, it is not
hard to construct another one-vertex triangulation, χ, all of whose edges have bounded
ρ-length. Their images in N also have bounded length, and so the word length of each
element of φ(A(χ)) in H is bounded. Thus, there are only finitely many isomorphic copies
of Γ in in H.

The same holds true if H is any given Gromov hyperbolic group, though one needs
to phrase the argument differently. (See for example, the more general statement in [De].)
One can also use a combinatorial argument involving “carrying graphs” as in [Ba]. Thus,
if G(H) is the Cayley graph of H, and φ is any monomorphism from Γ to H, we can find
a one-vertex triangulation, χ, and a vertex of G, moved a bounded distance by φ(A(χ)).
(In Section 1, this is phrased in terms of “standard” generating sets, but it boils down
to the same thing.) The key fact, that makes this work is that the stable length, ||h||,
is bounded below by a positive constant for each infinite order h ∈ H. (See Section 3 or
definitions.) This plays the role of the lower bound on injectivity radius featuring in the
earlier argument.

In fact, the result of [Ba] is much more general. Suppose Γ = π1(S) acts on any
hyperbolic graph (not necessarily locally finite). We write inj(G,Γ) = inf{||g|| | g ∈ Γ\{1}}.
The following formulation is given as Theorem 3.3 in the paper.

Theorem 2.1 : [Ba] : If inj(G,Γ) = η > 0, then there is a one-vertex triangulation χ
and some point x ∈ G displaced a bounded distance by each element of A(χ), where the
bound depends only on genus(S) and η.

Now let Σ be another closed orientable surface, and let G = G(Σ) be the curve graph
of Σ (see Section 3). This admits an action of the mapping class group, M. The following
(given as Theorems 3.1 and 3.2 here) was proven in [MaM1]:

Theorem 2.2 : [MaM1] : For any given Σ, the graph G is hyperbolic, and ||h|| is bounded
below for all pseudoanosov h ∈ M.

Thus, if φ : Γ −→ M is a purely pseudoanosov homomorphism, we get an action of Γ
on G with inj(G,Γ) bounded below. Thus, there is some χ and a curve α ∈ V (G), so that
d(α, θα) is bounded above for each monodromy θ ∈ φ(A(χ)). Note that the same is true
of d(a, θa) where a is any set of curves of bounded diameter and a bounded distance from
α in G. We thus have quite bit of flexibility in the choice of “basepoint” a, and we will
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need to narrow this down.

To reduce to a finite set of monodromies, we need to bound the geometric intersection
number, ι(a, θa), for each θ ∈ φ(A(χ)), where a is a marking of Σ, as defined in Section
4. (The essential point about a marking is that it has bounded self intersection and cuts
Σ into discs.) By Lemma 4.4, this bounds the word length of each such θ in M. We have
already bounded distances in G, so we need to compare this with intersection number.
This brings us to “subsurface projections”, as defined in [MaM2] and discussed in Section
4.

Let Φ be a subsurface of Σ (possibly an annulus). Suppose that the curves, α, β ∈
V (G(Σ)) cross, or lie in, Φ. One can define the “projected distance”, p(Φ;α, β), between
α and β in Φ. This satisfies a coarse triangle inquality, namely p(Φ;α, γ) ≤ p(Φ;α, β) +
p(Φ; β, γ) + 3 for all α, β, γ ∈ X(Σ). Note p(Σ;α, β) = d(α, β) is just distance in G(Σ).
The following follows from [MaM2] and is discussed in Section 4 (see Proposition 4.3) :

Theorem 2.3 : [MaM2] If α, β ∈ X(Σ) with p(Φ;α, β) at most some constant q for all
subsurfaces Φ, then ι(α, β) is bounded above by some function of κ(Σ) and q.

In other words, if d(α, β) is bounded, but ι(α, β) is large, then there must be a proper
subsurface, Φ, with p(Φ;α, β) large. There may be many such subsurfaces, but if we only
consider those Φ of maximal topological complexity such that p(Φ;α, β) is large, then we
are reduced to a bounded number of possibilities (see Proposition 4.6). Of course, we will
need to properly quantify this statement — there may be different degrees of largeness
and boundedness involved. Note that in the above, we could replace α, β by any sets,
a, b ⊆ X(Σ) of bounded self-intersection, in particular to multicurves or markings. Then
p(Φ; a, b) is well defined up to an additive constant and we still have a coarse triangle
inequality.

Let us now return to the above set-up where we have d(a, θa) bounded for all θ ∈
φ(A(χ)). If each ι(a, θa) is also bounded, we are done. If not, then there is some ǫ ∈ E(χ)
and subsurface, Φ, with p(Φ; a, θa) large, where θ = φ(g(ǫ)). We say that ǫ is “bent”
along Φ. We choose ǫ and Φ so that Φ has maximal possible complexity. Thus, each edge
of χ can be bent along only boundedly many subsurfaces of this complexity. (Properly
formulated, we will need to use a higher degree of bendiness for lower complexity surfaces,
which will result in a more robust notion. The details are discussed in Section 7.)

Consider the lift χ̃ of χ to the universal cover S̃, of S. We can equally well refer to the
bending of edges in χ̃. We know that some edge, ǫ, of χ̃ is bent along Φ. (This entails a
certain normalisation — we choose an arbitrary vertex x̃0 of χ̃, and equivarianly associate
to this vertex the marking a, and associate to other vertices M-images of a equivariantly.)
Let ǫ′, ǫ′′ ∈ E(χ̃) be the other edges of a triangle of χ̃ incident on ǫ. Applying the coarse
triangle inequality, we see that at least one of ǫ′ or ǫ′′, say ǫ′, is bent along Φ (though
perhaps not quite as bent). We now proceed to the triangle on the other side of ǫ′ and
continue. In this way, we construct a path, ζ, in S̃, such that each edge it crosses is bent
along Φ. We will take it to be sufficiently long depending on κ(Σ) as required below. We

now go back down to S. The projected path, ζ̂ must cross some edge, e, of χ many times.
Each time it crosses, it means that e is bent along some M-image of Φ. (Between two such
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crossings there are segments of e and of ζ̂ which together give rise to a monodromy in M.)
But all these subsurfaces have the same complexity, and are hence bounded in number.
This means we must return to the same subsurface twice, and so we can close up our path
to give us a closed path, π, in S (not necessarily simple). (Note that we needed the bound
on the number of possibilities for the subsurface since we may lose a certain amount of
bendiness each time we cross a triangle, so our initial supply of bendiness may eventually
be exhausted.) If we follow a boundary curve of Φ in Σ around π in S (possibly several
times) we get a periodic curve (or a torus in the associated surface bundle). If π is essential
in S, then our homomorphism, φ, cannot be purely loxodromic, giving a contradiction. In
Section 7, we will present this argument more formally in terms of dual graphs to χ, rather
than paths. (We will argue by assuming the bundle to be atoroidal, and inductively place
bounds on projected distances as a function of complexity.)

We need to explain why π can be assumed non-trivial. This will entail a careful
choice of basepoint, a. This will be either a complete multicurve (pants decomposition) of
or marking (a complete multicurve together with marking curves), see the definitions in
Section 4. (At present, the basepoint is only determined up to bounded distance in G.) If
we were careless, we might expect π just to run around the vertex, x0, of χ. Returning to
the analogy with the case of maps from S into a hyperbolic manifold N , there we chose
an arbitrary edge, ǫ0 ∈ E(χ̃), and mapped it to the closed geodesic in N in the given free
homotopy class. In the new situation the “homotopy class” corresponds to a monodromy,
θ0 = φ(g(ǫ0)) ∈ M, giving rise to a 3-manifold M0 = Mθ0

fibring over the circle. As noted
in Theorem 1.1, this admits a hyperbolic structure (the analogue of the closed geodesic in
N) and we shall use this structure to choose a. We will require (among other things) that
a should have bounded length when realised in M0. It follows that a is a bounded distance
from an “axis” of θ0 acting on G (see Lemma 3.5), and so, after applying a suitable power
of θ0, and using the hyperbolicity of G, we can assume that d(α, a) is bounded, where
α ∈ V (G(Σ)) was our original attempt at a basepoint (as given by [Ba]). Thus, a will serve
just as well. In other words, d(a, θa) is bounded for all θ ∈ A(χ). (We can now forget
about the original α.)

Here is a more precise recipe to find a marking a. Suppose for the moment that we
can find a uniformly lipschitz map, f : (Σ, σ) −→ M0, in the fibre class, with f(Σ) not
meeting any Margulis tube in M0, and where σ is a hyperbolic structure on Σ. (Indeed
any metric of curvature at most −1 will do.) The injectivity radius of (Σ, σ) is bounded
below, and so its diameter is bounded above. Thus, it is easy to construct a marking, a,
in Σ, of bounded length. Its image in M0 is also of bounded length.

To apply this, we need to relate projected distances to the geometry of M0, or more
precisely, to the infinite cyclic cover, M ∼= Σ × R, of M0. Note that f lifts to a bi-infinite
sequence of maps fi : Σ −→ M , so that fi ≡ f0 ◦ θi

0. We regard f0 as determining a
preferred class of homotopy equivalence from Σ to M . Suppose i < j, and p(Φ; θi

0a, θ
j
0a) is

large. If Φ is an annulus, then there is a Margulis tube in M , in the homotopy class of Φ,
which is homologically trapped between fi(Σ) and fj(Σ) (i.e. any homotopy between them
maps with non-zero degree to this tube). If Φ is more complex, then there is a “band” in
the homotopy class trapped between fi(Σ) and fj(Σ). Here, a band is a topological copy
of Φ × [0, 1], with ∂Φ × [0, 1] lying in boundaries of Margulis tubes, and which is “long”
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in the direction of the second co-ordinate. Note that there can only be one tube or band
in M in any given homotopy class. These notions arise out of the approach to the Ending
Lamination Conjecture in [Mi2,BrCM] and in [Bow4], and are discussed in Section 6, see
in particular, Proposition 6.10.

Now suppose that our path, π, is trivial in S. It lifts to a closed path, π̃, in S̃.
Now there must be some component, ǫ̃0, of the lift of ǫ0 in S̃, such that π̃ crosses ǫ̃0
in at least two distinct edges (cf. Lemma 7.1). By construction, each of these edges is
bent along Φ. From the definition of “bent” this means that there are some i < j, so
that p(Φ; θi

0a, θ
i+1
0 a) and p(Φ; θj

0a, θ
j+1
0 a) are both large. (As stated, this entails a certain

choice of normalisation so that x̃0 ∈ ǫ̃0, though the argument would work just as well with
any M-image of Φ.) This in turn implies that there are two tubes or two bands both
homotopic to Φ, and respectively trapped between fi(Σ) and fi+1(Σ) and between fj(Σ)
and fj+1(Σ). Thus, fj(Σ) must homologically separate them. In particular, they must be
different, contradicting the fact that there is only one tube or band in a given homotopy
class. There is a subtle issue here about the “order” in which the fi(Σ) occur in M . To
make sense of this, we will use suitable homotopies to embedded surfaces in M (cf. Lemma
6.9).

To recap, once we can find such a map, f : (Σ, σ) −→ M0, and make an appropriate
choice of basepoint, the above argument shows that the lift, ǫ̃0, can contain at most one
edge that is bent along any given subsurface. This shows that there can be no closed path
in S̃ passing only through bent edges. The path, π, that we construct is therefore essential,
and so gives a contradiction to the purely pseudoanosov hypothesis (cf. Lemma 7.4).

We now return to the issue of the existence of a uniformly lipschitz map f : (Σ, σ) −→
M0. For this, we will use minimal surfaces in M0 [MeSY,SY,FHS] (see Lemma 6.12). If
the injectivity radius of M0 is uniformly bounded below (i.e. there are no Margulis tubes)
we can construct f by taking a minimal surface in the fibre class. In this case, f , will be
an embedding. If each Margulis tube has bounded volume (which is equivalent to there
being no bands), then we can push f off the Margulis tubes, while maintaining control of
the lipschitz constant. (Here f remains an embedding.) If there are bands in M0, we can
push f off all the bands, (making use of Lemma 6.6) but it might be impossible to push it
off all the Margulis tubes. We therefore have to live with the fact that there may be very
short curves in (Σ, σ), so we can no longer find a marking of bounded length. We can,
however, find a complete multicurve (i.e. a pants decomposition) of bounded length, and
this will serve as our basepoint in this case. Note that the existence of a band means that
ǫ0 is bent along a non-annular surface, and so the maximal complexity surface, Φ, cannot
be an annulus. In this case, a complete multicurve is sufficient to make sense of the above
homological separation argument, again giving a contradiction.

The requirements of the choice of basepoint needed for the above argument, can be
formulated as a purely combinatorial statement, without explicit reference to 3-manifolds,
namely Lemma 6.1. The purpose of Section 6, and the introduction of hyperbolic 3-
manifolds is just to prove this statement.

In principle, one might hope for a purely combinatorial proof based, for example, on
the combinatorial models of Masur, Minsky et al., as described in Section 5. The difficulty
arises from the fact that the model is not equivariant, and does not descend to M0 —
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a feature that was essential in making sense of the ordering and separation properties of
surfaces. In a hypebolic 3-manifold we have minimal surfaces at our disposal to use as a
starting point.

To make all this work, we need to take care of the quantification, which will involve
us in a series of constants bounding lengths, distances, injectivity radii, lipschitz constants
etc. Ultimately, these will all depend only on genus(S) and genus(Σ). The logic is laid out
in Section 7, where it is presented as an induction on the complexity of subsurfaces.

3. The curve graph.

In this section, for the purposes of giving inductive arguments later, we allow Σ to
be a compact surface with p ≥ 0 boundary components. We define the complexity of Σ
as κ(Σ) = 3 genus(Σ) + p − 3. We write X(Σ) for the set of homotopy classes of non-
trivial non-peripheral simple closed curves in Σ. Given α, β ∈ X(Σ), write ι(α, β) for their
geometric intersection number (i.e. the minimal number of intersection points).

A certain number of “exceptional” cases call for special attention. Note that if κ(Σ) =
−1 (the annulus) or κ(Σ) = 0 (the three-holed sphere, denoted “3HS”), then X(Σ) = ∅. If
κ(Σ) = 1, then Σ is either a four-holed sphere, “4HS”, or a one-holed torus, “1HT”. (We
won’t need to deal with the disc, sphere, or closed torus here.)

Suppose that κ(Σ) ≥ 2 (“the non-exceptional” case). We define the curve graph,
G = G(Σ) by taking the vertex set, V (G) = X(Σ) and deeming α, β ∈ V (G) to be adjacent
(or equal) if ι(α, β) = 0. (This is the 1-skeleton of the curve complex introduced in [Ha].)
We write d = dG(Σ) for the combinatorial metric on G(Σ). One can show that d(α, β) is
bounded above in terms of ι(α, β). This is implicit in work of Lickorish, and one can find
an explicit bound for example, in [MaM1]. Clearly, M acts on G with finite quotient. The
following is a key result:

Theorem 3.1 : [MaM1] G(Σ) is Gromov hyperbolic. ♦

The following notion makes sense for any action of a group, Γ, on a graph G. Given
g ∈ Γ, we write ||g|| for its stable length. That is ||g|| = limn→∞

1
n
d(x, gnx) for some, hence

any, x ∈ G. We write inj(G,Γ) = inf{||g||} as g ranges over all infinite order elements of Γ.
(In the torsion-free case, this is analagous to the injectivity radius of a negatively curved
manifold.)

Returning to the case of M acting on the curve graph G(Σ), we have:

Theorem 3.2 : [MaM1] There is some η > 0, depending only on genus(Σ) such that if
g ∈ M is pseudoanosov, then ||g|| ≥ η.

(This is also a consequence of the acylindricity of the action of M on G(Σ). In fact,
stable lengths are uniformly rational [Bow3].)

