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0. Introduction.

The main aim of this paper is to describe certain bounds on lengths of curves in hyper-
bolic 3-manifolds. The curves arise from tight geodesics in the curve complex associated
to a surface. The results themselves have considerable overlap with the bounds described
in [Mi4], where they are termed “a-priori bounds”. They play a central role in the proof
of Thurston’s Ending Lamination Conjecture [Mi4,BrCM1.BrCM2], and also have appli-
cations to the geometry of the curve complex as we describe in [Bow4]. Our methods are
different, and we give proofs of these bounds which bypass much of the sophisticated ma-
chinery developed in [MaM2,Mi4] and elsewhere. Another proof of the Ending Lamination
Conjecture, based on these bounds, is given in [Bow5,Bow6]. As in [Mi4], we confine our
attention here to the indecomposable case. However, the essential points can be adapted
to decomposable case, as described in [Bow6].

Let Σ be a compact surface, possibly with boundary, ∂Σ. Let X = X(Σ) be the set of
homotopy classes of non-trivial non-peripheral simple closed curves in Σ (which we usually
refer to simply as “curves”). By the curve graph, G = G(Σ), of Σ we mean the 1-skeleton
of the curve complex defined by Harvey [Har]. Thus the vertex set of G is identified with
X, and two curves are deemed to be adjacent in G if they can be realised disjointly in
Σ. The curve complex has been much used in the study of the mapping class group, the
geometry of Teichmüller space, and hyperbolic 3-manifolds.

We define the complexity , κ(Σ), of Σ as κ(Σ) = 3g + p − 3 where g is the genus of
Σ and p is the number of boundary components. If κ(Σ) > 1, then G is connected and
we write d for the combinatorial path metric on G. It was shown in [MaM1] that G is
hyperbolic in the sense of Gromov [Gr,GhH]. Other proofs are given in [Bow2] and [Ham].

A complicating factor in applying the machinery of hyperbolic groups [G] to the curve
complex is that (unlike the Cayley graph of a finitely generated group) the curve complex
is not locally finite. Indeed, there may be infinitely many geodesics connecting two given
vertices. One can, however, formulate weaker finiteness conditions. In [MaM2], the authors
describe a certain class of “tight” geodesics. One of their key results is that the set of tight
geodesics connecting any two vertices of G is finite. Their proof makes much use of their
sophisticated theory of “hierarchies”.

In this paper, we offer a direct proof of finiteness. Our statement is non-constructive,
but can be refined in a number ways. For example in [Sh1,Sh2] purely combinatorial argu-
ments are given, which provide explicit computable bounds. In a different direction, one of
the consequences of later results in this paper is that one can give certain uniform (though
still non-constructive) bounds [Bow4]. This in turn has consequences for the acylindricity
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of the action of the mapping class group on G, as well as the uniform rationality of sta-
ble lengths. Other applications of this uniformity show that the curve complex has finite
asymptotic dimension [BelF] and has Yu’s property A [Ki]. The statements of [Bow4] are
purely combinatorial, but their proofs make use of the theory of hyperbolic 3-manifolds,
in particular, the a-priori bounds, which we now summarise.

Let M be a complete hyperbolic 3-manifold admitting a homotopy equivalence to Σ.
We suppose that each boundary component of Σ corresponds to a parabolic cusp in M (i.e.
it is “type preserving”). For some applications (e.g. those of [Bow4]), one could assume
in addition that there are no accidental parabolics, i.e. each cusp of M corresponds to a
boundary curve of Σ (i.e. it is “strictly type preserving”). In the latter case, each curve in
Σ can be realised uniquely as a closed geodesic in M , whose length we denote by L(M,α).
It will be shown that if α, β, γ ∈ X(Σ) and γ lies in a tight geodesic from α to β, then
L(M,γ) can be bounded above as a function of κ(Σ), L(M,α) and L(M,β). (For the
applications we have in mind, L(M,α) and L(M,β) can be assumed to be “small”, so the
relevant bounds depend only on κ(Σ).) If we allow accidental parabolics, we deem the
length of the corresponding simple closed curve to be 0. There are a number of variations
on this result, which we describe in Section 1.

In Section 9, we shall give an account of the “exceptional” cases where Σ is either
a one-holed torus or a four-holed sphere (so that κ(Σ) = 0). In this case one needs to
modify the definition of the curve graph, and the methods of proof are quite different (cf.
[Mi1,Bow1,Z]). This will be logically independent of the remainder of the paper, except
for its application to “hierarchies” in Section 8 (see Corollary 8.3).

We should make a number of comments on these results. Firstly, the notion of “tight”
geodesic we use here is slightly weaker than that of [Mi4]. Thus, in principle, the results are
stronger, though it is unclear whether the additional information has practical significance.

As in [MaM2], (in the non-exceptional case) we make essential use of geometric limit
arguments. As a consequence, the bounds obtained are not a-priori effectively computable.
It would be interesting to find a means of bypassing these limit arguments. (The bounds
obtained for the exceptional surfaces are computable.)

One of the main applications of the curve complex has been the proof of Minsky,
Brock and Canary of Thurston’s Ending Lamination Conjecture. The indecomposable
case can be reduced to considering product manifolds of the type we have described. Such
a 3-manifold, M , has two “end invariants” associated to it. These describe the asymptotic
geometry of the respective ends. For such a product manifold, the Ending Lamination
Conjecture says that M is determined up to isometry by these two invariants. This was
proven in [Mi4,BrCM1]. Another proof was later given in [Bow5]. Both arguments involve
a detailed analysis of the geometry of M . While many of the ideas are similar, the logic
of the two approaches is different. A key fact is that the end invariants, via the a-priori
bounds theorem, determine a canonical set of curves in Σ, such that the lengths of the
corresponding geodesics inM are uniformly bounded. In [Mi4], this statement is embedded
in the general analysis of the geometry of M , and makes use of results from [MaM2]. In
[Bow5], however, it is taken as the starting point. As a result, some of the more technical
issues of [BrCM1] can be avoided. We remark that the decomposable case of the Ending
Lamination Conjecture is treated in the respective sequels [BrCM2] and [Bow6].
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Our account also includes a brief discussion of hierarchies. We use a much simplified
notion, which, as far as statements about a-priori bounds are concerned, include the case
described by [MaM2,Mi4]. Essentially, a hierarchy can be thought of as a set of curves
obtained by an inductive procedure involving tight geodesics. The a-priori bounds result
extends to hierarchies via a fairly simple inductive argument. It is really these bounds
that are needed in [Bow5].

Section 9 of this paper was written at the Max-Planck-Institut in Bonn, and various
revisions to the paper were carried out at the Tokyo Institute of Technology. I am grateful
to both institutions for their support and hospitality. I am indebted to Ser Peow Tan
for suggesting a means of simplifying the argument of Section 9. I also thank the referee
for many helpful comments, as well some interesting observations regarding the Uniform
Injectivity Theorem.

1. Statement of results.

We give a statement of the main results. At the end of the section, we explain briefly
how these relate to to those of Minsky.

We begin be describing the notion of a “tight geodesic” in G(Σ) when κ(Σ) > 0.
Before giving a formal definition, we explain the idea as follows. Suppose, for example,
α, β ∈ X(Σ) with d(α, β) = 2. Then α ∪ β determines a subsurface, Φ, of Σ which it
fills. (Glue in all complementary discs and peripheral annuli and then take a small regular
neighbourhood.) Any curve, γ, in Σ disjoint from Φ will satisfy d(α, γ) = d(β, γ) = 1,
i.e. α, γ, β is a geodesic in G . In general, they may be infinitely many such γ, but we
can reduce to finitely many by considering only those that are homotopic to a boundary
component of Φ in Σ. This can be expressed in terms of G by saying that any fourth curve
that is adjacent in G to both α and β is adjacent to, or equal to, γ. In principle, one
could try to define a “tight geodesic”, γ0, γ1, . . . , γp in G, by making this hypothesis for
each segment γi−1, γi, γi+1 as i ranges from 1 to p− 1. The problem is that it is not clear
that such a geodesic always exists between any two vertices that are distance greater than
2 apart. (Indeed, as far as I am aware, this question remains open.) For this reason, as in
[MaM2], we reformulate everything in terms of “multigeodesics”, as follows.

We say that two curves in X = V (G) are disjoint if they can be realised disjointly, i.e.
are adjacent in G. Otherwise, we say that they cross. Any non-empty pairwise disjoint set
of curves can be simultaneously realised so as to be disjoint. We refer to such a realisation,
α ⊆ Σ, defined up to homotopy, as a multicurve. We write X(α) ⊆ X for the set of
components of α. We write MX for the set of multicurves in Σ.

We say that α, β ∈MX are (exactly) distance r apart if d(γ, δ) = r for all γ ∈ X(α)
and δ ∈ X(β), where d is the combinatorial metric on G(Σ). A multigeodesic consists of
a sequence (γi)i of multicurves indexed by a set of consecutive integers such that for all
i, j, γi and γj are exactly distance |i − j| apart. We say that (γi)i is tight at index i if
each curve crossing some curve of X(γi) also crosses some curve of X(γi−1) ∪ X(γi+1).
(Here we differ slightly from [MaM2], where it was assumed that X(γi) be maximal in this
respect, i.e. to be the set of all relative boundary components of the subsurface of Σ filled
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by α ∪ β. We have no reason to assume that here.) We say that (γi)i is tight if it is tight
at all indices other than the first and last. A geodesic, (αi)i, in X is tight if there is a
tight multigeodesic, (γi)i, such that αi ∈ X(γi) for all i. (Thus a tight geodesic need not
be tight as a multigeodesic.)

It is shown in [MaM2] that any two vertices of G can be connected by a tight
(multi)geodesic. They also show:

Theorem 1.1 : If α, β ∈ X, there are only finitely many tight geodesics from α to β.

Of course, this is equivalent to the same statement for multigeodesics. In Section 3,
we give another proof of this result. A constructive proof of this result is given in [Sh]. We
also have the following variation on Theorem 1.1.

Theorem 1.2 : Given α, β ∈ X(Σ) and r ∈ N there is some finite subset A ⊆ X(Σ)
such that if (γi)

p
i=1 is a tight geodesic in G with d(α, γ0) ≤ r and d(β, γp) ≤ r, then γi ∈ A

for all i with 12r ≤ i ≤ p− 12r.

The arguments we give were inspired by ideas in [BesF], which the authors in turn
say are inspired by the argument of Luo for showing that the curve complex has infinite
diameter (see [MaM1]). I understand from the referee that Luo has attributed some of
his ideas to the work of Kobayashi [Ko]. The main purpose of this paper will be to adapt
these ideas to hyperbolic 3-manifolds.

Let M be a complete hyperbolic 3-manifold admitting a homotopy equivalence, χ :
M −→ Σ. We assume that, under this equivalence, each boundary component of M
corresponds to a parabolic cusp. The remaining cusps of M are called accidental . Any
accidental cusp is homotopic to an element of X(Σ), and the set of such cusps is finite.
(These statements follow, for example, from purely topological considerations such as
the relative Scott Core Theorem [Mc].) We write XA(Σ) ⊆ X(Σ) for the set of curves
correspoinding to accidental parabolics. Recall that L(M,α) denotes the length of the
closed geodesic in M corresponding to a curve α ∈ X. If α ∈ XA(Σ), we set L(M,α) = 0.
Given k ≥ 0, we write X(M,k) = {α ∈ X | L(M,α) ≤ k}. It turns out [Mi3] that for all
k sufficiently large (depending only on κ(Σ)) the set X(M,k) is quasiconvex in G, where
the constant of quasiconvexity depends only on κ(Σ) and k. (This is discussed further in
Section 4.)

Theorem 1.3 : Given κ ∈ N and k ≥ 0, there is some K = K(κ, k) with the following
property. Suppose that κ(Σ) = κ, and that M is a hyperbolic 3-manifold with a homotopy
equivalence to Σ as above. If (γi)

p
i=0 is a tight geodesic in G with γ0, γp ∈ X(M,k), then

γi ∈ X(M,K) for all i = 1, . . . , p− 1.

Note that the quasi-convexity of X(M,k) tells us immediately that each γi lies a
bounded distance from X(M,k). This is true without any tightness assumptions. Tight-
ness is needed to bound the length of the realisation of γi itself.

The argument presented here does not give an effective means of computing K from
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κ and k. This also applies to the other results presented here.
Given A,B ⊆ X, write d(A,B) = min{d(a, b) | a ∈ A, b ∈ B}. If α ∈ MX, we write

d(α,B) = d(X(α), B).
We have the following variation on Theorem 1.3:

Theorem 1.4 : Given κ ∈ N and k ≥ 0, there is some K ′ = K ′(κ, k) and r0 = r0(κ, k)
such that if Σ and M are as in Theorem 1.3, and (γi)

p
i=0 is a tight geodesic in G, then γi ∈

X(M,K ′) for all i with r+r0 ≤ i ≤ p−r−r0, where r = max{d(γ0, X(M,k)), d(γp, X(M,k))}.

In other words, we are weakening the hypotheses on γ0 and γp, but the conclusion is
also weakened through the introduction of the constant r0. We remark that the hyperbol-
icity of G and the quasiconvexity of X(M,k) (provided k is large enough) are sufficient to
bound the distance of each such γi from X(M,k) in terms of κ and k, though, of course,
this statement is much weaker.

We also note the following refinement of Theorem 1.3 relating to curves in subsurfaces.
Suppose that Φ is a closed subset of Σ, homeomorpic to a compact surface. We write

∂ΣΦ for the boundary of Φ is Σ (in the general sense of topological spaces).

Definition : We say that Φ is incompressible if each component of ∂ΣΦ is a non-trivial,
non-peripheral curve.

Writing ∂Σ and ∂Φ for the manifold boundaries, then if Φ is incompressible, we have
∂ΣΦ = ∂Σ\∂Φ. In this case, we refer to ∂ΣΦ as the relative boundary of Φ in Σ. (Note that
our assumptions imply that any annular component of Σ\Φ is bounded by two components
of ∂ΣΦ.)

We write X(Σ, ∂ΣΦ) ⊆ X for the set of curves arising in this way. (Note that two
components of ∂ΣΦ might get identified in X(Σ, ∂ΣΦ).) We note that X(Σ, ∂ΣΦ) forms a
multicurve in Σ. We write X(Φ) ⊆ X for the set of curves that can be homotoped into Φ,
and are not peripheral in Φ. Thus, X(Φ) is the vertex set of the curve graph G(Φ), so we
can talk about tight geodesics in X(Φ).

Theorem 1.5 : Given κ ∈ N and k ≥ 0, there is some K ′′ = K ′′(κ, k) such that if
Φ ⊆ Σ is an incompressible surface, M is a hyperbolic 3-manifold admitting a homotopy
equivalence to Σ as above, and if (γi)

p
i=0 is a tight geodesic in X(Φ) with X(∂ΣΦ) ⊆

X(M,k) and γ0, γp ∈ X(M,k), then γi ∈ X(M,K ′′) for all i.

(In fact, the hypothesis on X(∂ΣΦ) can be omitted, using Theorem 1.3. If p ≥ 3,
then γ0 ∪ γp fills Φ and so γ0, ∂ΣΦ, γp is a tight multigeodesic in Σ. If p = 2, then any
curve arises in a tight geodesic in Φ also arises in a tight geodesic in Σ. In either case, the
lengths of such curves in M are bounded using Theorem 1.3.)

In the exceptional cases, when κ(Σ) = 0, the modified curve graph is a Farey graph,
and all geodesics are deemed “tight”. In this case we prove a variation of Theorem 1.3,
namely Proposition 9.3.
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We should comment on the relation of these results with those of Minsky as pre-
sented in [Mi4]. Firstly, in [Mi4], everything is expressed in terms of hierarchies, thereby
incorporating the bounds for tight geodesics for Σ, and for subsurfaces of Σ, into a single
statement. The bounds are stated only with reference to the end invariants of M . The key
point in the argument, however, is the quasisconvexity of X(M,k). From this (in [Mi4]) it
follows that any geodesic, π, in G(Σ) connecting the two end invariants (in an appropriate
sense) lies a bounded distance from X(M,k) (for suitable k). This in turn means that
any point of π gets mapped a bounded distance under a certain quasi-projection map to
X(M,k). This is the key fact that is used in subsequent discussions. However, the same
reasoning would apply to any geodesic segment, π, whose initial and final vertices lie a
bounded distance from X(M,k). This would then give statements corresponding to our
Theorems 1.3 and 1.4. In other words, they are essentially proven in [Mi4], even if not
explicitly stated in this way. In all of this, we are making the qualification that we are
using here a slightly weaker notion of tight geodesic, as we noted earlier. We remark that
Minsky’s statement can, conversely, be recovered from our Corollary 8.3. This is explained
in [Bow5].

The strategy of the proofs, in the non-exceptional case, will be to argue by contra-
diction. If no such bounds existed, then one could find a hyperbolic 3-manifold, M , and
a tight geodesic, (γi)i, with the curves, γi, extremely long. They will thus tend to “fill
up” a subset of M , which on projecting to Σ gives rise to a subsurface. These subsur-
faces can then be used to shortcut our geodesic (γi)i, hence giving a contradiction. Much
of the technical argument of the paper will be involved in recognising these subsurfaces.
The basic idea behind this will be illustrated first in the 2-dimensional context in proving
Theorem 1.1.

Throughout Sections 2 to 8, we shall assume that κ(Σ) > 0.

2. Subsurfaces.

In this section, we make some observations regarding subsurfaces of Σ. The main
goal will be a proof of Lemma 2.1 — the “2/3 lemma”. Note that subsurfaces are not in
general assumed to be connected, nor indeed to be non-empty. Usually they are considered
as defined up to homotopy.

Recall that a connected subsurface, F ⊆ Σ, is “incompressible” if each relative bound-
ary component of F is essential and non-peripheral.

Definition : A subsurface, F ⊆ Σ is efficient if each connected component of F is
incompressible, and no two annular components of F are homotopic.

(Note that we allow an annular component of F to be homotopic to the boundary
component of a non-annular component of F .)

Given two subsurfaces, F,G, defined up to homotopy, we write F ⊆ G mean that F
can be homotoped into G. We write F ≤ G to mean that F is a union of components of
G, and say that F is a full subsurface of G. Any full subsurface of an efficient subsurface
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is efficient.

Definition : We say that two (efficient) subsurfaces, F,G, of Σ are compatible if there is
an efficient subsurface, H, of Σ, such that F ≤ H and G ≤ H.

In other words the components of F and G are either equal or disjoint.
In this definition we can always assume thatH = F∪G, in which case, H is well defined

up to homotopy. We can thus talk about the efficient union, F ∪ G, of two compatible
efficient surfaces. Note that in this case, the intersection, F ∩G, is also well-defined, and
F ∩G ≤ F ≤ F ∪G.

We say that two efficient surfaces, F,G, are disjoint if they are compatible and F∩G =
∅ in the above sense. In other words, F and G are disjoint if and only if they have no
common annular components (up to homotopy) and can be homotoped to be genuinely
disjoint.

We can apply the above terminology to any finite collection of efficient subsurfaces.
To any subsurface, F ⊆ Σ, we can canonically associate an efficient surface Φ(F )

as follows. First throw away any component of F that can be homotoped to a point or
into ∂Σ. Now add to F any components of Σ \ F that are discs or peripheral annuli in Σ.
Finally add to F any component of Σ\F that is an annulus lying between two (homotopic)
annuli components of F . This is a well-defined operation — if F is homotopic to F ′ then
Φ(F ) is homotopic to Φ(F ′).

Suppose F is any subset of Σ. We shall write X(Σ, F ) ⊆ X(Σ) for the set of curves
that can be homotoped into F . (We only care here about nice locally connected subsets.)

Definition : The component structure of X(Σ, F ) consists of the the collection of subsets
X(Σ, G) as G ranges over the set of components of F .