The following is a general statement:

11
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Theorem 3.3 : Suppose that S is a closed surface and that Γ = π1(S) acts on a k-
hyperbolic graph, G, with inj(G,Γ) ≥ η > 0. Then there is a standard generating set,
g1, . . . , gn, for Γ, and some x ∈ V (G), such that for all i, d(x, gix) ≤ s, where s depends
only on κ(Σ), k and η.

There are different methods available for proving this result. In particular, it was
observed by Jason Manning that it follows from an elegant argument given in the appendix
to the thesis of Josh Barnard. This has since been written up in more detail as [Ba]. (One
can also generalise to non-orientable surfaces, as discussed in [Bow5].)

The idea is to consider a “carrying graph”, Ω ⊆ S, such that S \ Ω is a disc. Let
Ω̃ be its lift to the universal cover S̃. Given a Γ-equivariant map from the vertex set of
Ω̃ to G, we can define a “length” of Ω, by taking a sum of distances between f -images
of pairs vertices, corresponding to an orbit transversal of edges. We choose a pair (Ω, f)
whose length is (nearly) minimal. One then shows that its length is bounded above in
terms of genus(Σ), k and inj(G,Γ) — if there were a very long edge then a shortcutting
operation would reduce the length. For this to work in general, one needs to know that
two bi-infinite paths in G which are translated a bounded distance by some element, g ∈ Γ,
are a uniformly bounded distance apart. This is where one uses the lower bound on ||g||.
We also need to make the additional observation that the generating set arising in this
argument can be assumed to be standard. Note that the graph Ω remains embedded under
the shortcutting operations, and so there are only finitely many combinatorial possibilities,
up to the action of M. We can therefore find a standard generating set represented by
paths in Ω that cross each edge of Ω a bounded number of times.

There is only one standard generating set up to the action of M. (In fact, it would
be sufficient to know that there are only finitely many — see also the discussion of “com-
plexity” of generating sets in Section 8.)

To apply Theorem 3.3, suppose that Σ and S are closed surfaces and that Σ −→
Π −→ S is an atoroidal bundle. Then the monodromy homomorphism from Γ to M is
injective, and so inj(G(Σ),Γ) ≥ η, where η is the constant of Lemma 3.2. Thus:

Proposition 3.4 : There is some s = s(κ(Σ), κ(S)) such that if Σ −→ Π −→ S is
atoroidal, then there is a standard set of generators, g1, . . . , gn for Γ = π1(S), and some
α ∈ V (G) such that for all i, d(α, giα) ≤ s.

We note that one can generalise Proposition 3.4 to the case of a purely pseudoanosov
homomorphism of a finitely presented group, Γ to M. Here a “standard” generating set is
replaced by one of bounded “complexity” as defined in Section 8. Independent proofs of
this are given in [DeF] and [Bow5], both using results from [Bow3]. Either of these results
is sufficient to get from Theorem 8.1 to the statement that there are only finitely many
purely pseudoanosov isomorphic copies of Γ in M up to conjugacy. As mentioned in the
introduction, an independent proof of this statement has been announced by Groves.

This is a step towards verifying the hypotheses of Lemma 1.6, though we need to do
quite a bit more, since there are infinitely many elements of M moving any given curve a
bounded distance.
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We will also need to consider the curve graph of an exceptional surface where κ(Σ) = 1.
Here it is defined differently. Again, V (G) = X(Σ), but α, β are deemed adjacent if ι(α, β)
is minimal (i.e. 1 for a 1HT and 2 for a 4HS). Thus, G(Σ) is a Farey graph.

The curve graph is central to the proof of the Ending Lamination Conjecture in
[Mi,BrCM] (see also [Bow4]). Some of this will be discussed in Section 6. For the moment,
we just note the following consequence of that work.

Suppose that M is a doubly degenerate 3-manifold homeomorphic to Σ × R and
without cusps (for example the cyclic cover of a bundle over a circle). We can realise any
γ ∈ X(Σ) as a closed geodesic in M , and write lM (γ) for its length.

It is a consequence of work in [Mi] or in [Bow4] that there is a bi-infinite geodesic, ζ,
in G(Σ) such that if γ ∈ X(Σ), then the distance in G(Σ) from γ to ζ is bounded above by
some function of lM (γ). The geodesic ζ, is well defined up to bounded distance, depending
only on κ(Σ). We apply this as follows.

Suppose that φ is pseudoanosov.

Definition : An axis of φ in G(Σ), is a bi-inifinite geodesic, ζ, such that φζ is a bounded
distance from ζ.

Any two such axes (in particular ζ are φζ) are a uniformly bounded distance apart,
depending only on κ(Σ). The existence of an axis for any peudonanosov follows from
[MaM1,MaM2].

Suppose that M is the cyclic cover of Mφ for some pseudoanosov φ ∈ M.

Lemma 3.5 : Suppose that φ ∈ M and that Mφ and M are as above. Suppose γ ∈ X(Σ)
with lM (γ) ≤ l for some l ≥ 0, then γ lies within a distance q of an axis of φ on G(Σ),
where q depends only on κ(Σ) and l. ♦

4. Subsurface projections.

Subsurface projections were defined in [MaM2]. They play a crucial role in the ap-
proach of [Mi,BrCM] to the Ending Lamination Conjecture. Their use in this regard was
circumvented in [Bow4], but they can also be tied in with the presentation there, as we
discuss in Section 5.

Let Σ be a compact connected surface. For the moment, we can allow Σ to have
boundary. Let Φ ⊆ Σ be a closed connected subsurface. We shall always assume its
inclusion to be π1-injective, i.e. Σ\Φ has no disc or boundary-parallel annular components
(though we need to allow for other annular components). If the inclusion is strict, then
κ(Φ) < κ(Σ). We write F = F(Σ) for the set of such Φ up to homotopy which satisfy
κ(Φ) ≥ 1. We can identify the set of annuli up to homotopy with X(Σ).

By an arc in Σ, we mean an embedded arc, α, with ∂α = α ∩ ∂Σ. We consider
this defined up to homotopy, sliding ∂α in ∂Σ. We also insist that it is homotopically
non-trivial.

13



Atoroidal surface bundles over surfaces

Let XA(Σ) be the set of arcs and curves in Σ, and let GA be the arc-and-curve graph,
that is, V (GA) = XA(Σ), and two elements of XA(Σ) are deemed adjacent or equal if they
can be homotoped to be disjoint. It’s not hard to see that the inclusion X(Σ) →֒ XA(Σ)
induces a quasi-isometry from G(Σ) to GA(Σ). (This holds even if κ(Σ) = 1.) One way to
go back from an arc α in Σ is to take a boundary component of a regular neighbourhood
of α union the boundary component, or components, it meets. (This is well defined up to
distance 1.)

Suppose now that Φ ∈ F . We write X(Σ) = XI(Σ,Φ) ⊔ XD(Σ,Φ) ⊔ XT (Σ,Φ),
where α ∈ X(Σ) lies in XI(Σ,Φ) if it is a curve in X(Φ), it lies in XD(Σ,Φ) if it can be
homotoped to be disjoint from Φ, and it lies in XT (Σ,Φ) if it crosses some boundary curve
of Φ. We write X(Σ,Φ) = XI(Σ,Φ) ∪ XT (Σ,Φ). We define the subsurface projection,
θΦ : X(Σ,Φ) −→ X(Φ) as follows. Suppose that α ∈ X(Σ,Φ). If α ∈ XI(Σ,Φ), set
θΦα = α. If α ∈ XT (Σ,Φ), let γ be any component of φ∩α, and let θΦα be the boundary
component of a small neighbourhood of γ union the incident components of ∂Φ. From
the above discussion, this is well defined in G(Φ) up to bounded distance (independent of
κ(Σ)). Moreover, if α, β ∈ X(Σ,Φ), then ι(θΦα, θΦβ) is bounded above in terms of ι(α, β).

Given a subset b ⊆ X we will write ι(b) = max{ι(α, β) | α, β ∈ b}.

Definition : A multicurve, a ⊆ X(Σ), is a (finite) subset of pairwise adjacent curves (i.e.
ι(a) = 0).

Such a set can be realised so that they are all simultaneously disjoint. We shall
frequently think of a multicurve as a 1-manifold in Σ, defined up to homotopy, with each
component essential. In this paper, we allow a multicurve to be empty.

Definition : We say that a multicurve, a, is complete if it is maximal, i.e. each component
of Σ \ a is a 3HS.

Suppose that a ⊆ X(Σ) is a complete multicurve, and that α ∈ a. Let κ(Φ) be the
component of Σ\(a\α) containing α. Thus κ(Φ) = 1. A marking curve of α is a curve β in
Φ, adjacent to α in the Farey graph G(Φ). A complete marking of a is a subset, b ⊆ X(Σ),
consisting of a, together with a marking curve for each element of a. Note that ι(b) ≤ 2,
and that b fills Σ (i.e. each component of Σ \ b is a disc.

Definition : A marking of Σ is the complete marking of some multicurve.

One can recover the multicurve uniquely from the marking. Note that if a is a marking,
then ι(a) ≤ 2.

Any mapping class that preserves a complete multicurve must be a product of Dehn
twists about these curves. Thus, any mapping class that preserves a complete marking is
trivial.

If a∩X(Σ,Φ) 6= ∅, then we set θΦ(a) = θΦ(α) for some α ∈ a∩X(Σ,Φ). This is well
defined up to bounded intersection, hence bounded distance in X(Σ), depending only on
κ(Σ) and ι(a). (In practice we will only use this when ι(a) ≤ 2.)
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To be more formal, we could define θΦα or θΦa to be the set of all possible choices,
thereby giving a canonical subset of bounded diameter. We make choices just for conve-
nience of notation and exposition. We can assume these choices to be equivariant where
convenient (going back to the more formal definition if necessary).

Definition : Given α, β ∈ X(Σ,Φ), we will write p(Φ;α, β) = dG(Φ)(θΦα, θΦβ) for the
projected distance between α and β in Φ. We similarly define p(Φ; a, b) if a ∩X(Σ,Φ) 6= ∅
and b ∩X(Σ,Φ) 6= ∅.

The above discussion applies only when κ(Φ) ≥ 1. We now move on to consider the
case of annuli, or equivalently, elements of X(Σ).

In what follows, it will be convenient to write x ∼k y to mean that |x − y| ≤ k, for
x, y, k ∈ R.

We write τα for the positive Dehn twist about α. (This depends only on the orientation
of the underlying surface.)

Suppose that R is an annulus, with core curve δ, and boundary components, δ1 and
δ2. Suppose that ǫ, ζ are arcs connecting δ1 to δ2. There is a signed intersection number,
ι̂(ǫ, ζ), that counts the number of times ǫ crosses ζ in the positive sense. We will write
ι(ǫ, ζ) = |ι̂(ǫ, ζ)| for the usual intersection number. (That is, the minimal number of
intersections between representatives of ǫ and ζ in their respective homotopy classes relative
to their endpoints.) If ǫ′, ζ ′ are other such arcs, then it’s not hard to see that |ι̂(ǫ, ζ) −
ι̂(ǫ′, ζ ′)| ≤ ι(ǫ, ǫ′) + ι(ζ, ζ ′) + 2. In particular, if ǫ, ǫ′ are disjoint, and ζ, ζ ′ are disjoint,
then ι̂(ǫ, ζ) ∼2 ι̂(ǫ

′, ζ ′). We also note that ι̂(τm
δ ǫ, τ

n
δ ζ) = ι̂(ǫ, ζ) + n−m. This, of course,

depends on certain conventions of orientation. In particular, we need to assume that ǫ and
ζ cross R in the same direction, but it doesn’t matter which.

Suppose now that κ(Σ) ≥ 1 and that δ ∈ X(Σ). Let X(Σ, δ) = {α ∈ X(Σ) | ι(δ, α) 6=
0}. The annular cover of Σ corresponding to δ naturally compactifies to a closed annulus,
R(δ) = R(Σ, δ), with core curve δ.

If α ∈ X(Σ) \ {δ}, then α lifts to an arc whose closure in R(δ) is a closed arc, α̃. This
is well defined up to homotopy relative to its endpoints. If α ∈ X(Σ, δ), we can choose
this lift so that it crosses δ. Any two such choices will be disjoint.

Suppose now that α, β ∈ X(Σ, δ). Then, up to ∼2, ι̂(α̃, β̃) is independent of the choice
of lifts.

Definition : We set ~p(δ;α, β) = ι̂(α̃, β̃) ∈ Z, for the signed projection distance and write
p(δ;α, β) = |p(δ;α, β)| for the unsigned projection distance.

We see easily that ~p(δ;α, α) = 0, and that for all α, β, γ ∈ X(Σ, δ), |~p(δ;α, β) +
~p(δ; β, γ) + ~p(δ; γ, α)| ≤ 3. In other words, ~p(δ; ., .) is a coarse 2-cycle. It follows that
p(δ; ., .) satisfies a coarse triangle inequality: p(δ;α, β) ≤ p(δ;α, γ) + p(δ; γ, β) + 3.

Lemma 4.1 :

(1) ~p(δ; τm
δ α, τ

n
δ β) ∼4 ~p(δ;α, β) + n−m.

(2) If ǫ ∈ X(Σ) is disjoint from δ, then ~p(δ; τm
ǫ α, τ

n
ǫ β) ∼4 ~p(δ;α, β).
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Proof : (Some similar arguments can be found in Section 6 of [Mi1].) We begin with the
second statement.

(2) Note that ǫ lifts to a set of disjoint arcs in R(δ). Each such arc bounds a disc in R(δ)
disjoint from δ. The set of outermost such discs are disjoint. Now either α does not meet
ǫ and is unaffected by Dehn twist, and α̃ does not meet any of these outermost discs. Or
else, α crosses ǫ and α̃ enters a outermost disc on either side of δ. Once it enters, it never
leaves. Now twisting along ǫ will have the effect of sliding the intersection of α with the
boundaries these discs.

A similar discussion applies to β. But now α̃ and β̃ can intersect at most once inside
any of these outermost discs. Thus twisting along ǫ can change the total number of
intersections of α and β by at most 4. (It can create or destroy at most two intersections
in each such disc.) The statement (2) now follows.

(1) Now δ lifts to the core curve, δ, together with a disjoint collection of arcs. Thus a
similar argument applies. We also need the observation about Dehn twists along δ in
R(δ). ♦

We note, for future reference, that the following is implicit in the above proof. Suppose
that δ ∈ X(Φ) where Φ ∈ F . If α, β ∈ X(Σ, δ), then (up to an additive constant) ~p(δ;α, β)
depends only on how α and β intersect Φ (and hence, up to distance 2) only on their
projections to X(Φ)).

The following “projection bounds” theorem is central. It is proven in [MaM2], except
that we have modified the statement by replacing “geodesic” with “quasigeodesic”:

Theorem 4.2 : Suppose that Φ ∈ X ∪ F , and that (αi)i is a quasigeodesic in X(Σ).
Suppose that αi ∈ X(Σ,Φ) for all i. Then for all j, k, p(Φ;αj, αk) ≤ v, where v depends
only on κ(Σ) and the constants of quasigeodesicity.

Proof : We can assume that αj and αk are the terminal points of (αi)i. The statement,
where (αi)i is assumed to be geodesic is proven in [MaM2]. For the above statement, note
that, by hyperbolicity of G(Σ), (αi)i remains a bounded distance from a geodesic, π, in
G(Σ) from αj to αk. Moreover, X(Σ) \ X(Σ,Φ) has diameter 1 in G(Σ). From this, we
claim that αi and αj can be connected by a path consisting of at most five segments,
alternately geodesic or bounded length, all lying in X(Σ,Φ). If π ⊆ X(Σ,Φ), then we can
just use a segment of π, suppose that there is some β ∈ π \ X(Σ,Φ). If αj and αk are
both a long way from β, then we follow π from αk until we get close to to β, then cross
to (αi)i by a path of bounded length not meeting β, and follow it, a bounded distance,
until we are the other side of β and cross back to π, and follow it to αk. If one or both
of αj or αk are close to β, then we follow (αi)i near these points. This justifies the claim,
and the result now follows from the statement for geodesics, together with the observation
that p(Φ; β, γ) is bounded whenever β, γ ∈ X(Σ,Φ) are adjacent. ♦

The following is a simple consequence of Theorem 6.12 of [MaM2]. (It is a also a
consequence of the results of Section 5 here.)
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Proposition 4.3 : Suppose a, b ⊆ X(Σ) are complete markings. Suppose that, for some
q, we have p(Φ; a, b) ≤ q for all Φ ∈ X ∪ F . Then ι(a ∪ b) is bounded above in terms of
κ(Σ) and q.