Thus, formally it is a subset of the power set of X(Σ, F ). Note that it is possible that
different components of F might give rise to the same (singleton) subset of X(Σ, F ). The
component structure does not take account of such multiplicities.

Note that if Φ is an incompressible surface then X(Σ,Φ) is the disjoint union of X(Φ)
and X(∂Φ) as defined in Section 1.

If F is a subsurface, then Φ(F ) is uniquely determined as the efficient surface with
X(Σ,Φ(F )) = X(Σ, F ), respecting the component structure of X(Σ, F ). (By “respecting
the component structure” we mean that the component structures arising from Φ(F ) and
F are identical.)

Given F,G ⊆ Σ, we write d(F,G) = d(X(Σ, F ), X(Σ, G)). Thus, if F,G are compati-
ble, then d(F,G) ≤ 1.

Definition : A sequence, (Fi)
p
i=1, of efficient surfaces is compatible if Fi and Fi+1 are

compatible for all i = 1, . . . , p− 1.
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Definition : A compatible sequence (Fi)
p
i=1 is taut at index i if Fi = (Fi ∩ Fi−1) ∪ (Fi ∩

Fi+1), i.e. if each component of Fi is also a component of either Fi−1 or Fi+1.

Definition : A sequence (Fi)
p
i=1 is taut if it is taut for all i.

We interpret this to mean that F1 ⊆ F2 and Fp ⊆ Fp−1. In particular, p ≥ 2.
(Later in the paper, an efficient sequence of surfaces will usually arise out of a geodesic

in G(Σ). Tautness then arises out of the tightness assumption on such a geodesic.)
If (Fi)

p
i=1 is a compatible sequence of non-empty surfaces, then it is easily seen that

d(α, Fp) ≤ p− 1 for all α ∈ X(F1). Given tautness, we can do better:

Lemma 2.1 : If F1, . . . , Fp is a taut sequence of non-empty surfaces, then d(F1, Fp) ≤[
2
3p

]
− 1.

Here [.] denotes integer part. We first make a couple of observations about the function
f : N −→ N given by f(p) =

[
2
3p

]
− 1 for p ≥ 2.

First note that f(p) ≤ p− 2 (so that d(F1, Fp) ≤ p− 2).
For the proof, we also note that f(p) ≥

[
p−2
2

]
. Also, given p, q ≥ 2, we have

[
2
3p

]
+[

2
3q

]
≤

[
2
3 (p+ q)

]
and so f(p) + f(q) + 1 ≤ f(p+ q).

Proof of Lemma 2.1 : Let us first deal with the case where Fi ∩ Fi+1 6= ∅ for all
i = 1, . . . , p− 1. If p = 2, then F1 = F2, so d(F1, F2) = 0 = f(2) as required. If p ≥ 3, set
r =

[
p−1
2

]
, so that p is either 2r+ 1 or 2r+ 2. For i = 1, . . . , r let Gi = F2i ∪ F2i+1. Thus

each Gi is an efficient surface and for all i = 1, . . . , r − 1, Gi and Gi+1 have a common
component. Moreover, F1 ⊆ G1 and Fp ⊆ Gr. It now follows easily by induction that
d(F1, Fp) ≤ d(F1, Gr) ≤ r =

[
p−1
2

]
≤ f(p) as required.

We can now deal with the general case by induction on p. By the above, we can suppose
that for some q < p, Fq ∩ Fq−1 = ∅. Since (Fi)

p
i=1 is taut, it follows that Fq ≤ Fq−1, and

so the subsequence (Fi)
q
i=1 is taut. Similarly, Fq+1, . . . , Fp is taut. (In particular, 2 ≤ q ≤

p− 2). By the inductive hypothesis, we have d(F1, Fq) ≤ f(q) and d(Fq+1, Fp) ≤ f(p− q).
Since Fq ∩ Fq+1 = ∅, it follows that d(F1, Fp) ≤ f(q) + f(p− q) + 1 ≤ f(p) as required. ♦

Corollary 2.2 : If (Fi)
p
i=1 is a compatible sequence of efficient surfaces that is taut for

i = 2, . . . , p− 1, then d(F1, Fp) ≤
[
2
3p

]
+ 1.

Proof : Setting F0 = F1 and Fp+1 = Fp, the sequence F0, . . . , Fp+1 is taut (for all indices).
Thus, d(F1, Fp) = d(F0, Fp+1) ≤

[
2
3 (p+ 2)

]
− 1 ≤

[
2
3p

]
+ 1. ♦

3. Laminations.

In this section we discuss how laminations fill subsurfaces and hence give proofs of
Theorems 1.1 and 1.2. Our account of the proof will be a bit more elaborate than necessary,
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though the machinery we described will be re-used for our applications to 3-manifolds.
We fix a hyperbolic structure on Σ such that ∂Σ is totally geodesic (i.e. in the rieman-

nian sense of having zero extrinsic curvature). The constructions we describe will, up to
homotopy, be independent of this structure. Here we deal only with geometric laminations.
(We will have no use for transverse measures.)

A lamination consists of a non-empty compact subset λ ⊆ Σ that is a disjoint union
of geodesic leaves. (See, for example, [CasB] for general background.) Each leaf is either
a bi-infinite simple (local) geodesic, or else a non-peripheral simple closed geodesic. (Note
that no leaf spirals onto a boundary component.) We say that a lamination is minimal if
it contains no proper sublamination. A minimal lamination is either a closed geodesic or
has uncountably many leaves (transversely a Cantor set).

Any lamination, λ, contains a finite number of disjoint minimal laminations whose
union we denote by ν(λ). Moreover λ \ ν(λ) consists of a finite number of bi-infinite
“isolated” leaves spiralling into ν(λ).

We write N(λ, t) for the t-neighbourhood of λ in Σ. For all sufficiently small t > 0,
the inclusion of N(λ, u) into N(λ, t) is a homotopy equivalence for all u ∈ (0, t). This gives
rise to a well-defined subsurface, Φ(N(λ, u)) = Φ(N(λ, t)), which we denote by Φ(λ). We
refer to Φ(λ) as the subsurface filled by λ. Up to isotopy, it can be equivalently defined
by taking the union of λ together with all complementary components that are discs or
peripheral annuli, and then thickening up each closed curve component of λ to an annulus.

Note that the components of λ are in bijective correspondence to the components of
Φ(λ). If µ is a sublamination of λ, then clearly Φ(µ) ⊆ Φ(λ) (in the sense described in
Section 2). In particular, Φ(ν(λ)) ⊆ Φ(λ). Moreover, Φ(ν(µ)) ≤ Φ(ν(λ)) — each minimal
sublamination of µ is also a minimal sublamination of λ. Note also that any multicurve,
γ ∈ MX, can be viewed as (i.e. uniquely realised as) a lamination, and that Φ(γ) is a
regular neighbourhood of γ.

Remark : In what follows, the existence of spiralling leaves in a lamination, λ, i.e. those
of λ \ ν(λ), will be a complicating factor. The issues involved are mainly technical, and
one could follow the overall logic by simply pretending that such things did not exist, i.e.
that ν(λ) = λ for any lamination λ. In this case, the subsurfaces F and G defined below
will be identical. In this way, one could eliminate certain technical arguments from a first
reading: for example Lemmas 6.2, 6.3 and 6.4. In Section 7, one could forget about the
arcs an and cn, and ignore Lemmas 7.3 and 7.4. Various bits of Section 8 are similarly
simplified. Of course, such an assumption is unjustified in general.

Before continuing, we recall the general definition of “Hausdorff convergence”. Let
K be a compact metric space. Let C = C(K) be the set of closed subsets of K. Given
P,Q ∈ C let hd(P,Q) be the minimum r ≥ 0 such that P ⊆ N(Q, r) and Q ⊆ N(P, r). In
other words, hd is the Hausdorff distance on C. With this structure, (K,hd) is a compact
metric space. In the case where K = Σ, the set of all laminations is closed in the Hausdorff
topology. In particular, any sequence of multicurves has a subsequence converging on a
lamination.

Suppose that α = (αn)∞n=0 is a sequence of multicurves in Σ. After passing to a
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subsequence, we can suppose that αn can be written as a disjoint union αn = α̌n t α̂n of
possible empty multicurves, where the total length of α̌n remains bounded, and where the
minimal length of the components of α̂n tends to ∞. Passing to a further subsequence, we
can suppose that α̌n = l ∈MX ∪ {∅} is constant, and that α̂n converges on a lamination,
λ ⊆ Σ (i.e. with respect to Hausdorff distance). Note that l and λ are disjoint, so that
l t λ is itself a lamination. Assume α satisfies the above, and write F (α) = Φ(ν(λ)),
G(α) = Φ(λ) and H(α) = Φ(l). Thus, F (α) ⊆ G(α) and G(α) ∩H(α) = ∅. Moreover, for
all sufficiently large n, αn ⊆ G(α) ∪ H(α), and if J is any component of F (α), then αn

crosses some element of X(Σ, J). (In other words, some component of αn either crosses a
boundary component of J or lies in X(J).) Thus, intuitively, H represents the bounded
part of αn, while the rest runs around G getting longer and longer, with most of it filling
up the subsurface F of G.

Now suppose that β = (βn)∞n=0 is another sequence of multicurves compatible with
α, i.e. for all n, αn ∪ βn is a multicurve. After passing to subsequences as above, we can
suppose that βn −→ m t µ for disjoint laminations, m,µ, so we have subsurfaces F (β),
G(β) and H(β). Now αn ∪ βn −→ (l ∪m) t (λ ∪ µ). In particular, ν(λ ∪ µ) is a union of
components of ν(λ) and ν(µ). We conclude that H(α) and H(β) are compatible with each
other and compatible and disjoint from both G(α) and G(β). Moreover F (α) and F (β)
are compatible. In fact, each component of F (α) is either a component of F (β) or disjoint
from G(β).