Proof : In [MaM2] the authors define a “distance” between two markings. They show
that there is a fixed constant q0 = q0(κ(Σ)) such that if q ≥ q0 then the distance between
any two markings a and b is bounded above by C0

∑
Φ∈F(a,b,q) p(Φ; a, b) + C1. Here,

F(a, b, q) = {Φ ∈ X ∪F | p(Φ; a, b) > q} and C0, C1 are constants depending only on κ(Σ)
and q. They also show that the intersection number, ι(a, b), is bounded above in terms of
the distance. Under our hypotheses, we will have F(a, b, q) = ∅, and so we get bound just
in terms of C1, and so in terms of κ(Σ) and q as required. ♦

To apply this, we note the following simple observation:

Lemma 4.4 : Suppose a ⊆ X(Σ) is a complete marking of Σ. Then for any r ≥ 0, the
set of φ ∈ M with ι(a ∪ φa) ≤ r is finite. ♦

Proof : Since a fills Σ, the bound on ι(a∪φa) bounds the number of possibilities for each
component of φa. As observed earlier, any mapping class preserving each component of a
complete marking is trivial. ♦

Corollary 4.5 : Suppose that a ⊆ X(Σ) is a complete marking. Given any q ∈ N, the
set {φ ∈ M | (∀Φ ∈ X ∪ F)(p(Φ; a, φa) ≤ q)} is finite. ♦

The following will be proven in Section 5. (One could probably also use the technology
of [MaM2].) Here a, b will be taken to be either complete multicurves or complete markings.
(In practice, the essential point is that ι(a) and ι(b) are bounded.)

Proposition 4.6 : Given κ = κ(Σ), there is some v0(κ) ≥ 0 such that for all v ≥ v0(κ),
there is some n ≥ 0 such that the following holds. Suppose that a, b ⊆ X(Σ) are complete
multicurves or complete markings. Suppose that k ∈ {−1, 1, 2, 3, . . . , κ}, and that for all
F ∈ F with κ(F ) > k, we have p(F ; a, b) ≤ v. Then there are at most n subsurfaces
Φ ∈ X ∪ F with κ(Φ) = k and with p(Φ; a, b) ≥ v0.

The interpretation where k = −1 is that we are assuming p(F ; a, b) ≤ v for all F ∈ F ,
and conclude that there are at most n curves δ ∈ X(Σ) with p(δ; a, b) ≥ v0.

5. Annulus systems.

In this section, we tie in the discussion of subsurface projections with “annulus sys-
tems” as described in [Bow4]. These are a less sophisticated version of “hierarchies” as
defined in [MaM2], but will be sufficient for our purposes.
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For convenience, we will assume that Σ is a closed surface of given genus (at least
2). We also deal here in finite annulus systems, though the essential points can be readily
adapted from the locally finite case in [Bow4]. We begin by recalling some definitions, and
refer to the above for elaboration.

Let I = [∂−I, ∂+I] ⊆ R be a non-trivial compact interval, and let Ψ = Σ×I. The first
coordinate will be termed “horizontal” and the second “vertical”. We write ∂±Ψ = Σ×∂±I,
and let ∂HΨ = Σ × ∂I = ∂−Ψ ⊔ ∂+Ψ. We write πΣ : Ψ −→ Σ and πV : Ψ −→ I for the
projections.

It will be convenient to consider all closed curves as realised as geodesics with respect
to some fixed hyperbolic structure on Σ. This is really for ease of exposition — all the
constructions are essentially combinatorial.

Let S be the set of homotopy classes of 3HS’s in Σ. Given Φ ∈ S ∪F , we can realise Φ
so that all its boundary components are geodesic. (This may entail identifying certain pairs
of boundary components.) By a strip, B, in Ψ, we mean a subset of the form B = Ψ× J ,
where Φ ∈ S∪F (realised as above) and J = [∂−J, ∂+J ] ⊆ I is a non-trivial closed interval.
We write ∂±B = Φ × ∂±J , ∂HB = Φ × ∂J = ∂−B ⊔ ∂+B and ∂VB = ∂Φ × J . Thus,
∂B = ∂HB ∪ ∂VB. We write κ(B) = κ(Φ) for its complexity.

A vertical annulus in Ψ is a subset of the form Ω = γ × J , where γ ∈ X(Σ), and J is
a non-trivial compact interval. We write ∂±Ω = α× ∂±J and ∂HΩ = α× ∂J . Note that
if B is a strip, the ∂VB is a union of vertical annuli.

Definition : An annulus system, W, in Ω is a finite set of disjoint vertical annuli.

We write W =
⋃

W. We often refer to W itself as an “annulus system”. We normally
assume (without specifying) that W is vertically generic, that is, if Ω,Ω′ ∈ W are distinct,
then πV (∂HΩ) ∩ πV (∂HΩ′) ⊆ ∂I. This can always be arranged after a small adjustment
of W .

We write X±(W ) = πΣ(W ∩ ∂±Ψ). We write X(W ) = {πΣΩ | Ω ∈ W}.

Definition : A band in Ω (with respect to W ) is a strip, B ⊆ Ψ such that ∂VB ⊆ W ,
and such that no annulus of W crosses B (i.e. intersects both ∂+B and ∂−B).

A band is full if πΣB = Σ. Otherwise it is proper .

Note that we can view WB = W ∩ B as an annulus system in B (though we need to
allow for degenerate annuli in ∂HB). This forms the basis of certain inductive arguments.

Given u ∈ I, write Σu = Σ × {u}, and let ω(u) = πΣ(W ∩ Σu). This is a (possibly
empty) multicurve in Σ. By definition, ω(∂±I) = X±(W ).

Definition : We say that W is complete if the multicurves X±(W ) are complete, and if,
for all u ∈ I, the multicurve is either complete, or complete minus at most one curve (i.e.
we are allowing for at most one 1HT or 4HS component).

Let us assume that W is complete. Given a band, B, we write X±(B) = πΣ(∂±B \
∂VB ∩W ). If X±(B) 6= ∅, we write H0(B) = dG(πΣ(B))(X−(B), X+(B)).
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If κ(B) ≥ 2, we define a ladder in B as a sequence, (Ωi)
n
i=0, of annuli in W such that

∂VB =
⋃n

i=0 πV Ωi and with ∂V Ωi ∩ ∂V Ωj 6= ∅ if and only if |i − j| ≤ 1. We write H(B)
for the minimum length of a ladder in B. Note that H(B) ≥ H0(B). By assumption,
H(B) ≥ 1. We refer to H(B) as the height of B.

Definition : We say that B is t-taut if H(B) ≤ H0(B) + t.

If κ(B) = 1, we say that B is 0-taut if the sequence of annuli, (Ωi)i, in B gives rise to
a geodesic (πΣΩi)i in the Farey graph, G(πΣB).

Definition : We say that a complete annulus system, W , is recursively t-taut if every
band, B with κ(B) ≥ 2 is t-taut, and every complexity-1 band is 0-taut.

The following is proven in [Bow4]

Proposition 5.1 : Suppose that a, b ⊆ X(Σ) are complete multicurves. Then there is a
complete annulus system with X−(W ) = a, X+(W ) = b and satisfying:

(W1) If Ω,Ω′ ∈ W, with πΣΩ = πΣΩ′, then Ω = Ω′,

(W2) W is recursively t-taut, where t = t(κ(Σ)) depends only on κ(Σ); and

(W3) The set X(W ) arises inductively by taking tight geodesics in subsurfaces of Σ. ♦

We won’t make (W3) precise here. Its only relevant consequence is the “a-priori
bounds” result in hyperbolic 3-manifolds which will allow us to construct certain lipschitz
maps — see Proposition 6.1. It will not be needed in this section.

We say that two bands are parallel if they have the same base surface. If B ⊆ A are
parallel bands with B ∩ ∂HA = ∅, then the closures of A \ B, if non-empty, are parallel
bands, which we refer to as collars of B. We say that B is h-collared if it admits collars
(on both sides) of height at least h. We observe that two non-parallel 1-collared bands of
the same complexity must be disjoint.

Suppose that H(Ψ) ≥ 1 (i.e. no element of W crosses Ψ). Let W∂ = {Ω ∈ W |
Ω ∩ ∂HΨ 6= ∅}. We form a 3-manifold, Λ, by opening out each Ω ∈ W \ W∂ to a torus,
∆(Ω), and each Ω ∈ W∂ to an annulus, also denoted ∆(Ω). (Thus Λ can be thought of
as the metric completion of Ψ \W .) There is a natural map πΨ : Λ −→ Ψ which folds
every ∆(Ω) back down to Ω, and is the identity elsewhere. Note that, if Ω ∈ W \W∂ , then
the torus ∆(Ω) comes with a natural (horizontal) homotopy class of longitude, λ, and a
natural class of meridian, µ, where πΨ(µ) is homotopically trivial.

We form another space, P (W ), by gluing in a solid torus, T (Ω), to each ∆(Ω). If
Ω /∈ W∂ , then we take µ to be a meridian curve of T (Ω). Otherwise, we glue such a torus
along an annulus of degree 1 in ∂T . This P (W ) ∼= Ψ. We can extend the map πΨ to a map
πΨ : P (W ) −→ Ψ, so that T (Ω) = π−1

Ψ Ω for all Ω ∈ W. We can assume that the preimages
of ∂±I are the surface boundary components of P (W ), which we denote ∂±P (W ). We
write ∂P (W ) = ∂−P (W )∪ ∂+P (W ). By a band in P (W ) we will mean the preimage of a
band in Ψ.

Now suppose thatW is a complete annulus system. A brick in Ψ is a maximal band, B,
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with the property that W ∩B ⊆ ∂B. A brick has either complexity 0 (3HS) or complexity
1 (4HS or 1HT). In the latter case, B ∩ ∂HΨ = ∅, and each of X−(B) and X+(B) is a
single curve. If these two curves are adjacent in G(πΣB), we say that B is efficient . (This
happens, for example, if every complexity 1 band is 0-taut.) In this situation, there are
combinatorially only three sorts of bricks, one for each base surface. Let B(W ) be the set
of all bricks. These tile Ψ — they cover, and their interiors are disjoint. Note that B(W )
lifts to a decomposition of Λ into “bricks” — also denoted B(W ). This, in turn, gives
rise to a tiling of P (W ), where each tile is either a brick or a tube, T (Ω). We can put a
fixed riemannian metric on Λ by choosing a riemannian metric for each of the three brick
types. The exact choice doesn’t matter much, since any two such constructions will yield
bilipschitz equivalent metrics on Λ. However, it is convenient to assume that each vertical
boundary component of each brick is isometric to (R/Z) × [0, 1], that each 3HS brick is
isometric to a hyperbolic 3HS times [0, 1], and that the combinatorial symmetries of all
bricks are induced by isometries.

Note that for each Ω ∈ W \W∂ , ∆(Ω) has the structure of a euclidean torus — it is
the union of some number, L(Ω), annular intersections with bricks. We refer to L(Ω) as
the length of Ω (or of ∆(Ω)). It is the imaginary part of the complex modulus of ∆(Ω).

There is also a “twisting” associated to Ω which might be described as follows. There
is a curve, µ0, of length at most L(Ω)+ 1

2 in ∆(Ω) which together with λ generates the first
homology of ∆(Ω). We refer to this as the vertical meridian. It can be thought of as the
real part of the complex modulus of Ω (up to adding ±1

2). We can assume that µ = µ0+hλ
for some h ∈ Z. We write H(Ω) = h. This is well defined up to adding ±1. The vertical
meridian can be described purely combinatorially. (There is a further decomposition of Λ
into truncated octahedra and truncated simplices, as described in [Bow4]. The key point
is that the number of tiles that µ0 passes through is bounded in terms of L(Ω). The exact
nature of this construction is not important here.)

Another way to define twisting is as follows. Let B+(Ω) be the complexity-1 brick
with ∂+Ω ⊆ ∂−B \ ∂VB. Thus, X−(B+) = πΣΩ = α, say. Let β+(Ω) = X+(B+). Since
we are assuming B+ to be efficient, α and β+(Ω) are adjacent in G(πΣB). In particular,
ι(α, β+(Ω)) ∈ {1, 2}. We similarly define β−(Ω). We set H0(Ω) = ~p(α; β−(Ω), β+(Ω)).
Assuming we have defined our orientation conventions appropriately, we have:

Lemma 5.2 : For all Ω ∈ W, we have |H(Ω) −H0(Ω)| ≤ s0, where s0 depends only on
L(Ω) and κ(Σ).

Proof : The first step is to reduce to the case where H(Ω) = 0. Given any n ∈ Z, we
can construct another annulus system, W ′, by taking ω′(u) = ω(u) for u ≤ πV (∂+Ω),
and taking w′(u) = τδ for u ≥ πV (∂+Ω) where δ = πΣ(Ω). (Recall that ω(u) is the
multicurve at level u. We may need to straighten things out above Ω, so that the curves
become geodesic again.) This effectively corresponds to performing a Dehn surgery on
P (W ). Now β−(Ω) remains unchanged, while β+(Ω) changes to τn

δ β+(Ω). (Note that this
operation respects the brick decompositions.) Thus, both H(Ω) and H0(Ω) get increased
by n, and so H(Ω) − H0(Ω) remains unchanged. Setting n = −H(Ω), we can therefore
suppose that H(Ω) = 0, as claimed.
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The aim is now to bound |H0(Ω)| in terms of L(Ω). Now since, by definition, µ = µ0 +
H(Ω)λ, we have µ = µ0. Thus, there are only boundedly many combinatorial possibilities
for the arrangement of bricks meeting Ω together with the meridian curves. We claim that
this is the only information needed to compute H0(Ω), up to an additive constant.

More precisely, we construct a sequence β−(Ω) = β0, β1, . . . , βn+1 = β+(Ω) in X(Σ),
each crossing δ, where n is bounded, and where ι(βi, βi+1) is bounded for all i. Thus
p(δ; βi, βi+1) is bounded, and the result then follows using the coarse triangle inequality.
To this end, we choose a maximal sequence u1 = πV (∂−Ω) < u2 < · · · < un = πV (∂+Ω),
such that ωi = ω(ui) is a complete multicurve with ωi 6= ωi+1 for all i. Note that δ ∈ ωi,
and that n is bounded above (by L(Ω)). Let Fi be the component of Σ\ (ωi \δ) containing
δ. This is either a 1HT or a 4HS. Recall that we have a map πΨ : Λ(W ) −→ Ψ which maps
the torus ∆(Ω) to Ω. The preimige of Fi in Λ(W ) consists of either a single 3HS with
two boundary components identified under πΨ, or else two 3HS’s each with a boundary
component of that get dentified. We write δ0i , δ

1
i ⊆ ∆(Ω) for these boundary components.

In Λ(W ) these 3HS’s each have the structure of a hyperbolic 3HS with geodesic unit length
boundary components. However the original identifications of δ0i and δ1i need not respect
this metric. To rectify this, we realise the meridian µ ⊆ ∆(Ω) as a euclidean geodesic. This
gives basepoints p0

i = µ∩ δ0i and p0
i = µ∩ δ1i . We can now identify δ0i and δ1i isometrically

so as to identify p0
i with p1

i . (This implicitly takes account of the homotopy class of the
embedding of Fi in Σ.) We now choose βi ∈ X(Fi) ⊆ X(Σ) so has to have bounded length
in this structure. Now since all 4HS and 1HT bricks have bounded geometry, we see that
ι(βi, βi+1) is bounded above for all i. It follows that p(δ; βi, βi+1) is bounded. ♦

Lemma 5.3 : Suppose that W ⊆ Ψ is a recursively t-taut annulus system. Write
a = X−(W ) and b = X+(W ). There is some v, depending only on κ(Σ) and t with the
following properties.

(1) If γ ∈ X(Σ) and p(γ; a, b) ≥ v, then γ ∈ X(W ).

(2) If Φ ∈ F(Σ) and p(Φ; a, b) ≥ v, the Φ is the base surface of some band in Ψ.

Proof : (1) We shall prove the contrapositive by induction on the complexity of the base.
So suppose γ /∈ X(W ). We want to bound p(γ; a, b).

By tautness, there is a ladder, (Ωi)
n
i=0, in Ψ with n ≤ H(Ψ) + t = dG(Σ)(a, b) + t. Let

βi = πΣΩi. Thus (βi)i is a uniform quasigeodesic (with multiplicative constant 1). Choose
ui ∈ ∂V Ωi−1 ∩∂V Ωi, setting u0 = ∂−I and un+1 = ∂+I. Set ωi = ω(ui). Then ω0 = a and
ωn+1 = b. We can assume that ωi is complete for all i. Thus, γ intersects each ωi. Let Oi

be the full band, Σ × [ui, ui+1]. Thus X−(Oi) = ωi and X+(Oi) = ωi+1.
Let N = {i | βi ∩ γ = ∅} ⊆ {0, 1, . . . , n+ 1}. Note that this has bounded cardinality

(since (βi) is quasigeodesic in G(Σ)).
Suppose that βi ∩ γ = ∅. Then γ lies in some component, F , of Σ \ βi. Let B =

F × [ui, ui+1]. Thus, X−(B) ⊆ ωi and X+(B) ⊆ ωi+1. Moreover, γ /∈ X(WB) ⊆ X(W ).
Thus, by induction on κ, p(γ;X−(WB), X+(WB)) is bounded above in terms of κ− 1 and
t, and so therefore is p(γ;ωi, ωi+1).

Suppose that {j, j+1, . . . , k} is a maximal set of consecutive indices in {0, . . . , n+1}\
N . In other words, γ crosses βi for all j ≤ i ≤ k, and so βi ∈ X(Σ, γ). But βj , βj+1, . . . , βk
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is a quasigeodesic, and so by Theorem 4.2, p(γ; βj, βk) is bounded above in terms of κ(Σ)
and t. Since βj ⊆ ωj and βk ⊆ ωk+1, we see that p(γ;ωj, ωk+1) is also bounded.

But we have seen that p(γ; ., .) satisfies a triangle inequality up to the additive constant
3. It therefore follows that p(γ; a, b) = p(γ;ω0, ωn+1) is bounded in terms of κ(Σ) and t as
claimed.

(2) This is essentially the same argument, with Φ replacing γ. ♦

We can now deduce:

Lemma 5.4 : Suppose that W ⊆ Ω is a recursively t-taut annulus system satisfying
(W1) (i.e. no base curve occurs more than once). Let a = X−(W ) and b = X+(W ). There
is a constant v = v(κ(Σ), t) with the following properties.

(1) Suppose Ω ∈ W and set γ = πΣΩ. Then p(γ; a, β−(Ω)) ≤ v and p(γ; b, β+(Ω)) ≤ v.

(2) Suppose B is a maximal band, with base surface, Φ. Then p(Φ, a,X−(B)) ≤ v and
p(Φ; b,X+(B)) ≤ v.

Proof : (1) Let B− ∈ B(W ) be the complexity-1 brick immediately below Ω, so that
β−(Ω) = X−(B). If ∂−B− ⊆ ∂−Ψ, then β−(Ω) ∈ a, and so p(γ; a, β−(Ω)) = 0. Otherwise,
let O be the full band with ∂−O = ∂−Ψ and ∂+O ⊇ ∂−B−. We can assume that X+(O)
is complete. Note that X−(O) = a and X+(O) ⊇ β−. Now, by (W1), γ /∈ X(WO).
Thus, by Lemma 5.3(1) applied to O, we get that p(γ;X−(O), X+(O)) is bounded, and so
p(γ; a, β−(Ω)) is bounded as claimed.

A similar argument applies to β+(Ω).

(2) Let O be the full band with ∂−O = ∂−Ψ and with ∂+O slightly below ∂−B, so that
X−(B) ⊆ X+(O). We can assume that X+(O) is complete. By the maximality of B, and
using (W1), we see that Φ cannot be the base surface of any band in O. By Lemma 5.3(2),
applied to O, we see that p(Φ;X−(O), X+(O)) and hence p(Φ; a,X−(B)) is bounded.

Similarly p(Φ; b,X+(B)) is bounded. ♦

Corollary 5.5 : With the same hypotheses as Lemma 5.4, there is some v′ = v′(κ(Σ), t)
with the following properties.

(1) Suppose Ω ∈ W. Set γ = πΣΩ. Then |H(Ω) − ~p(γ; a, b)| ≤ v′.

(2) Suppose that B is a band in Ω. Set Φ = πΣB. Then H(B) ≤ p(Φ; a, b) + v′.

Moreover, if B is a maximal band with this base surface, then |H(B) − p(Φ; a, b)| ≤ v′.

Proof : (1) By Lemma 5.2, |h(Ω) − ~p(γ; β−(Ω), β+(Ω))| is bounded. By Lemma 5.4(1),
p(γ; a, ∂−(Ω)) and p(γ; b, ∂+(Ω)) are bounded. We now use the fact that ~p(γ; ., .) is a coarse
2-cycle.

(2) Suppose first, that B is maximal. By tautness, |H(B) − p(Φ;X−(B), X+(B))| ≤ t.
(since p(Φ;X−(B), X+(B)) = dG(Φ)(X−(B), X+(B)) = H0(B)). By Lemma 5.4(2), we see
that p(Φ; a,X−(Φ)) and p(Φ; b,X−(Φ)) are bounded. It follows that |H(B)− p(Φ; a, b)| is
bounded.
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For the general case, note that if B ⊆ C are parallel bands, then H(B) ≤ H(C) + s,
where s depends only on t. The result now follows by letting C be the maximal parallel
band containing B, and applying the above. ♦

We will write v1 = v1(κ(Σ)) for max{v, v′}, where v and v′ are the constants featuring
in Lemma 5.3 and Corollary 5.5.

Lemma 5.6 : Suppose that W is recursively t-taut and satisfies (W1). Let a = X−(W )
and b = X+(W ). Suppose there exists s ∈ N and k ≥ 1 such that for all Φ ∈ F with
κ(Φ) > k, we have p(a, b; Φ) ≤ s. Then Ψ is covered by a union of at most N bands of
complexity at most k, where N = N(κ(Σ), s, t).

Proof : By Lemma 5.3 and Corollary 5.5, the hypothesis amounts to placing a bound
on the heights of all bands complexity at least k + 1. If k ≥ κ(Σ), there is nothing to
prove — Ψ is covered by Ψ itself. So we can assume that k ≤ κ(Σ) − 1. In particular,
dG(Σ)(a, b) ≤ s. So by tautness, there is a ladder, (Ωi)

n
i=0, in Ψ with n ≤ s+ t+ 2. Let Oi

be as constructed in the proof of Lemma 5.3.

We proceed by induction on complexity, where the hypothesis is reformulated as a
bound on heights of bands. Note that Oi \Ωi is a (disjoint) union of a bounded number of
bands of complexity less than κ(Σ). Using Corollary 5.5, we have a bound on the heights
of these bands. Hence, by induction, Oi itself, is a union of a bounded number of bands of
complexity at most k. Since the number, n+ 1, of such Oi is bounded, the result follows.

♦

Lemma 5.7 : Suppose that W, a, b are as in Lemma 5.6, and suppose that there is some
s ≥ 0 such that p(Φ; a, b) ≤ s for all Φ ∈ F . Then |W| is bounded in terms of κ(Σ), s and
t.

Proof : By Lemma 5.6, Ψ is covered by a bounded number of bands of complexity 0 and
1. But (by Lemma 5.3 and Corollary 5.5 again) the height of any complexity 1 band is
bounded, and so it contains a bounded number of annuli of W. The statement now follows
easily. ♦

Lemma 5.8 : With the same hypotheses as Lemma 5.6, there is some N1 = N1(κ(Σ), s, t)
such that there are at most N1 maximal bands of complexity k.

Proof : It’s not hard to see that any band of complexity at most k can meet only a
bounded number of (depending on k ≤ κ) of maximal bands of complexity (at least) k.
Since, by Lemma 5.6, Ψ is covered by a bounded number of bands of complexity at most
k, the result follows. ♦

We can now prove Proposition 4.6.
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Proof of Proposition 4.6 : We are supposing that a and b contain complete multicurves,
say α and β, and that ι(a) and ι(b) are uniformly bounded.

Let W be a recursively t-taut annulus system satisfying (W1), as given by Proposition
5.1, with X−(W ) = α ⊆ a and X+(W ) = β ⊆ b.

By Lemma 5.3 and Corollary 5.5, we can assume that v0(κ) is large enough so that
any Φ ∈ F with p(Φ; a, b) ≥ v0(κ) is the base surface of a band, and that any γ ∈ X(Σ)
with p(γ; a, b) ≥ v0(κ) lies in X(W ).

Now if k ≥ 1, then Lemma 5.8 gives us a bound on the number of maximal bands of
complexity k in W . If k = −1, then Lemma 5.7 gives us a bound on |W|.

This gives the result. ♦

We conclude this section with some further discussion of how an annulus system is
used to construct models. We have already described the constructions of P (W ), with
a bounded geometry metric on Λ(W ) ⊆ P (W ). In this paper, we do not need to worry
about the structure on the interiors of model tubes, T (Ω), though we have seen that
∂T (Ω) = ∆(Ω) is a euclidean torus.

Constructions of bi-infinite models along these lines were discussed in [Bow4]. Here
there is a complicating factor in that model tubes may meet the boundary of P (W ). For
some purposes it is convenient to use an “augmented model”, P̂ (W ) by gluing collars,
Ψ±

∼= Σ × [0, 1] to ∂±Ψ.
We say that a hyperbolic structure, σ, on Σ is a pants structure (based on a) if there is

some multicurve, a, all of whose elements have length 1 in Σ. Note that a determines σ up
to twisting along these curves. If b is a complete marking of a, then there is a unique such
pants structure such that each of the marking curves has minimal length. We denote this
structure by σb. (The essential points in these definitions is that Σ should have injectivity
radius uniformly bounded below, and that all the curve mentioned have length bounded
above in terms of κ(Σ). Indeed, if σ is another structure with these properties for some
marking b, then σ and σb are bilipschitz equivalent, with constant depending only on κ(Σ).)

We can now describe the “augmented model”. Suppose that W ⊆ Ψ is an annulus
system. Let Î ⊇ I be a compact interval containing I in its interior, and let Ψ̂ = Σ×Î ⊇ Ψ.
We write Ψ± for the collars, i.e. the closures of the components of Ψ̂ \ Ψ. Thus W ⊆ Ψ
is an annulus system in Ψ (except that it won’t be vertically generic at ∂±Ψ. We also
have a brick decomposition, B̂(W ) ⊇ B(W ), where Ψ+ and Ψ− are considered single
bricks. To put a geometric structure on them, we need extra combinatorial information,
namely, markings, b±, of the complete multicurves a = X±(W ) = ω(∂±I). These markings
determine hyperbolic structures, σ± = σb± on Σ. We now give Ψ± the product structure,

Σ × [0, 1]. This gives us an augmented model, P̂ (W ).
We can now similarly define the twisting, H(Ω), of an annulus Ω meeting ∂±Ψ. The

vertical meridian, µ0, again have length in P̂ (W ) bounded by L(Ω) + 1
2 . One way to

view this is as follows. If Ω meets ∂−Ψ we can construct another annulus system, W ′, by
pushing Ω slightly off ∂−Ψ, and inserting another annulus whose base curve is the marking
curve, β, of α = πΣΩ in b. Now H(Ω) can be viewed as the twisting of Ω in W ′ (at least
up to an additive constant). If Ω does not meet ∂+Ψ, then as in Corollary 5.5, we see
that |H(Ω) − ~p(γ; b−, b+)| is bounded. (Note that it is conceivable that β might be the
base curve of another annulus in W ′, but that doesn’t matter for the relevant part of the
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argument.) We can perform similar constructions if Ω meets ∂+Ψ, or indeed ∂−Ψ and
∂+Ψ.

We note:

Lemma 5.9 : Suppose that b± are complete markings of multicurves a±, and let W
be recursively t-taut and satisfy (W1), and with X±(W ) = a±. Then for all Ω ∈ W, we
have |H(Ω)− ~p(γ; b−, b+)| ≤ s, where s depends only κ(Σ) and t. Here H(Ω) refers to the
twisting in the augmented model, P̂ (W ).

Proof : If Ω ∩ ∂HΨ = ∅ this is covered by Corollary 5.5. Otherwise, it is covered by the
above discussion. ♦

We remark that we can use this to reprove Proposition 4.3.

Proof of Proposition 4.3 : Let W be a t-taut annulus system satisfying (W1), as given
by Proposition 5.1, where t = t(κ(Σ)), and let P̂ (W ) be the augmented model constructed
as above using the markings a and b. We want to show that ι(a, b) is bounded.

Now Lemma 5.7 tells us that |W| is bounded in terms of κ(Σ) and q. Applying Lemmas
5.3 and 5.9, we see that the twisting, H(Ω), is bounded for each Ω ∈ W. Now |B(Σ)| is
bounded in terms of |W|, and so there are only boundedly many ways of gluing the bricks
together along their horizontal boundaries in order to reconstruct Λ(W ). Moreover, for
each Ω ∈ W with W ∩ ∂Ψ = ∅, there are only boundedly many choices of the meridian
curve. Thus, there are only boundedly many ways to reconstruct P (W ). But ι(a, b) is
completely determined by this information, and so must be bounded. The result follows.
♦

As remarked in Section 4, this can also be deduced from the projection formula given
in [MaM2]. (Indeed an elaboration of the above argument can be used to give another
proof of this formula.)

6. Hyperbolic 3-manifolds.

In this section, we will use the theory of hyperbolic 3-manifolds to prove the following
purely combinatorial statement. It will will be used in Section 7 to give us a basepoint
with respect to which we can measure bending along subsurfaces, as we outlined in Section
2.

Lemma 6.1 : (∀κ)(∃r1, s1)(∀r2)(∃r3, r4) such that the following holds. Suppose that Σ
is a closed surface with κ(Σ) = κ, and that φ : Σ −→ Σ is a pseudoanosov mapping class.
Then one of the following situations arises. Either:

(1) There is a complete multicurve, a, in Σ, within distance s1 of an axis of φ in G(Σ), and
there is some Φ ∈ F(Σ) with p(Φ; a, φa) ≥ r2. Moreover, if F ∈ F(Σ) with p(F ; a, φa) ≥ r1
and p(F ;φna, φn+1a) ≥ r1, then n = 0. Or:
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(2) There is a marking, b, of Σ, within distance s1 of an axis of φ in G(Σ), and satisfying
the following. For all Φ ∈ F , we have p(Φ; b, φb) ≤ r4. Moreover, if γ ∈ X(Σ) and
p(γ; b, φb) ≥ r3 and p(γ;φnb, φn+1b) ≥ r3, then n = 0.

Recall that an axis of φ is a bi-infinite geodesic in G(Σ) that is moved a bounded
Hausdorff distance. Necessarily, this distance depends only on the hyperbolicity constant,
hence only on κ(Σ).

We begin by recalling some basic facts about product hyperbolic 3-manifolds.

Suppose that M = Σ × R is hyperbolic and has no cusps. There is no preferred
homeomorphism. However, we will choose a “preferred” class of homotopy equivalence
between Σ and M . Recall, from Section 3, that any γ ∈ X(Σ) can be realised as a closed
geodesic, γM , in M . We denote its length by lM (γ).