Now suppose that for each n ∈ N, we have a path of multicurves (αn
i )p

i=1 for p ∈ N
fixed, in other words, αn

i and αn
i+1 are compatible for all i and n. Now, after passing to

a subsequence in n, for each i = 1, . . . , p, we can suppose that each of the sequences αi

satisfies the above condition. We thus obtain efficient surfaces, Fi = F (αi), Gi = G(αi)
and Hi = H(αi). We can suppose that α̌n

i is independent of n and that the property of
α̂n

i being non-empty is also independent of n.
Now (Fi)i, (Gi)i and (Hi)i satisfy the following for all i, j with |i− j| = 1 and for all

(sufficiently large) n:

(F1) Fi ⊆ Gi,
(F2) Gi ∩Hi = ∅,
(F3) α̂n

i ⊆ Gi and Hi = Φ(α̌n
i ) (i.e. a regular neighbourhood of α̌n

i ),
(F4) If J is a component of Fi then αn

i crosses some element of X(Σ, J),
(F5) If α̂n

i = ∅ then Gi = ∅.
(F6) If α̂n

i 6= ∅, then Fi 6= ∅,
(F7) Gi ∩Hj = ∅,
(F8) If J is a component of Fi, then either J ∩ Gj = ∅, or J is a component of Fj . (In
particular, Fi and Fj are compatible.)
(F9) If (αn

i )i∈I is tight at i ∈ I for all n, then either Fi = ∅ or (Fi)i∈I is taut at i.

Properties (F1)–(F8) follow from the earlier observations. We need to verify (F9).
The tightness hypothesis means that every curve crossing αn

i crosses either αn
i−1 or αn

i+1

(or both). Let J be a component of Fi. We want to show that J is also a component of
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Fi−1 or Fi+1 (or both). If not, then by (F8), J ∩ Gi−1 = J ∩ Gi+1 = ∅, so that by (F3),
J ∩ αn

i−1 = J ∩ αn
i+1 = ∅. By (F4), αn

i crosses some element, β ∈ X(J). By tightness, β
crosses either αn

i−1 or αn
i+1, giving a contradiction.

We have already done more work than we need to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1 : Suppose α, β ∈ X and that there are infinitely many tight
geodesics from α to β. We can find tight multigeodesics (αn

i )p
i=0 with αn

0 = α and αn
p = β

such that the total length of the αn
i go to ∞ for at least one i. We write I∞ for the set of

such i.
After passing to a subsequence we have surfaces (Fi)i, (Gi)i, (Hi)i as above, and

where I∞ 6= ∅. Note that H0 = Φ(α) and Hp = Φ(β). Let s, s+ 1, . . . , t be a maximal set
of consecutive indices in I∞. Thus Fs−1 = Ft+1 = ∅, and by (F9), Fs, Fs+1, . . . , Ft is a
taut compatible sequence of surfaces. Any taut sequence of surfaces must have length at
most 2, and so t > s. By Lemma 2.1, we have d(Fs, Ft) ≤

[
2
3 (t− s+ 1)

]
− 1 ≤ t − s− 1.

Moreover, Hs−1 = Φ(αn
s−1) is disjoint from Fs and Ht+1 = Φ(αn

t+1) is disjoint from Ft.
Thus d(αn

s−1, α
n
t+1) ≤ d(Fs, Ft) + 2 ≤ t − s + 1. But (αn

i )i is geodesic, so in particular,
d(αn

s−1, α
n
t+1) = (t+ 1)− (s− 1) = t− s+ 2 giving a contradiction. ♦

Proof of Theorem 1.2 : Suppose the conclusion fails. Then we can find tight geodesics,
(γn

i )p
i=1 with d(α, γn

0 ) ≤ r and d(β, γn
0 ) ≤ r, and such that the total length of γn

i goes to
∞ for at least one i with 12r ≤ i ≤ p − 12r. We can suppose that d(α, γn

0 ) = u and
d(β, γn

p ) = v are fixed. We can then extend to a path of multicurves, (γn
i )p+v

i=−u with
γn
−u = α and γn

p+v = β. Passing to a subsequence we can find subsurfaces (Fi)i, (Gi)i and
(Hi)i as before, with H−u = Φ(α), and Hp+v = Φ(β). Note that d(α, β) ≥ p− 2r.

Let I∞ be the set of i ∈ {0, 1, . . . , p} such that the length of the γn
i go to ∞. Let

{s, s+ 1, . . . , t} be a maximal set of consecutive indices in I∞, meeting {12r, . . . , p− 12r}.
Using Theorem 1.1, we see that either s = 0 or t = p (or both). In particular, t− s ≥ 12r.
By Lemma 2.1, we have d(Fs, Ft) ≤ [ 23 (t−s+1)]−1 < 2

3 (t−s), and so (t−s)−d(Fs, Ft) >
1
3 (t− s) ≥ 4r. We can therefore shortcut as in the proof of Theorem 1.1 to obtain a path
from α to β in G of length less than (p + u + v) − 4r ≤ (p + 2r) − 4r = p − 2r. But
d(α, β) ≥ p− 2r, giving a contradiction. ♦

The essential point of the above arguments is that when closed geodesics in Σ are very
long, they fill up subsurfaces which can be used to shortcut paths in the curve complex. To
prove the remaining results, we will want to carry out a similar argument in a 3-manifold.

4. 3-manifolds.

Before giving formal definitions, we set them in context by giving an outline of what
we hope to achieve.

The overall strategy is to adapt the geometric arguments of Section 3 to the context
of hyperbolic 3-manifolds. One problem in doing this that in order to get uniform bounds,
we need to allow the geometry on our 3-manifold to change. Thus, if we were to apply the
same idea directly, we would need to pass to a geometric limit of 3-manifolds. However,
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such a limiting manifold can be quite complicated (cf. [So]). Instead, we shall stop the
process at some sufficiently late stage (large n), for which we are able to recognise the
subsurfaces filled by our closed multicurves.

There is however, a particular situation in which passing to a limit is indeed feasible.
In order to motivate later definitions, we consider this first. Suppose, for example, we were
to weaken the statement of Theorem 1.3, by allowing the constant K to depend also on
the length p of our geodesic in G, and also on the injectivity radius of M . We argue again
by contradiction, similarly as in Section 3. This time we have closed geodesics realised in
a 3-manifold Mn, whose structure may depend on n. We can however, assume here that
the injectivity radii of the Mn are uniformly bounded below by a positive constant. Up to
the action of the mapping class group of Σ, we can pass to a geometric limit manifold, M ,
also homeomorphic to int Σ ×R. The closed geodesics in Mn, converge to a sequence of
laminations, (λi)i, each realised in M . It is not hard to describe subsurfaces of Σ filled by
such laminations. (This is most conveniently done by lifting to the projectivised tangent
bundle of M , where the realised laminations become embedded.) One can now go on to
derive a similar contradiction via the 2/3 lemma.

For the general case, we need to remove the dependence on p, and on the injectivity
radius. For the former, we use another argument, described in Section 8, which shows
that, without any restriction on p, we can get length bound for some uniformly spaced
subsequence of vertices of our geodesic in G. After this, we can then apply the result for
bounded p as above.

Removing the dependence on injectivity radius is more involved, and is the reason
behind much of the discussion of this section. We must avoid geometric limits, and therefore
be able to recognise our subsurfaces of Σ at a sufficiently late, but finite, stage Mn. This
will use a version of Thurston’s Uniform Injectivity Theorem (see [T]). Since the theorem
applies only to the thick part of the 3-manifold, we need to be able to focus our attention
on this. This will be justified by the “Tube Penetration Lemma” of Section 5.

We now move on to more formal definitions.
Let M be a complete hyperbolic 3-manifold admitting a type preserving homotopy

equivalence χ : M −→ Σ. To simplify the discussion, let us assume, for the moment, that
there are no accidental cusps, so that the cusps of M correspond exactly to the boundary
components of Σ. Any non-peripheral closed curve in Σ can be realised uniquely as a
closed geodesic in M which we usually denote also by α. We write L(M,α) for its length.
We can also realise a multicurve γ as a disjoint union of closed geodesics in M , and write
L(M,γ) for the maximum of L(M,α) as α varies over the components of γ. Given k ≥ 0,
we write X(M,k) = {α ∈ X(Σ) | L(M,α) ≤ k}.

If we fix certain “Margulis constants” described below, then we obtain a set, P, of
Margulis cusps, and a set T of Margulis tubes, all of which are mutually disjoint. The
boundary, ∂P , of each P ∈ P is euclidean cylinder, foliated by euclidean circles of fixed
length. We write Ψ(M) = M \

⋃
P∈P intP for the non-cuspidal part of M . We can assume

that χ maps Ψ(M) onto Σ, and ∂Ψ(M) onto ∂Σ. Indeed, by tameness [Bon], Ψ(M) is
homeomorphic to Σ×R. A result of Otal [O] tells us that (the core curves of) the Margulis
tubes are unknotted and unlinked in M ∼= Σ × R (in particular, the core curves are all
simple in Σ). If T ∈ T , then ∂T is a euclidean torus. It has a preferred homotopy class of
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longitude (homotopic to infinity in M \ intT ) and hence a canonical foliation by euclidean
circles. We write Θ(M) = Ψ(M) \

⋃
T∈T intT for the thick part of M .

We should comment on the choice of Margulis constants. Firstly, we can choose η0 > 0
small and suppose that the core curves of the Margulis tubes are precisely the elements
of X(M,η0). Given δ ∈ X(M,η0), we get a one-parameter family of tubes about δ of
differing radii. A convenient way to normalise is to let T (δ, η) be the tube such that each
euclidean longitude of ∂T (δ, η) (as described above) has length η. As discussed in [Bow4],
using ideas of Otal, we can choose the Margulis tube about δ to have the form T (δ, η1)
for some fixed η1 > 0. (Here, η1 may depend on κ(Σ).) We can also assume that the
longitudes of ∂P have length η1 for all P ∈ P.