Suppose η > 0 is less than the usual 3-dimensional Margulis constant and let T = T (η)
be the set of Margulis tubes (with core curves less than η in length). Provided η is
sufficiently small in relation to κ(Σ). This set is unlinked in M [O2]. If T ∈ T then ∂T
is a euclidean torus with a natural longitude and meridian defined up to free homotopy.
These can be realised as geodesics in ∂T . The length of the longitude is bounded above
and below in terms of κ(Σ) and η. These statements again follow from the construction
of [O2], see [Bow1] for some elaboration. There is a complex modulus associated to ∂T ,
where the marking of ∂T is chosen so that the longitude is 1 and the imaginary part of the
meridian is positive. We write LM (∂T ) for the imaginary part of the complex modulus.
This can be thought of as a measure of “vertical length” and is thus analogous to the
quantity L(Ω), defined in Section 5, for the vertical length of an annulus in an annulus
system. We shall write lM (T ) for the length of the core geodesic of T .

In addition to the properties above, further requirements on the Margulis constant
arise from Proposition 6.10 and Lemma 6.12 below, again depending on κ(Σ). Subject
to these, we will fix a Margulis constant, η0. We will usually supress mention of it when
stating the results.

We need to discuss bands in M . These are used in [Bow1] and [Bow4] and we refer
to those papers for elaboration. Analagous notions of “scaffolds” are used in [Mi2,BrCM].

The terminology runs parallel to that of Section 5. (The topology of the set-up is
similar to that of the model, P (W ), described there.) A strip, C, is the image, under a
homeomorphism Σ × R −→ M , of a subset of the form Φ × J , where Φ is a subsurface
of Σ, and J ⊆ R is a non-trivial compact interval. Taking this homeomorphism in the
preferred class, we refer to Φ ∈ F as the base surface of C, which we denote by πΣC. We
write κ(C) = κ(πΣC) for its complexity . We write ∂V C = ∂Φ × J , ∂±C = Φ × ∂±J and
∂HC = Φ × ∂J = ∂+C ⊔ ∂−C. By a band we mean a strip such that each component of
∂V C lies in ∂T for some T ∈ T . (We refer to these tubes as boundary tubes.) Moreover, we
assume that for all other T ∈ T , T ∩C is either empty or a solid torus, and that T ∩ ∂±C
is at most one annulus. We write TI(C) for the set of tubes that meet C in a solid torus.
By a fibre of C, we mean an embedding of Φ in C \ ∂HC in the preferred homotopy class.
(Such a fibre cuts C into two subbands.) We say that two bands are parallel if they have
the same base surface.

We can put a riemannian pseudometric, ρC , on C by shrinking each T ∈ TI(C) to

26



Atoroidal surface bundles over surfaces

have diameter 0. We can then define the height , HM (C), of C to be the distance, in C,
between ∂−C and ∂+C in this pseudometric. It turns out that every point of C lies on
a fibre whose ρC-diameter in the pseudometric is bounded above in terms of κ(Σ) (and
the Margulis constant) see for example Canary’s Filling Theorem [C]. The following is a
consequence:

Lemma 6.2 : There is some H0 = H0(κ(C)) such that if x, y ≥ 0 and C is a band with
HM (C) ≥ H0 + x + y then it can be split into two horizontal bands, C1 and C2 (by the
fibre ∂+C− = ∂−C+) with HM (C1) ≥ x and HM (C2) ≥ y. ♦

If C ⊆ C′ \ ∂HC
′ are parallel bands, we refer to (C′ \ C) ∪ ∂HC as collars of C. We

call them h-collars if they have height at least h. We say that C is h-collared if it admits
a pair of h-collars.

Lemma 6.3 : There is some h0 = h0(κ(Σ)) such that any two non-parallel h0-collared
bands of the same complexity are disjoint. ♦

We also note that there is a bound on the heights of all 3HS bands, which we may as
well take to be the same h0 (see [Bow1]).

The following is shown in [Bow1]. It also follows from the corresponding statement
for annulus systems, via [Bow4].

Lemma 6.4 : Given any h ≥ 0, there is a some L, depending only on h and κ(Σ) such
that if every band has height at most h, then for all T ∈ T we have LM (∂T ) ≤ L. ♦

Next we need to consider a few technical points about realising homotopy equivalences
of Σ into M . All maps from Σ to M will be assumed to lie in our preferred homotopy
class.

Definition : We say that a map g : Σ −→ M is (topologically) efficient (with respect to
c) if g−1(

⋃
T ) is a regular neighbourhood of a (possibly empty) multicurve c in Σ.

After small adjustment, we can always assume that g(Σ) crosses the boundary of any
Margulis tube, T , transversely, that is, f−1(T ) is either empty or consists of two curves.

Suppose that σ is a pants structure with respect to a complete multicurve a ⊇ c. We
can assume that g−1(

⋃
T ) is an arbitrarily small neighbourhood of c in Σ.

Definition : We say that an efficient map g is ξ-efficient if g|Σ \ f−1(
⋃
T ) is ξ-lipschitz.

We again allow c = ∅, in which case we just have a ξ-lipschitz map into M \
⋃

T .

We can make similar definitions for homotopies. Suppose that f : Σ × [0, 1] −→M is
a homotopy between maps g0, g which are efficient respectively with respect to the empty
set and the multicurve, c.
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Definition : We say that f is efficient if for each α ∈ c there is some T ∈ T such that
f−1T is a regular neighbourhood of α× [0, 1

2
].

The union of these regular neighbourhoods is therefore a regular neighbourhood, N ,
of ((

⋃
c) × [0, 1

2 ]).

Definition : We say that such a homotopy, f , is ξ-efficient if f |Σ \N is ξ-lipschitz.

Note that we allow the homotopy f to meet Margulis tubes other than those associated
with c. However, the lipschitz property means there is a bound on how deeply such a
homotopy can enter such a tube.

Suppose that g : Σ −→M is efficient with respect to c. Let σ0 be the pullback metric
on Σ. Suppose that this has curvature at most −1 (allowing for cone angles at least 2π).
We can find a complete multicurve a ⊇ c such that the minimal length lσ0

(α) of α is
bounded above in terms of κ(Σ) for all α ∈ a. In fact, if we have a multicurve a ⊇ c with
lσ0

(α) ≤ l for all α ∈ a, then there is a pants structure σ on Σ, based on a such that
the map g is ξ-efficient where ξ depends only on κ(Σ) and l. (Thus, if we have chosen a
particular multicurve a, as above, then ξ will depend only on κ(Σ).) We also note that σ
is determined up to twisting on a. The twist parameters on c will be irrelevent, and those
on a \ c are determined within bounds depending on κ(Σ) and l.

One source of examples of efficient maps arise from minimal surfaces (see Lemma
6.12). Another source arises by realising a multicurve geodesically in M .

Definition : We say that an efficient map g : Σ −→ M is straight (based on a) if the
induced metric on Σ has curvature at most −1 and if there is a complete multicurve a ⊇ c
such that each α ∈ a gets mapped locally injectively to a closed geodesic, αM , in M .

Clearly if α ∈ c, then this is the core of the Margulis tube.

Such surfaces arise as “pleated surfaces”, see [T1,Bon]. Briefly we triangulate Σ
so that

⋃
a contains the 0-skeleton and is contained in the 1-skeleton. We realise Σ so

that each element of a is mapped to a closed geodesic and each triangle is mapped in
totally geodesically. The pull-back metric is hyperbolic with cone singularities. One can
further “spin” around the curves to obtain a pleated surface where the pull-back metric
is hyperbolic without singularities. Such a surface will always be efficient (provided the
Margulis constant is chosen small enough in relation to κ(Σ)). This holds regardless of the
lengths of the closed geodesics.

Definition : We say that a straight map based on a is l-straight if lM (α) ≤ l for all α ∈ a.

In practice, this l will be bounded in terms of κ(Σ).

We can homotope lipschitz maps to straight ones. The following gives some geometric
control of over this process.
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Lemma 6.5 : Suppose that σ is a pants metric with respect to a complete multicurve,
a, and g : Σ −→ M \

⋃
T is a ξ-lipschitz map. Suppose that lM (α) ≤ l for all α ∈ a.

Then there is a ξ′-efficient homotopy from g to a straight map with respect to a, where
ξ′ = ξ′(ξ, l) depends only on ξ, l. In fact, if g0 : Σ −→M is any straight map based on a,
then we can assume that the final stage of the homotopy factors through g0.

(We remark that in our applications, l will depend only on κ(Σ), so ξ′ will depend
only on ξ and κ(Σ).)

Note that the straight map constructed will necessarily be l-straight. The map g0 will
be efficient with respect to some multicurve c ⊆ a.

Proof : The construction of a straight map, g0, based on a complete multicurve derived
from [T1,Bon] was outlined above. We write Σ0 for its domain so that there is a cononical
homotopy equivalence from Σ to Σ0. Write σ0 for the induced path metric on Σ0. We want
to construct a homotopy, f , that is ξ′-efficient with respect to the original pants metric,
σ. We only give an outline, since similar constructions appear elsewhere, for example in
[Bow4]. For simplicity, we describe it mainly in M , though formally, the constructions are
best carried out equivariantly in M̃ = H3.

We will use the following observation. Suppose that βM and γM are closed geodesics
in M each with length bounded below by η0 and above by some larger constant, l. Consider
a relative homotopy class, δ, of paths from βM to γM , where we are allowed to slide the
endpoints of δ along the curves. Suppose we have two realisations of δ, both of length at
most some other constant l′. Then in fact we can homotope between them, only sliding
the endpoints a bounded distance along the curves. This can be seen by lifting to H3, and
noting that β̃M and γ̃M must diverge uniformly, and the lifts of the two realisations of δ
lie in a set of bounded diameter. The above remains true if one, or both, of βM and γM

are replaced by an η0-Margulis tube. In this case, δ is reinterpreted as a homotopy class
of paths in M with the corresponding endpoint constrained to move in the boundary of
the tube.

We first consider the case where lM (α) ≥ η0 for all α ∈ a, so that c = ∅, and we are
looking for a uniformly lipschitz homotopy (without worrying about Margulis tubes).

Let α ∈ a, and let αM be the closed geodesic representative of the homotopy class
of g(α). The lifts of g(α) and αM are a bounded distance apart in H3 (since the former
curve is uniformly quasigeodesic). This bound depends only on l and η0. The nearest
point projection is equivariant, and in M gives us a uniformly lipschitz homotopy from
g(α) to αM . After further lipschitz homotopy in αM , we can assume that the final path
has constant speed (that is parametrised proportionally to the arc length in α induced by
the metric σ). Performing this for each such α, we get a lipschitz homotopy from g(

⋃
a)

to a map g′ :
⋃
a −→M that maps each α ∈ a to a constant speed geodesic.

We claim we can extend g′ to a uniformly lipschitz parameterisation of g0(Σ0), more
precisely a map with domain Σ that factors through a uniformly bilipschitz map from
(Σ, σ) to (Σ0, σ0). Let F be a component of Σ \

⋃
a. We cut this into two congruent right

angled hexagons by three geodesic arcs connecting boundary components (in the metric
σ). Suppose ǫ is one such arc, connecting x ∈ β ∈ a to y ∈ γ ∈ a, say. Combining with the
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trajectories of the homotopy from g(β∪γ) to βM ∪γM , we get a path, δ, of bounded length
from g′(x) ∈ βM to g′(y) ∈ γM . Let h = g−1

0 ◦ g :
⋃
a −→

⋃
a, and let x′ = h(x) ∈ β and

y′ = h(y) ∈ β. Since σ0 has curvature at most −1, there is an arc, δ0, of bounded length
connecting βM to γM in (Σ0, σ0). Applying the earlier observation, we can homotope it
to δ in M , sliding its endpoints bounded distances in βM and γM . It follows that there
is a path, ǫ′, in Σ0 of bounded length connecting x′ to y′ and homotopic to δ fixing these
endpoints. We can find such an arc for every arc ǫ, giving us a collection of arcs ǫ′ which
together with

⋃
a cuts Σ0 into hexagons. We now extend h so that it sends each ǫ linearly

to ǫ′, and then over the complementary hexagons to give a bilipschitz map from Σ to Σ0.
Let g′ = g0 ◦ h : Σ −→ M . This agrees with g on

⋃
a. We now claim there is a lipschitz

homotopy from g to g′. For example, note that for each path ǫ above, the trajectories of
the homotopies of x and y together with g(ǫ) and g′(ǫ) form a closed curve of bounded
length in M which we can span by a lipschitz disc. We do this for each such ǫ. We now
have the homotopies defined on the complement of a set of 3-balls in Σ × [0, 1], and we
extend over these to get a uniformy lipschitz homotopy Σ × [0, 1] −→M .

For the general case, suppose we have β ∈ a with lM (β) < η0. Let T = TM (β) ∈ T
be the Margulis tube with core curve βM . By assumption, g(β) ∩ T = ∅, so we can find a
uniformly lipschitz homotopy of g(β) to a constant speed euclidean closed geodesic β′ in
∂T , by first taking nearest point projection (in the universal cover) and then straightening
it out by a lipschitz homotopy in ∂T . We can also assume that g0(Σ0) meets ∂T in two
constant speed euclidean geodesics curves (again after performing a lipschitz homotopy in
∂T ). We claim that we can further homotope these curves a bounded distance in ∂T to β′.
In fact, suppose that F is a component of Σ \

⋃
a, and with β ⊆ ∂F , and let γ ⊆ ∂F be

another boundary curve. Let δ be homeomorphism from β to γ as before. We can realise
this as a path of bounded length connecting β′ to γM or to the corresponding curve γ′ in
∂TM (γ) (depending on the length of γM ). It can also be realised as a curve, δ0, of bounded
length in Σ0. From the earlier observation, we can homotope δ to δ0 sliding the endpoints
a bounded distance in ∂TM (β) and in γM or ∂TM (γ). We can therefore find a lipschitz
homotopy from the corresponding component of g0(Σ0)∩∂TM (β) to β′, so we may as well
assume these curves are equal. A similar argument applies to γ. We can now connect
the endpoints of δ by a homotopic curve of bounded length in Σ0, and the argument then
proceeds similarly as before. ♦

We can generalise the terminology to a subsurface, Φ, of Σ. We define a map g : Φ −→
M to be efficient if g−1(

⋃
T ) is a union of ∂Φ and disjoint non-homotopic essential annuli.

Note that g(∂Φ) ⊆ ∂(
⋃
T ). We say that it is ξ-efficient if its restriction to g−1(Φ \

⋃
T )

is ξ-lipschitz with respect to a pants metric on Φ associated to a multicurve that includes
the core curves of g−1(

⋃
T ).

We note

Lemma 6.6 : For all ξ ≥ 0 there exists h(ξ) ≥ 0 such that if C is a band with h(ξ)-collars
C± and g : Σ −→ M is a ξ-efficient map with g(Σ) ∩ C 6= ∅. Then g|Φ is efficient and
g(Φ) ⊆ C− ∪ C ∪ C+, where Φ is (homotopic to) the base surface of C.
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Proof : Let C′ = C−∪C∪C+. The diameter of g(Σ)∩C′ with respect to the pseudometric
ρC′ is bounded above in terms of κ(C) ≤ κ(Σ) and ξ. Thus if h(ξ) is sufficiently large,
it cannot cross between the horizontal boundaries of C− or of C+. This means it can
only exit via the vertical boundary, into the boundary Margulis tubes. Since g is assumed
efficient on Σ, these tubes must correspond to components of the associated multicurve.
In particular, the components of ∂Φ lie in the multicurve. It also follows that g−1C is
homotopic to Φ in Σ, so we can take it to be equal to Φ. By definition, it follows that g|Φ
is efficient. (For a more detailed argument, see for example, [Bow4].) ♦

Note that we have only really used the fact that any component of g(Σ) ∩ C has
bounded ρC-diameter.

We can also extend the terminology of a “straight map” to a subsurface Φ ⊆ Σ. We
will only use this terminology when each component of ∂Φ corresponds to a core of a
Margulis tube. To be consistent with the terminology of efficient maps, let Φ0 ⊇ Φ be a
homotopic surface so that Φ0 \Φ is a regular neighbourhood of ∂Φ0. By a straight map of
Φ, we mean a map g : Φ −→M , which can be extended to Φ0 so that each component of
∂Φ0 gets mapped to the core of a Margulis tube, and so that the induced metric on ∂Φ0

has curvature at most −1. As with straight maps of Σ, we can assume that g|Φ is efficient.
In particular, g|Φ0 \ Φ homotopes boundary curves of Margulis tubes to core geodesics.

If C is a band in M , with base surface, Φ, we say that an efficient map g “maps into”
C if g(Φ) ⊆ C \ ∂HC. Such a map is a relative homotopy equivalence from (Φ, ∂Φ) to
(C, ∂VC).

We note the following generalisation of Lemma 6.5, which follows by a similar argu-
ment:

Lemma 6.7 : Suppose that Φ is a subsurface of Σ, and σ is a pants metric on Φ based on
a complete muticurve, a, in Φ and g : Σ −→M is a ξ-lipschitz map, with g−1(

⋃
T ) = ∂Φ.

Suppose that lM (α) ≤ l for all α ∈ a. Then there is a ξ′-efficient homotopy from g to a
straight map with respect to a, where ξ′ depends only on ξ, l and the Margulis constant
η. ♦

Every sufficiently long band will contain a straight map:

Lemma 6.8 : There is some h2 = h2(κ(Σ)) and ξ0 = ξ0(κ(Σ)) such that if C is a band
of height at least h2, with base surface Φ, then there is an ξ0-straight map, g : Φ −→ M
into C. Moreover, if C(C) is a collection of h2-collared bands in C, not parallel to C, then
g(Φ) can be assumed to be disjoint from

⋃
C(C).

Proof : The first statement is a simple consequence of [Bow4]. (For example, note that
every point in C is a bounded ρC-distance from a closed geodesic, γM in C which is
homotopic to a simple closed curve, γ, in Φ. We can now construct a straight map whose
associated multicurve includes γ (cf. [Bon]). We now take a multicurve of bounded length
in the induced metric on Φ, and use this to construct a new straight map. This will be a
bounded ρC-distance from the original, and now all the associated geodesics have uniformly
bounded length.)
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In fact, by choosing h2 large enough we can arrange that g(Φ) is a long way from
∂HC in ρC . Now if D ∈ C(C) with collars D± of height h2, then the ρC-diameter of
(D− ∪D ∪D+) ∩ C is bounded. Thus, in particular, we can suppose that if g(Φ) meets
D ∈ C(C) then D− ∪D∪D+ ⊆ C \∂HC. If such a D exists, we choose it to have maximal
complexity. Now since g(Φ) cannot cross the collars of D (assuming h2 is big enough),
then g|F is also straight, where F is the base surface of D (since it cannot cross the collars,
D±, cf. Lemma 6.6). Indeed, g|F maps into D− ∪ D ∪ D+. We now modify g on F so
that it maps into D+, using the first statement of Lemma 6.8 applied to D+. This reduces
the number of elements of C(C) of maximal complexity meeting g(Φ). We now proceed by
downward induction on complexity to eliminate all such intersections. ♦

Note that, for each curve α in the associated multicurve, we have lM (α) ≤ ξ0.

The following is a purely topological observation.

Lemma 6.9 : Suppose C is a band, and let g : F −→ C, be a relative homotopy
equivalence from (F, ∂F ) to (C, ∂VC). Suppose that C(C) is a collection of bands in C and
that g(F ) ∩

⋃
C(C) = ∅. Then g is homotopic in C \

⋃
C(C), rel ∂V C, to an embedding,

(F, ∂F ) →֒ (C, ∂VC).

Proof : Let N be a regular neighbourhood of g(F ) in C \
⋃

C(C). Since g is a relative
homotopy equivalence to C, it follows from the construction of [FHS] that g is homotopic
in C to an embedding g′ : F −→ N ⊆ C (cf. [Bon]). In fact, their argument shows that
there is a sequence of maps g = g1, . . . , gn = g′ into N such that each gi is homotopic in
C to gi+1 via a homotopy supported on a disc or an annulus in F . Such a homotopy can
be pushed off any band in C(C). ♦

We now bring the model space into play. Suppose that W is an annulus system in
Ψ = Σ × I, and P (W ) ≡ Σ × I is constructed as in Section 5. Thus Λ(W ) = P (W ) \⋃

Ω∈W
intT (Ω). We won’t need to worry about the metric on the interior of model tubes

here.

Definition : We say that a map, f : P (W ) −→ M , in the preferred homotopy class is
efficient if, for all T ∈ T , there is some Ω ∈ W with f−1(T ) ⊆ T (Ω). We say that it
is ξ-efficient if, in addition, f |Λ(W ) is ξ-lipschitz. We say that it is straight if for each
Ω ∈ W, T (Ω) gets mapped either into an element of T or to a closed geodesic.

The following notation will be convenient. If γ ∈ X(Σ) corresponds to Ω ∈ W and
T ∈ T in the above definition, we write Ω = Ω, TP (γ) ⊆ T (Ω(γ)), ∆P (γ) = ∆(Ω) =
∂TP (γ), TM (γ) = T , ∆M (γ) = ∂T . We can assume that f−1∆M (γ) = ∆P (γ). We will
also write HP (γ) = HP (Ω) = H(Ω), HP (B) = H(B) and LP (Ω) = L(Ω) when referring
to the combinatorial quantities defined for an annulus system in Section 5.

We recall from Section 5 the construction of a complete annulus system, W , and the
associated model, P (W ), starting from two complete multicurves.
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Proposition 6.10 : (∀l, κ)(∃ξ = ξ(l, κ)) with the following property. Suppose that M is
as above with T the set of Margulis tubes. Suppose that a+, a− are complete multicurves
in Σ with lM (α) ≤ l for all α ∈ a+ ∪ a−. Suppose that W ⊆ Ψ is a complete annulus
system connecting a+ and a−, and that P (W ) is the associated model. Then there is a
ξ-efficient straight map f : P (W ) −→M with the following properties:

(1) (∀h)(∃h′ = h′(h, l, κ)) if B ⊆ Ψ is a band with H(B) ≥ h′, then there is a band C ⊆M
with the same base surface, with H(C) ≥ h and C ∩f(∂P (W )) = ∅ and such that f |f−1C
maps to C with non-zero degree.

(2) (∀h)(∃h′′ = h′′(h, l, κ)) if C ⊆M is a band with with H(C) ≥ h′′ and C∩f(∂P (W )) =
∅, and such that f |f−1C maps to C with non-zero degree, then there is a band B ⊆ Ψ
with the same base surface and with H(B) ≥ h.

Moreover, f |∂±P (W ) is straight with respect to a±. Indeed, we can take it to be any given
straight map with respect to a±. ♦

Proposition 6.10 follows from the constructions of [Bow4]. There it was described in
terms of a bi-infinite geodesic, though the same construction can be applied to a finite
segment. In this case, the boundary components get mapped to straight surfaces.

Proposition 6.10 says nothing explicit about the geometry of Margulis tubes. To deal
with this, the following observation will be useful.

Let ∆ be a euclidean torus with preferred longitude, λ, of length 1, and preferred
meridian, µ. Write the complex modulus as L+ iH, where L ≥ 0 and H ∈ R. (Note that
if ∆ = ∆P (γ) above, then L = LP (γ) and |H −HP (γ)| ≤ 1

2
.) Let S = R/Z be the unit

length circle.

Lemma 6.11 : Suppose that f : ∆ −→ S be a ξ-lipschitz map with f |λ of degree 1 and
f |µ homotopically trivial. Then |H| ≤ ξL.

Proof : The proof is elementary (a similar argument is used in [Bow4]). ♦

We now move on to consider surface bundles over circles. Let φ ∈ M be any pseu-
doanosov mapping class. (We allow φ to be orientation reversing.) Let Mφ be the mapping
torus of φ, which is hyperbolic by Thurston’s hyperbolisation theorem (see Theorem 1.1).
Let M ∼= Σ×R be the cyclic cover which has an action of Z generated by φ. This induces
a free action of Z on T , and we can view the quotient, Tφ = T /Z as a set of Margulis tubes
in Mφ = M/〈φ〉. (One can show that it accounts for all Margulis tubes in Mφ provided η0
is chosen small enough in relation to κ(Σ), though we don’t need to know that here.)

We say that a map g : Σ −→ Mφ is efficient (resp. straight etc.) if a lift to M is
efficient (resp. straight etc.).

Lemma 6.12 : There is ξ0-efficient embedding j : Σ −→Mφ (with respect to some pants
metric, σ), where ξ0 depends only on κ(Σ).

Proof : Let j0 : Σ −→ Mφ be a minimal area embedding in the fibre class. Such an
embedding exists, using [MeSY], or [SY] and [FHS]. The pullback metric, σ0, on Σ has
curvature at most −1.
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Since Margulis tubes have locally convex boundaries, it follows that j−1
0 (

⋃
T ) is a

disjoint union of discs and pairwise non-homotopic essential annuli. There is a bound on
how deeply a disc can enter a Margulis tube, so we can push the discs off the tubes, while
maintaining injectivity and a bound on the lipschitz constant with respect to σ0. This
gives us j.

We can now find a pants metric, σ, on Σ, uniformly bilipschitz equivalent to σ0 on the
complement of Margulis tubes, so that j is efficient. Indeed it will be ξ0-efficient, where
ξ0 depends only on κ(Σ). ♦

(Note that the argument requires η0 to be sufficiently small in relation to κ(Σ).)

We now fix some h3 ≥ 0 sufficiently large as will be determined below, and construct a
set C of h3-collared bands in M as follows. For each Φ ∈ F , we choose a h3-collared band,
C, with HM (C) maximal (or maximal to within an arbitrarily small positive constant), if
such exists.

In fact, h3 will be chosen large enough so that if C ∈ C, then there are h2-collars,
C2

±, of C as well as h1-collars, C1
±, of C′ = C2

− ∪ C ∪ C2
+, such that C′′ = C1

− ∪ C′ ∪ C1
+

is h0-collared. Here h0 is as in Lemma 6.3, h1 = h(ξ0) as in Lemma 6.6, where ξ0 is the
constant of Lemma 6.12, and h2 is as in Lemma 6.8. In particular, any two distinct bands
of the form C′′ of the same complexity will be disjoint. We can achieve the above using
Lemma 6.2, and setting h3 = h2 + h1 + h0 + 2H0.

We can also assume that we have constructed the set of bands, C, in a Z-invariant
manner. Since non-parallel h0-collared bands of the same complexity do not intersect, we
get a free action of Z on C, and we can identify Cφ = C/Z with a set of embedded bands
on Mφ. Again, bands of the same complexity in Cφ are disjoint (though bands of different
complexities might intersect in quite complicated ways).

Proof of Lemma 6.1 :

Let Mφ be the hyperbolic manifold with monodromy φ. Let Cφ the set of bands
constructed above, and let C be the set of lifts to the infinite cyclic cover, M . Our starting
point will be the map j : (Σ, σ) −→ Mφ given by Lemma 6.12. Recall that σ is a pants
metric with respect to a multicurve a. Let j̃ : Σ −→ M be the lift of j. We choose a
constant h4, depending only on κ(Σ) and r2 to be described below. We split into two
cases:

Case (1) : There is some D ∈ C with HM (D) > h4.

In this case, we aim to verify the statement of Case (1) of Lemma 6.1.

The first step is to construct a straight map g : Σ −→Mφ \ Cφ which is homotopic in
M \Cφ to an embedding g′ : Σ −→Mφ \Cφ. Here g is straight with respect to the complete
multicurve, a. For each α ∈ a, we want lM (α) ≤ l1, where l1 depends only on κ(Σ).

To this end, suppose that j̃(Σ) meets some C′ = C2
− ∪ C ∪ C2

+, where C ∈ C. By

Lemma 6.6, there is a subsurface, Φ, such that j̃|Φ is efficient, and j̃|Φ maps into C′′.
Let F ′ be the set of subsurfaces of maximal complexity that arise in this way. Any two
elements of F ′ will be disjoint (since any two bands of the form C′′ of the same complexity
are disjoint). Now for each such Φ, we apply Lemma 6.8 to give us a new straight map
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gΦ of Φ, this time into C2
+. This is homotopic to an embedded fibre, g′Φ in C2

+. We can
assume that both gΦ and g′Φ and the homotopy between them miss all bands of C of smaller
complexity. We can also assume that this construction is carried out equivariantly with
respect to the action of 〈φ〉 on M .

Let F be a non-annular component of the complement of
⋃
F ′ in Σ. By Lemma 6.5

(and the subsequent remark), we can find a ξ′(ξ0, l1)-efficient homotopy from j̃|F to a
straight map, gF . Here l1 is bound depending only on ξ0 and κ(Σ), hence ultimately only
on κ(Σ) so that each closed geodesic in M associated to the straight map has length at
most l1. We can assume that h2 is chosen large enough so that no such homotopy can
cross any element of C+

2 , and so the homotopy is disjoint from
⋃

C.

We now assemble the straight maps gΦ and gF obtained above to give us a straight
map g̃ : Σ −→M \

⋃
C. Assembling the maps g′Φ and j̃|F gives us a map g̃′ : Σ −→M \

⋃
C,

homotopic to g̃ in M \
⋃

C.

We can project back down to Mφ to give us maps g, g′ : Σ −→ Mφ, which are
homotopic in Mφ \

⋃
Cφ. Here g is a straight map with respect to a mulicurve a. On the

complement of
⋃

F ′, the map g′ agrees with j and it therefore an embedding. Moreover its
image cannot meet any g′(Φ) since we arranged that j(F ) ∩ C = ∅ for all complementary
surfaces F .

The monodromy of M may identify different bands on which we have constructed such
homotopies. In other words, it is possible that we may have a collection of subsurfaces,
Φ1,Φ2, . . . ,Φn, with g|Φi and g′|Φi all mapping into the same band, C2

+, for some C ∈ Cφ.
Since we arranged the modifications in the bands to be equivariant, the images g′(Φi) are
all equal. Now, the original maps, j|Φi are all fibres of C′′, and can be assumed to occur
in the order Φ1, . . . ,Φn in C′′. We can therefore push the maps j|Φi off each other in a
small regular neighbourhood, so that their images are all disjoint and also occur in the
same order. Since there were no other parts of j(Σ) between j(Φ1) and j(Φn) in C′′, there
is an isotopy of the original fibres, j(Φi), to the new ones in C′′ not meeting any other part
of j(Σ). This means we can join together the various pieces of g′ by annuli in Margulis
tubes, in such a way that g′ is injective in Mφ.

In summary, we have achieved our goal of constructing g and g′ as required above.

Now write g− = g̃, g+ = φg−, g′− = g̃′, g′+ = φg+, a− = a and a+ = φa−. Let W ⊆ Ψ
be the complete annulus system from a− to a+, and let f : P (W ) −→M be the map given
by part (1) of Proposition 6.10. In applying Proposition 6.10, we note that l = l1 depends
only on κ. The functions h′ and h′′ then depend only on κ(Σ) and the argument h. Let v′

be the constant of Corollary 5.5. Since the tautness of W depends only on κ(Σ), so does
v′.

Let Q be the region of M between the embedded surfaces g′−(Σ) and g′+(Σ). This
is a fundamental domain for M under the 〈φ〉-action. Note that ∂Q ∩

⋃
C = ∅. Let

C0 = {C ∈ C | C ⊆ Q}. This is an orbit transversal for C under 〈φ〉. Since g± is homotopic
to g′± in M \

⋃
C, it follows that C0 is precisely the set of bands to which f maps with

degree 1.