For future reference, we note that if η, r > 0 satisfy L(M, δ) ≤ η < erη ≤ η1, then
N(T (δ, η), r) ⊆ T (δ, ηer). (Indeed N(T (δ, η), r) = T (δ, η′) for some η′ ∈ [η, erη].) In
particular, it follows easily that given l ≥ 0, there is some η(l) ≥ 0 such that if η ≤ η(l) and
γ ∈ X(M, l)\{δ} then γ∩T (δ, η) = ∅. Moreover, each closed geodesic in M corresponding
to a curve in X(Σ) lies in Ψ(M). (This is a consequence of the existence of pleated surfaces,
as discussed below.) Thus, if we have some fixed bound, l, we can assume we have chosen
η so that if γ ∈ X(M, l), then either γ lies in the thick part of M or is the core curve of a
Margulis tube.

We will need to use some notion of a pleated surface (see, for example, [CanEG].) Here
we are only interested in the case where the “pleating locus” is a multicurve, which will
avoid many of the technicalities. It will also be enough for us to define pleated surfaces as
uniformly lipschitz maps. We shall (for the moment) use the following formulation. (We
shall modify this a little in Section 7.)

Suppose γ ∈ MX is realised as a multigeodesic, γ ⊆ M . There is a finite area
complete hyperbolic surface S, a geodesic multicurve, α ⊆ S, and a uniformly lipschitz
homotopy equivalence, φ : S −→ M such that φ|α is a local isometry onto γ. Note that
ω = ωφ = χ ◦ φ : S −→ Σ is a homotopy equivalence. Thus α is the unique geodesic
realisation of the multicurve ω−1γ. Clearly the length, L(S, α), of α in S equals L(M,γ).
If P ∈ P, then φ−1P is a neighbourhood of a cusp in S. Indeed we can assume that
it is bounded by a horocycle, and that φ maps this horocycle to a longitude of ∂P . By
“uniformly lipschitz”, we mean µ-lipschitz, where µ > 0 depends only on κ(Σ). In fact,
here we can take µ = 1, though the extra generality will be useful in Section 7. We refer
to S, φ as a “pleating surface” for γ. We write ρS for the metric on the surface S. Note
that we can choose the Margulis constant defining the (boundary) cusps of M to be a fixed
number, which will remain constant throughout this paper.

A useful fact about pleated surfaces is the “Uniform Injectivity Theorem”. There are
several versions of this, the original being due to Thurston [T]. Here we only need a fairly
weak form. It is a special case of that described in [Mi2].

Let E be the projectivised unit tangent space (or 1-dimensional Grassmannian) of M
which carries a natural riemannian metric, ρE . Let π : E −→ M be the projection map.
We can lift any geodesic multicurve of γ in M to an embedded multicurve in E, which we
also denote by γ. Composing φ|α with this lift, we get a locally isometric homeomorphism
ψ : α −→ γ. This map is also uniformly lipschitz with respect to the metric ρS and ρE .
Moreover, the uniform injectivity theorem tells us that:
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Theorem 4.1 : There is a homeomorphism, g : [0,∞) −→ [0,∞), depending only on
κ(Σ) and the choice of Margulis constant such that if γ ⊆ Θ(M) is a multicurve lying
in the thick part of M , and φ : S, α −→ M,γ is a pleating surface for γ, then the lift,
ψ : α −→ γ is g-injective, i.e. for all x, y ∈ α, ρS(x, y) ≤ g(ρE(ψx, ψy)).

The usual proofs of this rely on geometric limit arguments, and do not enable us to
explicitly estimate g(t) as a function of κ(Σ) and t (though the referee has indicated that
it could be made explicit, using a somewhat different argument).

Pleating surfaces give us a means of defining a “quasiprojection” in the curve complex.
Given k ≥ 0, and a hyperbolic surface, S ∼= intΣ, we write X(S, k) = {α ∈ X(Σ) |
L(S, α) ≤ k}. A simple argument gives a bound on its diameter, diamX(S, k), in terms of
κ(Σ) and k. (This is sometime called the “Bers Lemma”.) Moreover, there is some k1 > 0,
depending only on κ such that X(S, k1) 6= ∅.

Suppose φ : S, α −→ M,γ is a pleating surface for the geodesic multicurve γ ⊆ M .
Note that ωφX(S, k) ⊆ X(M,µk), where µ is the uniform lipschitz constant. In particular,
setting k0 = µk1, we get a non-empty bounded subset, ωφX(S, k1) of X(M,k0). We need
to observe that this is coarsely well defined. More precisely:

Lemma 4.2 : If φ : S, α −→ M,γ and φ′ : S′, α′ −→ M,γ are pleating surfaces for the
same curve γ, then diam(ωφX(S, k1) ∪ ωφ′X(S′, k1)) is bounded by a constant depending
only on κ and k1.

This can be proven via the Uniform Injectivity Theorem. Arguments along these lines can
be found in Section 3 of [Min3] or Section 6.2 of [Min4]. However, as the referee noted, one
can also give a direct proof, employing an argument found in Thurston [T] (which features
in his proof of the Uniform Injectivity Theorem). Moreover, this gives explicit constants.
The idea is given below.

We use, implicitly, the lemma of Thurston that says that the η-thick part of a pleating
surface gets mapped into the η′-thick part of M , where η′ depends only on η and the
topological type. (See the discussion after Lemma 5.2 for more details.)

Proof : It is enough to find some ε ∈ G(Σ) whose length in both S and S′ is bounded
(via the homotopies φ and φ′). We can assume that γ does not penetrate too deeply into
any Margulis tube in M , otherwise we could take ε to be the core of this tube. We can
therefore assume that α and α′ lie in the η0-thick parts of S and S′ respectively, for some
η0 depending only on κ(Σ). By a simple volume argument, there is a bound on the number
of (η0/2)-balls we can pack into the product S × S′. From this, a simple argument, as in
[T], gives us a constant L such that if γ has length greater than L, we can find subarcs
β of α and β′ of α′, both mapping to the same subarc in γ, and such that the initial and
final points of α are η0-close in S′, and the initial and final points of α′ are η0-close in S.
We can assume the lengths of these arcs to be greater than η0 but less than L. We can
now take short arcs δ in S and δ′ is S′ so as to give us non-trivial closed curves α ∪ δ and
α′ ∪ δ′. Now φ(α∪ δ) and φ′(α′ ∪ δ′) are homotopic in M , and so ωφ(α∪ δ) and ω(α′ ∪ δ′)
are homotopic in Σ. This curve has bounded length in both surfaces. It might not be
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simple, but some subarc of it closes up to a simple curve, again of bounded length in both
surfaces. This will serve for our curve ε, provided γ has length greater than L. Otherwise,
we can simply take ε = γ. This proves Lemma 5.2. ♦

Using the above, we get a curve, proj(γ) ∈ ωφX(S, k1) ⊆ X(M,k0), well-defined up
to bounded distance. Moreover, if γ′ ∈ X is adjacent to γ, then d(proj(γ),proj(γ′)) is
bounded (by considering a pleated surface of the multicurve γ ∪ γ′.) We also note that if
γ ∈ X(M,k), then d(γ,proj(γ)) is bounded in terms of k.

It was shown in [MaM1] that the curve graph is hyperbolic in the sense of Gromov
(see also [Bow1]). If k ≥ k0, then standard hyperbolic arguments show that X(M,k) is
uniformly quasiconvex. (“Quasiconvex” means that any geodesic in G(Σ) with endpoints in
X(M,k) lies in a fixed h-neighbourhood of X(M,k). “Uniform” means that this h depends
only on κ(Σ) and k.) Moreover, proj : X −→ X(M,k0) ⊆ X(M,k) is a quasiprojection
to X(M,k). In other words, proj(γ) is a bounded distance from any nearest point of
X(M,k) to γ (see [Mi3]). A consequence we shall use later is the following. Suppose
(γi)

p
i=1 is any geodesic in X and set r = max{d(γ0, X(M,k)), d(γp, X(M,k))}. Then for

all i with r ≤ i ≤ p−r, γi is a bounded distance fromX(M,k). In particular, d(γi,proj(γi))
is bounded. Here, all bounds depend only on κ(Σ) and k.

The above discussion goes through in essentially the same way if we allow for accidental
parabolics. We just need to modify some definitions and reinterpret some terminology. In
this case, the set P of cusps is a disjoint union P = P∂ t PA, where P∂ is in bijective
correspondence to the boundary curves of Σ. We refer to the elements of P∂ and PA as
boundary cusps and accidental cusps respectively. Again P is finite. In this situation, the
elements of PA behave like Margulis tubes. We define Ψ(M) = M \

⋃
P∈P∂

int(P ) and
Θ(M) = M \

⋃
C∈P∪T int(C). Again, Ψ(M) = Σ×R, and we refer to Θ(M) as the “thick

part” of M .
We write XA(Σ) ⊆ X(Σ) for the set of curves corresponding to accidental parabolics.

If α ∈ XA(Σ), we set lM (α) = 0. In this case, α can be realised as an arbitrarily short
curve. For the purposes of our arguments here, we can fix some realisation of α in M which
is sufficiently short in relation to the various constants introduced later. This realisation
plays the same role as the core curve of a Margulis tube. In this way we still have a pleating
surface realising any multicurve, even if some of its elements lie in XA(Σ), and Theorem
4.1 remains valid.

Given α ∈ XA(Σ) and some η > 0, we write P = P (α, η) for the corresponding cusp
with Margulis constant η. Note that, whereas the constant determining the boundary
cusps is fixed throughout the paper, the one determining the accidental cusps will depend
on other factors. At any given stage in the argument, we will use the same Margulis
constant, η > 0 for the Margulis tubes and the accidental cusps.

5. Tube penetration.

The “Tube Penetration Lemma” says roughly that closed geodesics in M lying on
tight geodesics in the curve graph cannot enter too deeply into Margulis tubes unless
they happen to be Margulis core curves. Similarly they cannot enter too deeply into any
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accidental cusp. Thus, choosing the Margulis constant appropriately, we can assume that
they lie in the thick part, Θ(M), of M . We describe a number of variations here. The
arguments apply similar principles to those of [Mi4], though the overall logic is different.
We will first describe the case of Margulis tubes, though essentially the same argument
will work for accidental cusps.

Let k0 be the constant described in Section 4, and let k ≥ k0. One version of the tube
penetration lemma says the following:

Lemma 5.1 : There is some η > 0, depending only on k and κ(Σ) with the following
property. Suppose γ0, . . . , γp is a tight geodesic in X(Σ) with γ0, γp ∈ X(M,k). If T =
T (δ, η) is any Margulis tube, then for all i, γi ∩ T ⊆ δ.

In other words, either γi ∩ T = ∅, or γi is the core curve, δ, of T . Here, the radius of
the Margulis tube, T , is determined by η, as described in Section 4.

We have stated the result for tight geodesics in X, but we shall verify the statement
for a tight multigeodesic (γi)i. We only need tightness at index i.

In fact, the statement can be modified:

Lemma 5.2 : Given η > 0, h ≥ 0 and k ∈ N, there is some η′ ∈ (0, η] with the
following property. Suppose that γ0, . . . , γp is a multigeodesic which is tight at index i
and with d(γ0, X(M,k)) ≤ h and d(γp, X(M,k)) ≤ h. Suppose that γ0 ∩ T (δ, η) ⊆ δ and
γp ∩ T (δ, η) ⊆ δ. Then γi ∩ T (δ, η′) ⊆ δ.

To deduce Lemma 5.1, note that, by definition, any tight geodesic lies inside a tight
multigeodesic. Moreover, as discussed in Section 4, if γ0, γp ∈ X(M,k), then we can find
some Margulis constant, η(k), so that (γ0 ∪ γp) ∩ T (δ, η(k)) ⊆ δ for all Margulis tubes,
T (δ, η(k)). We can thus apply Lemma 5.2 starting with η = η(k) and with h = 0.

Before starting the proof of Lemma 5.2, we make some preliminary observations. Note
that by quasiconvexity of X(M,k), each γi is a bounded distance from X(M,k) (depending
on h, k, κ(Σ), and hence a bounded distance from its quasiprojection to X(M,k).)

It is well known that if a point in a pleated surface lies deep inside a Margulis tube,
then this point lies inside an essential short curve on the surface, homotopic to the core
curve of the tube. We can quantify this by the following argument. To simplify notation,
we will assume that all pleated surfaces are 1-lipschitz. Once can easily incorporate uniform
lipschitz constants into the discussion.

First, let S be a complete finite-area hyperbolic surface homeomorphic to intΣ. Given
c > 0, there is some some l ≥ 0, depending only on κ(Σ) and c with the following property.
For all x ∈ S the image of π1(N(x, l)) in π1(Σ) is non-trivial, and if it is cyclic, then x
lies on an essential simple closed curve, ε, of length at most c in S. We can choose c < l
sufficiently small (independently of κ(Σ)) such that any closed simple geodesic in S that
meets ε must in fact cross ε. (These observations are just basic hyperbolic geometry.)

In what follows, we identify the set of homotopy classes of curves in M and in Σ via
the homotopy equivalence χ : M −→ Σ. In particular, we can talk of two such curves as
“crossing” if their homotopy classes cross in Σ.
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Suppose that T = T (δ, η) is some Margulis tube in M and that γ ⊆M , γ ∈ X(Σ)\{δ}
is a closed geodesic meeting T (δ, η0e−l) in some point y. Note that N(y, l) ⊆ T . Let
φ : S, α −→M,γ be a (1-lipschitz) pleating surface for γ. Let x ∈ α with φ(x) = y. Thus,
N(x, l) ⊆ φ−1T . Since φ is a homotopy equivalence, the image of π1(N(x, l)) is cyclic, and
we can apply the paragraph before last to obtain a loop ε based at x of length at most c.
This must lie in the free homotopy class of [φ]−1δ (where [φ] denotes the homotopy class
of φ). Now α meets, and hence crosses, ε, and so γ crosses the curve δ. We can assume
that c ≤ k0, and so ε ≡ [φ]−1δ ∈ X(S, k0). Thus, δ would serve as a quasiprojection of the
curve γ. In particular, d(γ, δ) is bounded above in terms of d(γ,X(M,k)). In particular,
if (γi)i is a multigeodesic as in the hypotheses of Lemma 5.2, and γ ∈ X(γi) for some i,
with γ ∩ T (δ, ηe−l) 6= ∅ then d(γ, δ) ≤ R for some fixed constant, R (depending only on
κ(Σ), k and h).

Now let η′ = ηe−(2R+1)c−l, so that N(T (δ, η′), (2R+ 1)c+ l) ⊆ T (δ, η).

Proof of Lemma 5.2 : The basic idea is to apply the observations of the previous
paragraphs. If one of the curves of γ0, . . . , γp penetrates deeply into a Margulis tube,
then we get trapped: all the neighbouring curves in the sequence also penetrate deeply.
The only way to escape is via a curve equal to or adjacent to δ in G. This will give a
contradiction to (γi)i being geodesic in G. Here is a formal argument.

For notational convenience, we shift indices so that we have a multigeodesic, γ−q, . . . , γ0, . . . , γr,
where (γ−q ∪ γr)∩ T (δ, η) ⊆ δ and this multigeodesic is tight at index 0. Suppose for con-
tradiction that γ0 meets T (δ, η′) at some point, y0 /∈ δ. By the above discussion, γ0 crosses
δ. By tightness, either γ−1 or γ1 also crosses δ. Let γ−s, . . . , γ0, . . . , γt be a maximal
sequence of consecutive multicurves, all of which cross δ. Thus, s + t ≥ 1. We claim
that either s = q or t = r. For if not, δ ∪ γ−s−1 and δ ∪ γt+1 are both multicurves, and
so d(γ−s−1, γt+1) ≤ 2, contradicting the assumption that (γi)i is a multigeodesic. We
can thus suppose that t = r. In particular, δ does not lie in γr. Since, by assumption,
γr ∩ T (δ, η) ⊆ δ, we see that, in fact, γr ∩ T (δ, η) = ∅.

Now let φ : S, α0 t α1 −→M,γ0 t γ1 be a pleating surface for γ0 t γ1, and let x ∈ α0

map to y0. There is a loop, ε, through x in S, of length at most c, with φε in the free
homotopy class of δ. By assumption, γ1 crosses δ and hence α1 also crosses ε. Thus
γ1 ∩ φε 6= ∅, and so, in particular (since φ is 1-lipschitz) d(y0, γ1) ≤ c. Thus, γ1 meets
N(T (δ, η′), c) at some point, y1. Note that, since η′ec < ηe−l, we have y1 ∈ T (δ, ηe−l).

We can continue this process inductively to show that γi meets N(T (δ, η′), ic) in some
yi, provided i ≤ 2R+ 1, (so that ic+ l ≤ (2R+ 1)c+ l and so yi ⊆ T (δ, ηe−l)). We know
that, γr ∩ T (δ, η) = ∅ and so it follows that r ≥ 2R+ 1.

By our earlier discussion of quasiprojections and our choice of R, we see that d(γ0, δ) ≤
R and d(γ2R+1, δ) ≤ R. Thus, d(γ0, γ2R+1) ≤ 2R, contradicting our assumption that (γi)i

is geodesic. ♦

Lemma 5.1 now follows.
We note the following variation on Lemma 5.1:

Lemma 5.3 : There is some η > 0 and r1 ∈ N, depending only on κ(Σ) and k,
with the following property. Suppose γ0, . . . , γp is a multigeodesic in M , and let r =
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max{d(γ0, X(M,k)), d(γp, X(M,k))}. Suppose that r+ r1 ≤ i ≤ p− r− r1 and that (γi)i

is tight at index i. If T = T (δ, η) is a Margulis tube, then γi ∩ T ⊆ δ.

Proof : Since X(M,k) is quasiconvex, a standard hyperbolicity argument shows that the
sub-multigeodesic, γr, γr+1, . . . , γp−r lies a bounded distance from X(M,k). This gives a
constant R ≥ 0 as in the proof of Lemma 5.2, and we set r1 = 2R + 1. The proof now
proceeds exactly as for Lemma 5.2. This time, we have not assumed that γr or γp−r meet
T at most in δ. However this assumption was only used in ensuring that i− r or p− r− i
was at least 2R + 1, so as to give a contradiction. Here, this is ensured instead by our
choice of r1. ♦

These lemmas have obvious variants for accidental cusps. The proofs remain essen-
tially unchanged. We interpret “Margulis tube” to mean “Margulis tube or accidental
cusp”. In the latter case, T = T (δ, η) becomes P (δ, η), where δ ∈ XA(Σ), and the state-
ment that γ ∩ T ⊆ δ should be interpreted to that γ ∩ T is either empty or consists of a
single curve in the homotopy class of T .

6. Hausdorff convergence.

In this section, we discuss Hausdorff convergence of sets, in particular, in relation
to curves and laminations. One of the aims of the discussion is to be able to associate
a subsurface of Σ to a lamination or a sufficiently close approximating curve. We can
perform similar constructions in the surface or in the projectivised tangent bundle to the
3-manifold. A convenient way of formally describing the subsurface will be to consider the
homotopy classes of closed curves lying in a small neighbourhood of the lamination, or
approximating curve.

To make this more precise, recall from Section 3 the notion of Hausdorff distance on
the set of compact subsets of a metric space.

Suppose (Q1, ρ1) and (Q2, ρ2) are metric spaces, and g : [0,∞) −→ [0,∞) is a home-
omorphism.

Definition : A function θ : Q1 −→ Q2 is g-continuous if for all x, y ∈ Q1, ρ2(θ(x), θ(y)) ≤
g(ρ1(x, y)).
A bijective function, θ is g-bicontinuous if both θ and θ−1 are g-continuous (so that θ is a
homeomorphism).

Let (K1, ρ1) and (K2, ρ2) be compact metric spaces and write (K1 × K2, ρ) for the
product space with the sup-metric, i.e. ρ((x1, x2), (y1, y2)) = max{ρ1(x1, y1), ρ2(x2, y2)}
for all x1, y1 ∈ K1, x2, y2 ∈ K2. Let πi : K1 ×K2 −→ Ki be the projection map.