We can now retrospectively make our choice of h4 to be the constant h′′ as given by
Proposition 6.10 when h = r2 + v′. This depends only on κ(Σ) and r2. We can assume
that C0 ∈ C0. Since H(C0) ≥ h4 = h′′, it follows that there is some band B ⊆ Ψ, with
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HP (B) ≥ r2+v′. By Corollary 5.5, we have p(Φ; a−, a+) = p(Φ; a, φa) ≥ (r2+v′)−v′ = r2,
where Φ is the base surface of B.

We similarly set r1 = h′ + v′, where h′ is the constant arising from part (1) of Propo-
sition 6.10, when h = 0. This depends only on κ(Σ). Suppose that F ∈ F(Σ) with
p(F ; a, φa) ≥ r1 and p(F ;φna, φn+1a) ≥ r1. Then, by Corollary 5.5 there is a band B in
Ψ with base surface F and HP (B) ≥ (h′ + v′)− v′ = h′, and so by part (1) of Proposition
6.10, there is a band C ∈ C also with base surface F so that f |f−1C maps to C with
non-zero degree. In other words C ∈ C0. Similarly, since p(φ−nF ; a, φa) ≥ r1, there is a
band C′ ∈ C with base surface φ−nF , with f |f−1C′ mapping to C with non-zero degree.
Thus C′ ∈ C0. By construction, C is invariant under the covering transformation, φ, and
distinct elements of C have distinct base surfaces. We must therefore have C = φnC′. It
follows that C0 ∩φ

nC0 6= ∅. Since C0 is an orbit transversal of the covering action, we have
n = 0.

Finally note that for each α ∈ a, we have lM (α) ≤ l1 and so, by Lemma 3.5, a is
a bounded distance from an axis of φ on G(Σ). We write s1 for this bound. This again
depends only on κ(Σ).

We have thus verified that Case (1) of Lemma 6.1 holds.

Case (2). For all C ∈ C we have with HM (C) ≤ h4.

This time we verify the statement of Case (2) of Lemma 6.1.

Applyng Lemma 6.2, it follows from the construction of C that any band in M has
height at most h4 + 2h3 + 2H0, which depends only on κ(Σ) and r2. (Recall that h3 =
h2 + h1 + h0 + 2H0.) By Lemma 6.4, there is some L ≥ 0 depending only on κ(Σ) and r2
such that LM (∂T ) ≤ L for all T ∈ T .

We again start with our ξ0-efficient embedding j : Σ −→ Mφ. Note that lM (α) ≤ l0
for all α ∈ a. We can homotope this in Mφ to another embedding g′ : Σ −→ Mφ \

⋃
Tφ,

by pushing it off each Margulis tube. Note that if T ∈ Tφ, then j(Σ) ∩ T consists of a
number of disjoint annuli. The lengths of the boundary curves in ∂T are all bounded. We
can therefore maintain a bound on the lipschitz constant for g′ depending only on L and
κ(Σ), and hence, ultimately, only on r2 and κ(Σ).

The structure on the domain, Σ, remains unchanged. Namely, it is a pants structure
based on the complete multicurve, a. We extend this to a complete marking, b ⊇ a, of
bounded length in σ. Since lM (α) ≤ ξ0 for all α ∈ a, Lemma 6.5 gives us a ξ2-efficient
homotopy from g′ to a ξ0-straight map g : Σ −→ M . Here, ξ2 depends on the lipschitz
constant of g′, hence on r2 as well as κ(Σ).

We now lift to M giving us maps g− = g̃, g+ = φg−, g′− = g̃′, g′+ = φg′− as in Case
(1). We write a− = a and a+ = φa−. Let W ⊆ Ψ be the complete annulus system from
a− to a+, and let f : P (W ) −→ M be the map given by Proposition 6.10. Again, as in
Case (1), the constant l = l1 depends only on κ(Σ). The functions h′ and h′′ then depend
only on κ(Σ) and the argument h.

By assumption, every band in M has height at most h4 so by Proposition 6.10, part
(1), every band, B in Ψ has height at most h′(h4, l1, κ). This, therefore places a bound on
p(Φ; a, φa) = p(Φ; a−, a+), and so therefore also on p(Φ; b, φb) (since these are all defined,
and each curve of b has bounded intersection with a). We denote this bound by r4. It only
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depends on κ(Σ) and h4, and hence on κ(Σ) and r2. Note that this also places a bound
on LP (Ω) for each annulus, Ω, of W .

Now let P̂ (W ) be the augmented model, constructed using markings b+ ⊇ a+ and
b− ⊇ a−. We extend f : P (W ) −→ M given above to a map f : P̂ (W ) −→ M , with
f |∂±Ψ = g′± as follows. First note that f |∂±Ψ is straight. Identifying Σ = ∂+Ψ, it is
ξ0-straight with respect to a pants metric on Ψ based on a where ξ0 depends only on κ(Σ).
By the second part of Lemma 6.5, we can assume that it agrees with g+ : Σ −→M , with
the same pants metric. We now use the homotopy from g+ to g′+ given by Lemma 6.12
to extend over Ψ+. This homotopy is ξ3-efficient, where ξ3 = ξ′(ξ2) depends only on κ(Σ)
and r2. To do this, we need to push W slightly into Ψ+. More precisely, extend the annuli
of W with base curves in c by adding in

⋃
c∪ [0, 1

2 ] ⊆ Ψ+ = Σ× [0, 1]. We also do a similar

construction for Ψ−, so as to give us our map f on P̂ (W ). This map is ξ3-efficient.

Let T0 ⊆ T be the set of η0-Margulis tubes lying between the disjoint embedded
surfaces g′−(Σ) and g′+(Σ). Thus T0 is an orbit transversal of T under the covering action.
Since the homotopy from g± to g′± is ξ3-efficient, it cannot cross (i.e. map with non-zero
degree to) any η1-Margulis tube, where η1 ∈ (0, η0) is a constant only depending on ξ3
hence on κ(Σ) and r2. Let T ′ ⊆ T be the set of tubes whose core curves have length at
most η1. The set T ′

0 = T0 ∩ T ′ is then an orbit transversal of T ′. It is the set of tubes of
T ′ to which f from P̂ (W ) maps with degree one.

Suppose that γ ∈ X(Σ) with p(γ; b, φb) ≥ r3, where r3 will be chosen sufficiently large
below. Suppose that p(γ; b, φb) ≥ r3. By Lemma 5.3 and Corollary 5.5, there is an annulus
Ω(γ) in P̂ (W ) with HP (γ) ≥ r3 − v1, where v1 = max{v, v′} depends only on κ. Let the
modulus of ∆ = ∂T (γ) be L+ iH. Thus, L is bounded above, and |H−HP (γ)| ≤ 1

2 . Now
f maps ∆ either to a closed geodesic γM , whose length is bounded below by the Margulis
constant, η0, or else to the boundary of some η0-Margulis tube, T = T (γ) ∈ T . Consider
the first case. After rescaling the geodesic by a factor at most 1/η0, so as to have unit
length, we are in the situation described by Lemma 6.11, with lipschitz constant ξ3/η0, and
so we get |H| ≤ ξ3L/η0, which is bounded. So if we choose r3 sufficiently large, depending
on κ(Σ) and r2, we can eliminate this case. We therefore have a ξ3-lipschitz map from
∆ to ∂T . Suppose T /∈ T ′, that is the core curve has length at least η1. Postcomposing
with the nearsest point projection, we get a ξ3-lipschitz map to the core curve, and then
rescaling we get a ξ3/η1-lipschitz map to the unit-length circle. Again, choosing r3 big
enough (this time in relation to r2 as well as κ(Σ)), we get a contradiction. Thus we can
suppose that T ∈ T ′. Since f maps with degree 1 to T , this means that T ∈ T ′

0 .

Suppose also that p(γ;φnb, φn+1b) = p(φ−nγ; b, φb) ≥ r3. Then we also have T (φ−nγ) ∈
T0, so T = T (γ) ∈ φnT ′

0 . Thus T ′
0 ∩ φnT ′

0 6= ∅. Since this is an orbit transversal, it follows
that n = 0.

As in Case (1), we note that each α ∈ a, lM (α) ≤ l1 and so, by Lemma 3.5, a is
a bounded distance from an axis of φ on G(Σ). We write s1 for this bound. This again
depends only on κ(Σ).

We have verified the statement of Case (2), finally proving Lemma 6.1. ♦
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7. Proof of the main theorem.

We shall give a proof of Theorem 0. We begin by describing a fairly general construc-
tion. This will be a formal presentation of the argument involving “bent” edges as outlined
in Section 2. It is in a form that can be generalised further, as we discuss in Section 8.

Suppose that χ is a (topological) 1-vertex triangulation of the base surface, S. We
write E(χ) for the set of edges of χ. We write Υ for the 3-valent graph dual to χ — so
V (Υ) is identified with the set of triangles of χ, and we can identify E(Υ) with E(χ). We
can lift this picture to get a triangulation, χ̃, of the universal cover, S̃, with dual graph,
Υ̃.

Suppose that Ξ is another finite graph such that every vertex has degree 2 or 3, and
such that θ : Ξ −→ Υ is a locally injective map of graphs. If Ξ 6= ∅, it must contain an
embedded circuit, ω. We also make the following observation:

Lemma 7.1 : Suppose that ǫ is some edge of χ, and ω is a circuit in Ξ. If θ(ω) is
homotopically trivial in S, then any lift of θ(ω) to Υ̃ ⊆ S̃ crosses some lift, ǫ̃, of ǫ in at
least two distinct edges.

Proof : Note that the subgraph of Υ̃ consisting of those edges that do not cross any lift
of ǫ is a forest. But the lift of θ(ω) is an embedded circuit, and so the result follows easily.

♦

Here is an abstract set-up in which one can construct such a graph.

Let X be a set on which Γ = π1(S) acts. (In practice this will be a subset of X(Σ) ∪
F(Σ).) Suppose that to each edge e ∈ E(χ̃) we have associated a finite subset Y (ǫ) ⊆ X
in a Γ-equivariant fashion (i.e. Y (gǫ) = gY (ǫ) for all g ∈ Γ). Let us suppose, for any such
component, ǫ̃0, of the lift, ǫ0, we have:

(Y1) If {ǫ, ǫ′, ǫ′′} ⊆ E(χ̃) is a triangle in χ̃, then Y (ǫ) ⊆ Y (ǫ′) ∪ Y (ǫ′′).

We construct a graph, Ξ̃, as follows. For each triangle, τ = {ǫ, ǫ′, ǫ′′} in χ̃, we set
Yτ = Y (ǫ) ∪ Y (ǫ′) ∪ Y (ǫ′′). We set V (Ξ̃) to be the disjoint union of the Yτ as τ ranges
over all triangles. We denote an element of Yτ by (x, τ), where x ∈ Y (ǫ) ∪ Y (ǫ′) ∪ Y (ǫ′′).
We deem two elements (x, τ) and (y, τ ′) of V (Ξ̃) to be adjacent if τ and τ ′ are distinct
triangles meeting along ǫ ∈ E(χ̃) and if x = y ∈ Y (ǫ). This defines a graph, Ξ̃ with a
natural locally injective map θ̃ : Ξ̃ −→ Υ̃. Note that this is |Y (ǫ)|-to-1 along each edge ǫ.
There is also a natural map Ξ̃ −→ X , which sends any component of Ξ̃ to a point. Since
the construction was Γ-equivariant, it projects to a map θ : Ξ −→ Υ. Note that (Y1)
implies that every vertex of Ξ has degree 2 or 3.

Suppose that ǫ0 is some preferred edge of χ̃, and let ǫ̃0 be a component of the lift of
ǫ0 to Ξ̃ consisting of a bi-infinite arc. This is translated by some g ∈ Γ (corresponding to
the element of π1(S) ∼= Γ given by the loop ǫ0). Let us suppose that:

(Y2): If δ, δ′ are edges of ǫ̃0, with Y (δ) ∩ Y (δ′) 6= ∅, then δ = δ′.

This can be rephrased by saying that, for some (or indeed any) edge, δ, of ǫ0, Y (δ) ∩
gnY (δ) 6= ∅ implies n = 0. Now, using Lemma 7.1, we see that Ξ̃ is a forest. In other
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words, if ω is any circuit in Ξ, then θ(ω) is non-trivial in S. Using the fact that Y (ǫ) is
finite for all edges ǫ, we see that the some power of monodromy around such a loop fixes
a point of X (corresponding to a component of Ξ̃). For the existence of such a loop, we
need that Ξ 6= ∅, i.e.:

(Y3) For some ǫ ∈ E(χ̃), Y (ǫ) 6= ∅.

To see how this might be applied, suppose that Σ −→ Π −→ S is a surface bundle, and
that X = X(Σ). We get an action of Γ = π1(Σ) on X via the monodromy homomorphism
φ : Γ −→ M. Suppose that Y is equivariant and satisfies (Y1), (Y2) and (Y3) above.
Then any circuit, ω, in Ξ gives us an essential loop, θ(ω) in S (not necessarily embedded),
and some α ∈ X(Σ) that is fixed by some power of the monodromy around θ(ω). This in
turn gives us an essential torus in Π.

Essentially the same argument applies if we replace X by Fk = {Φ ∈ F(Σ) | κ(Φ) =
k}, where 1 ≤ k ≤ κ(Σ) − 1. This time, we get an invariant subsurface. We may have to
run around θ(ω) several times to get an essential torus in Π.

Here is another observation needed for our construction.

Lemma 7.2 : Suppose that r > 0, and that Q is a set of at most n elements. Suppose
that we have a map ψ : Q −→ [0,∞) and that ψ(Q) ∩ [q,∞) 6= ∅, where q > 3nr. Then
there is some non-empty Z ⊆ Q with minψ(Z) > 3 max(ψ(Q \ Z) ∪ {r}).

Proof : Indeed we can define Z canonically by starting with y ∈ Q such that ψ(y) is
maximal, and work downwards until we find the first successive ratio bigger than 3. ♦

Note that this also works if Q is a set with a Γ-action, with |Q/Γ| ≤ n, and ψ :
Q −→ [0,∞) is Γ-invariant. Since the construction is canonical, we get a Γ-invariant
subset Z ⊆ Q, with minψ(Z) > 3 max(ψ(Q \ Z) ∪ {r}).

To apply this, suppose we have a map ψ : X ×E(χ̃) −→ [0,∞) satisfying ψ(gx, gǫ) =
ψ(x, ǫ) for all x ∈ X and all g ∈ Γ. Let us assume that:

(Q1) There is some r ≥ 0 such that if {ǫ, ǫ′, ǫ′′} ⊆ E(χ̃) is a triangle in χ̃ and x ∈ X with
ψ(x, ǫ) ≥ 3r, then either ψ(x, ǫ′) ≥ 1

3ψ(x, ǫ) or ψ(x, ǫ′′) ≥ 1
3ψ(x, ǫ) (or both).

Given ǫ ∈ E(χ̃), we assume {x ∈ X | ψ(x, ǫ) ≥ r} to be finite. Let Q(ǫ) = {x ∈ X |
ψ(x, ǫ) ≥ r} × {ǫ}, and let et Q =

⋃
E(χ̃)Q(ǫ) ⊆ X × E(χ̃). Set n = |Q/Γ|andq = 3n+1r.

Note that there is a Γ-invariant map ψ : Q −→ [0,∞). If ψ(Q) ∩ [q,∞) 6= ∅, Lemma 7.2
and the subsequent remark gives us a non-empty invariant subset Z ⊆ Q. Given ǫ ∈ E(χ̃),
we write Y (ǫ) for the set of those x ∈ X that correspond to some element of Z. Thus Y is
Γ-equivariant. From the construction of Z, we have min{ψ(x, ǫ) | ǫ ∈ E(χ̃), x ∈ Y (ǫ)} >
3 max({ψ(y, δ) | δ ∈ E(χ̃), y ∈ X \ Y (δ)} ∪ {r}).

Now, property (Q1) tells us that (Y1) holds, so we can construct Ξ and a map θ :
Ξ −→ Υ as before.