We say that a closed subset, G ⊆ K1 ×K2 is a g-graph if for all (x1, x2), (y1, y2) ∈ G,
we have: ρ2(x2, y2) ≤ g(ρ1(x1, y1)) and ρ1(x1, y1) ≤ g(ρ2(x2, y2)). Thus a g-graph is the
graph of a g-bicontinuous function from π1(G) to π2(G). Note that the set of g-graphs is
closed in the Hausdorff topology on C(K1 ×K2).
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Lemma 6.1 : Suppose Qn
1 ⊆ K1 and Qn

2 ⊆ K2 are sequences of closed subsets and
for each n there is a g-bicontinuous homeomorphism θn from Qn

1 to Qn
2 . Then we can

find subsets Q1 ⊆ K1 and Q2 ⊆ K2 such that Qni
1 → Q1 and Qni

2 → Q2 in the Haus-
dorff topologies on C(K1) and C(K2) respectively, and such that there is a g-bicontinuous
homeomorphism, θ, from Q1 to Q2. ♦

Proof : Let Gn = {(x, θn(x)) | x ∈ K1} be the graph of the g-bicontinuous homeo-
morphism from π1(Gn) = Qn

1 to π2(Gn) = Qn
2 . Thus Gn is a g-graph. We pass to a

subsequence Gni which converges to some G ⊆ K1 × K2 in the Hausdorff topology on
K1 ×K2. Now G is a g-graph. Moreover, it is easily seen that πj(Gni) → πj(G) in the
Hausdorff topology on Kj . Thus setting Qj = πj(G), G is the graph of a g-bicontinuous
homeomorphism from Q1 to Q2, and Qni

1 → Q1 and Qni
2 → Q2 as required. ♦

In fact, the following slight refinement of Lemma 6.1 follows by essentially the same
argument.

Lemma 6.2 : Suppose, with the hypotheses of Lemma 6.1, we are given, in addition
closed subsets, Pn ⊆ Qn

1 . Then we can choose the subsequence ni so that there is a closed
subset, P ⊆ Q1, with Pn → P and θn(Pn) → θ(P ) in the Hausdorff topologies on C(K1)
and C(K2) respectively. ♦

We want to apply these results to laminations on a complete finite-area hyperbolic
surface, S. We are only dealing with compact laminations. Any such lamination will
lie inside a fixed compact subset of S (cutting off the cusps along horocycles of length
1). Moreover, the set of such laminations is closed, and hence compact, in the Hausdorff
topology.

Given a lamination, λ ⊆ S, recall that ν(λ) is the sublamination consisting of the
union of all minimal sublaminations.

We need the following observation:

Lemma 6.3 : Suppose λ, µ ⊆ S are laminations and θ : λ −→ µ is a homeomorphism.
Then θ(ν(λ)) = ν(µ).

Proof : The property of being a sublamination of a given lamination is an intrinsic prop-
erty of the lamination. Thus, the homeomorphic image of any minimal sublamination is a
minimal sublamination. Moreover, ν(λ) and ν(µ) have the same number of components,
and the result follows. ♦

Any sequence (αn)n of multicurves has a subsequence (αni)i converging to a lamina-
tion λ. We can also choose subsets ani ⊆ αni which converge on ν(λ). There is a sense in
which such a choice of subset is natural:

Lemma 6.4 : Suppose (αn)n, (βn)n are sequences of geodesic multicurves in (S, ρ).
Suppose that for each n, there is a g-bicontinuous homeomorphism, θn, from αn to βn

(with respect to the metric ρ). Thus we can find subsequences so that αni and βni
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converge respectively on laminations λ and µ. Moreover, we can find (possibly empty)
closed subsets, ani ⊆ αni such that ani → ν(λ) and θniani → ν(µ).

Proof : After passing to a subsequence, we can suppose that αn converges to a lamination
λ, and so we can choose an ⊆ αn converging on ν(λ). Lemma 6.2 gives us a subsequence
(ni)i, with αni → λ, βni → µ and a g-bicontinuous homeomorphism, θ : λ → µ and that
θnan → θ(ν(λ)). By Lemma 6.3, θ(ν(λ)) = ν(µ). ♦

We remark that we can choose the sets ani independently of the sequence βn.
Let P be a riemannian manifold with path-metric ρ = ρP . Given x ∈ P , write injP (x)

for the injectivity radius of P at x. Given ε > 0, write thickε(P ) = {x ∈ P | injP (x) ≥ ε}.
We write Y (P ) for the set of free homotopy classes of closed curves in P , which we refer to
as loops. For C ⊆ P , we shall write Y (P,C) for the image of Y (C) in Y (P ). Given a closed
subset, Q ⊆ P and t > 0, a t-chain in Q is a finite sequence, x, of points, x0, x1, . . . , xp = x0

in Q with ρ(xi, xi+1) ≤ t for all i. If Q ⊆ thickt(P ), then this determines a closed curve,
σ(x) in P , by connecting each xi to xi+1 by the unique shortest geodesic segment between
them. We can think of this loop as an element of Y (P ). We write Yt(P,Q) ⊆ Y (P ) for
the set of loops in P of the form σ(x) where x is a t-chain in Q. We can verify that
Yt(P,Q) = Y (P,N(Q, t/2)). In fact Yt(P,Q) carries an additional structure consisting of
a collection of subsets of Yt(P,Q), namely the sets Y (P,C) as C varies over the set of
components of N(Q, t/2). We refer to this as the component structure on Yt(P,Q).

Suppose ε > 0 and I ⊆ (0, ε] is a subinterval.

Definition : A subset Q ⊆ P is I-stable if for all t, u ∈ I, Yt(P,Q) = Yu(P,Q) and the
respective component structures are equal.

We write YI(P,Q) for this subset. Clearly it would be enough that for t < u ∈ I, the
inclusion of N(Q, t/2) into N(Q, u/2) be a homotopy equivalence.

We make the following observation:

Lemma 6.5 : Suppose that (Qn)∞n=0 is a sequence of closed subsets of P converging
to Q ⊆ P in the Hausdorff topology. Suppose Q is I-stable, and that J ⊆ int I is a
closed subinterval. Then Qn is J-stable for all sufficiently large n. Moreover, YJ(P,Qn) =
YI(P,Q).

Proof : Let J = [t, u] and let t′, u′ ∈ I with t′ < t and u < u′. For all sufficiently large n,
we have N(Q, t′/2) ⊆ N(Qn, t/2) ⊆ N(Qn, u/2) ⊆ N(Q, u′/2), and it follows easily that
Yt(P,Qn) = Yu(P,Qn), respecting component structures. ♦

Again, we will want to apply this to laminations. We note:

Lemma 6.6 : Suppose that S is a complete finite area hyperbolic surface, and λ ⊆ S
is a lamination. There is some τ(λ) > 0 such that for all t, u with 0 < t ≤ u ≤ τ(λ), the
inclusion of N(λ, t/2) into N(λ, u/2) is a homotopy equivalence.
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Proof : Take τ(λ) less that the injectivity radius outside the cusps of S, and less than
the length of any arc in S \ λ that connects two non-asymptotic components. (Note that
we only need to consider finitely many complementary components of λ, each of which has
only finitely many boundary leaves, and hence only finitely many pairs on non-asymptotic
leaves.) ♦

In particular, we see that λ is (0, τ(λ)]-stable.
Note that if t ∈ (0, τ(λ)], then Yt(S, λ) = Y (S,N(λ, t/2)), and from the discussion

of laminations is Section 3, we see that this equals Y (S,Φ(λ)), where Φ(λ) is the efficient
subsurface of S filled by λ. We see (restricting to simple curves) that X(S) ∩ Yt(S, λ) =
X(S,Φ(λ)).

The following set-up will feature in Section 7.
Suppose P, P1, P2 are riemannian manifolds, and that ζi : Pi −→ P is a map inducing

an isomorphism of fundamental groups, hence a bijection between Y (Pi) and Y (P ). In
this way, we may identify the sets Y (P1) and Y (P2). Suppose that h : [0,∞) −→ [0,∞) is
a homeomorphism, and that ζi is h-continuous on ζ−1

i (thickε(P )). Suppose there exists ε′

such that thickε′(Pi) ⊆ ζ−1
i (thickε(P )). We can take ε′ ≤ h−1(ε). Suppose also that Qi ⊆

thickε′(Pi), and that θ : Q1 −→ Q2 is a g-bicontinuous homeomorphism with ζ2 ◦ θ = ζ1
on Q1, where g : [0,∞) −→ [0,∞) is a homeomorphism.

Now any t-chain, x = (xi)i, in Q1 gives rise to a g(t)-chain, θ(x) = (θ(xi))i in Q2. If
g(t) < ε′, then we have loops σ(x) and σ(θ(x)) in P1 and P2 respectively. These project
to loops ζ1(θ(x)) and ζ2(σ(θ(x))) in P . Since ζ2 ◦ θ = ζ1 on Q1, these loops agree on the
h(t)-chain ζ1(x) = ζ2(θ(x)). Since h(t) ≤ h(ε′) ≤ ε, and this chain lies in thickε(P ), we see
that ζ1(σ(x)) and ζ2(σ(θ(x))) must be homotopic in P . Thus, x and θ(x) give rise to the
same element of Y (P1) ≡ Y (P2) under the identification described above.

Note that the same argument applies to any t-chain, y in Q2. This gives rise to a
g(t)-chain, θ−1(y) in Q1.

Now suppose that Q1 is J-stable in P1, where J = [r, s] is a closed interval. Suppose
that g2(r) < s < ε′.

Lemma 6.7 : If g(r) ≤ u ≤ g−1(s), then Yu(P2, Q2) = YJ(P1, Q1), respecting the
component structures.