To translate (Y2) into these terms, we suppose:

(Q2) If δ ∈ E(χ̃) is a lift of the preferred edge ǫ0 and g the corresponding element of Γ,
then if x ∈ X with ψ(x, δ) ≥ r and ψ(gnx, δ) ≥ r, then n = 0.
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Finally, for (Y3), we need:

(Q3) There is some ǫ ∈ E(χ̃) and x ∈ X with ψ(x, ǫ) ≥ q.

We can now formally begin the proof of Theorem 0.

Let us suppose that Σ −→ Π −→ S is atoroidal. By Proposition 3.4, there is standard
system of generators, g1, . . . , gn, for Γ ∼= π1(S), and some α ∈ X(Σ) such that for all i,
dG(Σ)(α, giα) ≤ s, where s = s(κ(Σ)).

Now a standard generating set corresponds to a collection of loops in S, all meeting
at the basepoint, but with their interiors disjoint. Their complement is a 2n-gon, and
by adding diagonals, we obtain a 1-vertex triangulation, χ, of S. We lift this to S̃, and
choose some lift of the basepoint, x0 ∈ V (χ̃). Note that this determines an identification
of Γ = π1(Σ) with the covering group. We see that α is moved some bounded distance in
G by each of the monodromies of the edges of χ̃ incident on x0.

Let ǫ0 be any edge of χ, which we refer to as our “preferred edge”. Let δ0 be the edge
of χ̃ with vertex at x0 that projects to ǫ0. Let φ0 ∈ M be the corresponding monodromy.

We now apply Lemma 6.1. Let r1 = r1(κ(Σ)) and let r2 be as determined below. To
reduce us to Case (2), we first suppose we are in Case (1), and then derive a contradiction,
assuming we have chosen r2 big enough. (This will only depend ultimately on κ(Σ) and
κ(S).)

In other words, we are assuming that there is a multicurve, a, in Σ, within distance
s1 = s1(κ(Σ)) of an axis of φ0 in G(Σ), and with the following properties. There is
some Φ ∈ F with p(Φ; a, φ0a) ≥ r2. Moreover, if F ∈ F , with p(F ; a, φ0a) ≥ r1 and
p(F ;φn

0a, φ
n+1
0 a) ≥ r1, then n = 0.

Now since α is translated a bounded distance, it is a simple exercise in hyperbolic
spaces to show that α is a bounded distance from φm

0 a for some m ∈ Z. Now φm
0 a satisfies

the same conditions as a, and so, without loss of generality, we can assume that d(α, a) is
bounded above by some constant depending only on κ(Σ). From this we get:

Lemma 7.3 : There is some s0 = s0(κ(Σ)) such that for each edge, ǫ ∈ E(χ̃) incident
on x0, we have dG(Σ)(a, ga) ≤ s0, where g ∈ Γ corresponds to ǫ. ♦

Now χ has only one vertex, so if x ∈ V (χ̃), there is a unique k ∈ Γ with x = kx0. We
can therefore set a(x) = ka. In other words, we associate to each x ∈ V (χ̃) a multicurve,
a(x) in Σ, in a Γ-equivariant fashion.

Given k ∈ {1, . . . , κ(Σ)}, write Fk = {Φ ∈ F | κ(Φ) = k}. Given Φ ∈ F and
ǫ ∈ E(χ̃), write ψ(Φ, ǫ) = p(Φ; a(x), a(y)), where x, y ∈ V (χ̃) are the endpoints of ǫ. Note
that ψ(Σ, ǫ) = p(Σ; a(x), a(y)) = dG(Σ)(a(x), a(y)) = dG(Σ)(a, φa), where φ ∈ M is the
monodromy corresponding to the projection of the edge ǫ. Lemma 7.3 tells us that this is
bounded, so rephrasing it, we see:

Lemma 7.4 : For all ǫ ∈ E(χ̃), Ψ(Σ, ǫ) ≤ s0, where s0 depends only on κ(Σ). ♦

We can also rephrase Proposition 4.6 in these terms:
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Lemma 7.5 : There is a constant, v0 = v0(κ(Σ)) and a function, N = Nκ, depending
only on κ = κ(Σ), with the following property. Given ǫ ∈ E(χ̃) and k ≥ 1, suppose that
for all F ∈ F with κ(F ) > k we have ψ(F, ǫ) ≤ v, then there are at most N(v) surfaces
Φ ∈ Fk with ψ(Φ, ǫ) ≥ v0. ♦

Now we can assume (to simplify notation) that r1 ≥ v0, and we let q0 = max{9, s0, r1}.
Recall that v0 is obtained from Lemma 7.5, s0 from Lemma 7.3 and r1 from Lemma 6.1.
Each of these depends only on κ = κ(Σ). Let e = |E(χ)|, which depends only on κ(S).
We define constants, q0 < q1 < q2 < · · · < qκ−1 and n1 < n2 < · · · < nκ−1 inductively as
follows. Set

n1 = eN(q0), q1 = 3n1+1r1

n2 = eN(q1), q2 = 3n2+1r1

n3 = eN(q2), q3 = 3n3+1r1

...
...

nκ−1 = eN(qκ−1), qκ−1 = 3nκ−1+1r1.

Thus, for each k, the constants qk and nk depend only on κ(Σ) and κ(S). (We can assume
that N(v) ≥ v for all v, so that ni and qi are indeed increasing in i.)

Now, by Lemma 7.4, we know that ψ(Σ, ǫ) ≤ q0 for all ǫ ∈ E(χ̃). But now Lemma
7.5 tells us that for each ǫ ∈ E(χ̃), there are at most N(q0) surfaces, Φ ∈ Fκ−1 with
ψ(Φ, ǫ) ≥ r1. Call this (possibly empty) set Q(ǫ), and let Q be the disjoint union of the
sets Q(ǫ) as ǫ ranges over E(χ̃). Note that |Q/Γ| ≤ eN(q0) = n1.

We now use this as the basis for the construction of a graph, Ξ, as described above,
with r = r1 and with X = Fκ−1. Property (Q1) follows from the coarse triangle inequality
ψ(Φ, ǫ) ≤ ψ(Φ, ǫ′) + ψ(Φ, ǫ′′) + 3, given that q0 ≥ 9. To verify (Q2), suppose that δ is any
lift of ǫ0, with initial vertex x ∈ V (χ̃), and with g ∈ Γ the corresponding element. Case (1)
of Lemma 6.1 translates as saying that if ψ(Φ, δ) ≥ r1 and ψ(Φ, gnδ) ≥ r1, then n = 0. By
Γ-equivariance, this now holds for every lift of ǫ0. This verifies (Q2). If Ξ 6= ∅, then we get
the contradiction that Π is not atoroidal. Thus, we can assume that Ξ = ∅, in other words
(Q3) fails. This means that ψ(Φ, ǫ) ≤ q1 = 3n1+1r1 for all ǫ ∈ E(χ̃). Since N(q) ≥ q, it
follows that q1 ≥ q0.

Now we apply the same argument with Fκ−2 replacing Fκ−1. For any ǫ ∈ E(χ̃), there
are at most N(q1) subsurfaces, Φ with κ(Φ) ≥ κ − 1, and with ψ(Φ, ǫ) ≥ r1. Thus, with
X = Fκ−2, we get |Q/Γ| ≤ eN(q1) = n2. We conclude that for all Φ ∈ Fκ−2 and all
ǫ ∈ E(χ̃), we have ψ(Φ, ǫ) ≤ q2 = 3n2+1r1.

We proceed inductively to show that for all k ∈ {1, . . . , κ− 1}, we have ψ(Φ, ǫ) ≤ qk
for all Φ ∈ Fκ−k and all ǫ ∈ E(χ̃). We have shown:

Lemma 7.6 : If Π is atoroidal, then for all Φ ∈ F , and all ǫ ∈ E(χ̃), we have ψ(Φ, ǫ) ≤
qκ−1. ♦

But now, interpreting the first statement of Case (1) of Lemma 6.1, we see that there
is some F ∈ F with ψ(F, δ) ≥ r2, where δ is a lift of our preferred edge, ǫ0, and where r2
is a constant at least r1, that we are otherwise free to choose. Thus, if we set r2 bigger
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than qκ−1 we get a contradiction. In other words, there is some r2 = r2(κ(Σ), κ(S)) such
that Case (1) cannot arise if Π is atoroidal.

We are therefore in Case (2). In other words, there is a marking, b, of Σ within
distance s0 of an axis of φ0 ∈ M, in G(Σ) (recalling that φ0 is the monodromy associated
with ǫ0) and with the following properties. If F ∈ F , we have p(F ; b, φ0b) ≤ r4. Moreover,
if γ ∈ X(Σ) and p(γ; b, φ0b) ≥ r3 and p(γ;φn

0 b, φ
n+1
0 b) ≥ r3, then n = 0. Note that r3 and

r4, depended only on κ(Σ) and r2, and hence now, only on κ(Σ) and κ(S).
We may assume that r3 ≥ max{r4, v0} so that the second statement with “γ ∈ X(Σ)”

replaced by “F ∈ F” becomes vacuously true. This is all we need for the subsequent
argument. Note that, as in the previous case, we may assume that dG(Σ)(b, α) is bounded,
and so p(Σ; b, gb) ≤ s0 = s0(κ(Σ)) for all g corresponding to those edges of E(χ̃) adjacent
to the basepoint x0.

We now proceed as in Case (1), defining an equivariant map [x 7→ b(x)] that associates
a marking, b(x), of Σ to each x ∈ V (χ̃). For this, we start with b(x0) = b. We now define
ψ(Φ, ǫ) = p(Φ; b(x), b(y)), where x, y are the endpoints of ǫ. We have ψ(Σ, ǫ) ≤ s0 for all
ǫ ∈ E(χ̃). In other words, Lemma 7.4 holds, with b(x) replacing a(x). Since our choice of
b depended on r2, hence on κ(S), we need to add dependence on κ(S) as well as on κ(Σ).
Property (Q2) holds, with r ≥ r3. Lemma 7.5 remains valid (with the same constant v0).

We now set q′0 = max{9, s0, r3}. We define

n′
1 = eN(q′0), q′1 = 3n′

1
+1r3

n′
2 = eN(q′1), q′2 = 3n′

2
+1r3

n′
3 = eN(q′2), q′3 = 3n′

3
+1r3

...
...

n′
κ−1 = eN(q′κ−1), q′κ−1 = 3n′

κ−1
+1r3.

We now repeat the same argument as before (using r = r3 instead of r = r1) and conclude
that for all Φ ∈ F and all ǫ ∈ E(χ̃), we have ψ(Φ, ǫ) ≤ q′κ−1.

This is the same as Lemma 7.6 except that we have now replaced the multicurve, a,
by a marking, b. This allows us to pass to the final step, namely to bound the twisting of
curves. In summary, we set n = eN(q′κ−1) and q = 3n+1r3. We deduce that for all Φ ∈ F ,
all γ ∈ X(Σ), and all ǫ ∈ E(χ̃), we have ψ(Φ, ǫ) ≤ q and ψ(γ, ǫ) ≤ q.

Let us translate this information back to our standard generating set g1, . . . , gn, of
Γ which we used for the construction of χ. They correspond to certain edges of E(χ̃)
incident on the basepoint x0 ∈ V (χ̃). If φi ∈ M is the monodromy associated to gi, then
for all i we have p(Φ; b, φib) ≤ q for all Φ ∈ X(Σ) ∪ F(Σ). But now Lemma 4.5 gives us a
finite subset M0, depending only on q, hence ultimately only on κ(Σ) and κ(S), such that
φi ∈ M0 for each i.

We have now verified the hypotheses of Lemma 1.6, where P is the set of all atoroidal
bundles.

This proves Theorem 0.
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8. A generalisation to one-ended groups

As observed in the introduction, the main argument of this paper goes through if Γ
is a finitely presented one-ended group — though we have to make a somewhat unnatural
assumption — essentially the conclusion of Proposition 3.4. This assumption is justified
in [DaF] and in [Bow5], where versions of Proposition 3.4 are proven. Thus Theorem 0
can be generalised to this situation.

To give a more precise statement of what we can show, let us suppose that Γ is finitely
presented and that A ⊆ Γ is a finite generating set. We define the complexity , c(A), of
A as the minimal sum of the lengths of a set of relators with this generating set. Note
that we can construct a one-vertex simplicial complex S with Γ = π1(S), with the number
of 2-simplices, bounded in terms of c(A), and so that each element of A corresponds to
some edge of S. (Formally one can define a “one-vertex simplicial complex” in terms of
its universal cover together with the action of Γ by covering translation.)

Proposition 8.1 : Suppose that Γ is a one-ended finitely presented group, and that
φ : Γ −→ M = M(Σ) is a purely pseudoanosov homomorphism, giving an induced action
on G(Σ). Suppose that A ⊆ Γ is a generating set and that there is some α ∈ X(Σ) and
l ≥ 0 such that d(α, gα) ≤ l for all g ∈ A. Then there is some θ ∈ M such that the word
length of each θφ(g)θ−1 in M is bounded above in terms of c(A) and l for all g ∈ A.

Here the word length is, of course, measured with respect to some fixed set of gener-
ators of M. Note that the hypotheses imply that Γ is torsion-free.

The argument is essentially already included in the paper, except that now S need no
longer be a surface. This only really featured in Section 7, where a few comments are in
order.

We need to reintepret the statements about the graphs Υ and Ξ. We let Υ ⊆ S be
the dual to the triangulation of S, more precisely, it is the union of those 1-cells in the first
barycentric subdivision of S that do not meet the vertex. Note that now Υ is bipartite
with one set of vertices at the midpoint of edges, and other at the centres of triangles. (It
is a subdivision of the dual graph we decribed earlier in the case of a surface.) We also
arbitrarily choose some edge, ǫ0, of S which represents a non-trivial element of π1(S) = Γ.
Note that each component of the lift of ǫ0 is a bi-infinite path.

Suppose now that Ξ is a non-empty finite graph and that θ : Ξ −→ Υ is a locally
injective map that is a local homeomorphism near those vertices that get mapped to
midpoints of edges of S. Suppose that all other vertices of Ξ (those sent to centres of
triangles) have degree at least 2, and suppose that the image of π1(Ξ) in π1(S) trivial.
Thus we get a lift θ̃ : Ξ −→ Υ̃, where Υ̃ ⊆ S̃ is the preimage of Υ in the universal cover,
S̃, of S. Let Ξ0 = θ̃(Ξ) ⊆ Υ̃. We claim that Ξ0 meets some bi-infinite lift of ǫ0 in at least
2 distinct edges. (Note that Ξ0 track in the sense of [Du], though generalised to allow for
branching at the centres of 2-simplices.)

To see this, we first note that Ξ0 must separate S̃. In fact, if N is a small regular
neighbourhood of Ξ0 in S̃, then ∂N cannot be connected. If it were, the image of π1(∂N)
in π1(N) would have to be a proper subgroup, since these groups are both free. (It is here
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we use the fact that each vertex of Ξ0 in the centre of a triangle has degree at least 2, so
that the map of π1(∂N) into π1(N) is injective.) By van-Kampen’s theorem, we would
get the contradiction π1(S) is non-trivial. Now again, by van-Kampen’s theorem, different
components of ∂N lie in different components of S̃ \ intN . Thus, Ξ0 separates S̃. Since
S̃ is one-ended, there must be some bounded component of the complement. This must
contain a vertex of S̃, and we see that the lift of ǫ0 passing through this vertex must meet
Ξ0 in at least two distinct edges, thereby proving the claim.

These observations are enough to make the previous argument of Section 7 go through.
The hypotheses of Proposition 8.1 give us our complex S. If there were no bound on word
length, we would, at some point, be able to construct a non-empty finite graph, Ξ, and a
map θ : Ξ −→ Υ, as a above. The purely pseudoanosov hypothesis means that the image
of π1(Ξ) in S must be trivial. We proceed to get a contradiction as before. This then
proves Proposition 8.1.
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Zürich (2007) 387–410.
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