Proof : Each element of YJ(P1, Q1) is represented by a r-chain, x, in Q1. This gives us
a g(r)-chain θ(x) in Q2, representing the same element under the identification of Y (P1)
with Y (P2). Similarly, any u-chain, y, in Q2 gives us a g(u)-chain θ−1(y) representing the
same element. These identifications are easily seen to respect the component structures.
♦

We shall apply these results in the case where P = M is a hyperbolic 3-manifold;
P1 = S is a hyperbolic surface; α = Q1 ⊆ S is a geodesic multicurve; P2 = E is the
projectivised unit tangent bundle of M ; ζ2 : E −→ M is the projection map; Q2 ⊆ E is
the lift of a geodesic multicurve, γ, in M ; ζ1 = φ : S, α −→ M,γ is a pleating surface for
γ; and θ = ψ is the lift of φ|α. Since ζ1 is by hypothesis uniformly lipschitz, and ζ2 is
1-lipschitz, we can take h to have the form [t 7→ µt] for some fixed µ > 0. The existence of
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ε, ε′ > 0 follow from the discussion of pleating surfaces, in Section 4. The existence of the
map g is given by the uniform injectivity theorem.

7. Construction of subsurfaces.

In this section, we use the constructions of Section 6 to show how sequences of mul-
ticurves in a 3-manifold give rise to subsurfaces in Σ.

We fix Margulis constants as described in Section 4. Suppose that M is a complete
hyperbolic 3-manifold with a homotopy equivalence χ : M −→ Σ as before. Let T be
the set of Margulis tubes and let Θ(M) = Ψ(M) \

⋃
C∈T ∪PA

intC, (so that thickη(M) ⊆
Θ(M) ⊆ thickη′(M) for certain constants, η, η′ > 0).

We say that a geodesic multicurve, γ, in M is non-penetrating if, for all T ∈ T ∪ PA,
γ ∩ T is either empty or the core curve of T . In this situation, it will be convenient to
modify our definition of a pleating surface. To this end, we fix once and for all, a finite
area hyperbolic structure, (S, ρS), on a surface homeomorphic to intΣ.

Modified definition : Let γ ⊆M be a non-penetrating multicurve. A pleating surface
for γ consists of a geodesic multicurve, α ⊆ S and a homotopy equivalence, φ : S −→ M ,
such that φ maps α onto γ by a local homeomorphism, with the following properties.
The map φ|(S ∩ φ−1(Θ(M))) is uniformly lipschitz, the map φ|(α∩ φ−1(Θ(M))) is locally
uniformly bilipschitz.

With some modification, we can also assume that if T ∈ T ∪ PA, then φ−1T is either
empty or is an annulus in S, though we won’t explicitly need this. The various constants
depend only on κ(Σ), the Margulis constants, and our particular choice of (S, ρS).

Lemma 7.1 : Let γ ⊆ M be a non-penetrating geodesic multicurve in M . Then there
is a pleating surface, φ : S, α −→M,γ for γ, in this modified sense.

Proof : We start with a pleating surface, S′, α −→ M,γ, in the previous sense. The
injectivity radius on S′ ∩ φ−1Θ(M) is uniformly bounded below. Thus, the non-trivial
components of S′ ∩ φ−1Θ(M) remain in a bounded region of the moduli space (after
straightening the boundaries). We can thus find a homeomorphism of S to S′ for which
the metrics are uniformly bilipschitz related on S′ ∩ φ−1Θ(M). Composing with this
homeomorphism gives us a pleated surface in the modified sense. ♦

We also note that the Uniform Injectivity Theorem (Theorem 4.1) remains true in
this context:

Lemma 7.2 : Suppose γ ⊆ M is a non-penetrating curve and φ : S, α −→ M,γ is a
pleating surface in the above sense. Let ψ|α −→ γ ⊆ E be the lifted homeomorphism to
γ ⊆ E, where E is the projectivised unit tangent bundle to M . We put the metric ρS

on α. Then ψ|(α ∩ φ−1(Θ(M))) is g-bicontinuous, where g : [0,∞) −→ [0,∞) depends
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only on κ(Σ) and the Margulis constants (and the constants featuring in the definition of
pleating surface). ♦

We want to apply these constructions to sequences of multicurves in 3-manifolds.
Suppose that (Mn)n is an infinite sequence of hyperbolic 3-manifolds, each with its

own homotopy equivalence, χn : Mn −→ Σ.
Suppose that, for each n, we have a non-penetrating geodesic multicurve, γn, in Mn.

After passing to a subsequence, we can suppose that γn = γ̌n t γ̂n, where the total length
of the γ̌n remains bounded, but where the minimal length of the components of γ̂n tend
to ∞. We can suppose that γ̂n ⊆ Θ(Mn) for all n.

Now let φn : S, αn −→ Mn, γn be pleating surfaces for γn (in the above sense). Let
ωn = χn ◦ φn be the induced homotopy equivalence from S to Σ. We can decompose αn

as αn = α̌n t α̂n, where γ̌n = φnα̌n and γ̂n = φnα̂n. Thus the length of α̌n remains
bounded, and the minimal lengths of the components of α̂n tend to ∞. As in Section 3,
after passing to a further subsequence, we can suppose that α̌n = l is a fixed (possibly
empty) multicurve, and that α̂n tends to a lamination, λ ⊆ S. We thus obtain subsurfaces
F (α) = Φ(ν(λ)), G(α) = Φ(λ) and H(α) = Φ(l) in S. Let Fn = ωnF (α), Gn = ωnG(α),
andHn = ωnH(α). These are all efficient subsurfaces of Σ with Fn ⊆ Gn andGn∩Hn = ∅.

For all sufficiently large n, we would like to have a means of recognising the surfaces
Fn, Gn, Hn directly in terms of the geodesics, γn, in Mn and the maps χn, i.e. without
explicit reference to pleating surfaces. Intuitively, the idea is that the lifts of γn to the
projectivised unit tangent bundles En “fill up” subsets which project to these subsurfaces
under the maps χn. To make this precise, we use the machinery of Section 6.

Firstly, we make the observation that ωnl = ωnα̌n = χnγ̌n, and so Hn = H(χnγ̌n) is
just a regular neighbourhood of the multicurve χnγ̌n.

Next, we want to recognise the surfaces Gn.
Given t > 0, we have the set, Yt(En, γ̂n) ⊆ Y (En). Denoting the composition of

the projection of En to M with the homotopy equivalence from Mn to Σ also by χn, we
see that χn induces a map between Y (En) and Y (Σ). This map is two-to-one (since the
fibres of En are projective planes), so we should quotient out Y (En) by an involution
that identifies the non-trivial curve in the projective plane to a point. In future references
to Y (En) we assume that we have carried out this identification. We thus get a subset
χnYt(En, γ̂n) ⊆ Y (Σ). We set Xt(En, γn) = X(Σ) ∩ χnYt(En, γ̂n). Note that this comes
equipped with a component structure (arising from the components of N(γ̂n, t/2) in En).

Lemma 7.3 : There is some τ > 0 such that for all t ∈ (0, τ ], for all sufficiently large
n (depending of t) and for all u ∈ [t, τ ], we have X(Σ, Gn) = Xu(En, γ̂n), respecting
component structures.

Recall that X(Σ, Gn) is the set of curves in X(Σ) that are homotopic into Gn. To-
gether with its component structure, this determines Gn as an efficient subsurface (up to
homotopy).

Proof : Let ψn be the homeomorphism from αn to γn ⊆ En that projects to φn|αn. By
Lemma 7.2, ψn|α̂n is g-bicontinuous with respect to the metric ρS on α̂n and ρn = ρEn
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on γ̂n.
Let τ(λ) be the constant given by Lemma 6.6, so that the lamination, λ, is (0, τ(λ)]-

stable. We can suppose that τ(λ) is less the Margulis constant, ε′, featuring in the hy-
potheses of Lemma 6.7, as discussed at the end of Section 6. Fix any τ ∈ (0, g−1(τ(λ))),
and suppose that t ∈ (0, τ ]. Let J be the interval [g−1(t), g(τ)]. Now J ⊆ (0, τ(λ)) and so,
by Lemma 6.5, α̂n is J-stable for all sufficiently large n. Indeed, YJ(S, α̂n) = YI(S, λ) =
Y (S,Φ(λ)) = Y (S,G(α)), where I = (0, τ(λ)].

We are now in the set-up described at the end of Section 6. We set P = Mn; P1 = S;
ζ1 = φn; Q1 = α̂n; P2 = En; Q2 = γ̂n ⊆ En; ζ2 is the projection of En to Mn; and
θ = ψn|α̂n. Thus, θ is g-bicontinuous, ζ1 is uniformly lipschitz and ζ2 is 1-lipschitz. Note
that Y (S) is identified with Y (En) via the map φn and projection of En to Mn.

Suppose u ∈ [t, τ ] = [g(g−1(t)), g−1(g(τ))]. Since α̂n is [g−1(t), g(τ)]-stable, by Lemma
6.7 we see that Yu(En, γ̂n) = φnYJ(S, α̂n) = φnY (S,G(α)). Thus, χnYu(En, γ̂n) =
χnφnY (S,G(α)) = ωnY (S,G(α)) = Y (Σ, ωnG(α)) = Y (Σ, Gn). Thus Xu(En, γ̂n) =
X(Σ) ∩ χnYu(En, γ̂n) = X(Σ) ∩ Y (Σ, Gn) = X(Σ, Gn). ♦

Next, we want to recognise the surfaces Fn in terms of γn and Mn.
Recall that α̂n → λ in S, and so we can find (possibly empty) subsets an ⊆ α̂n, with

an → ν(λ). Let cn = ψnan ⊆ γn ⊆ En. We now apply the argument of Lemma 7.3, with
an replacing αn and cn replacing γn, to show:

Lemma 7.4 : There is some τ ′ > 0 such that for all t ∈ (0, τ ′], for all sufficiently large
n (depending on t) and all u ∈ [t, τ ′], X(Σ, Fn) = Xu(En, cn), respecting the component
structure.

Here of course, Xu(En, cn) denotes X(Σ) ∩ χnYu(En, cn) ⊆ X(Σ). This set, together
with its component structure is sufficient to determine Fn.

In this, however, we have cheated in that cn might depend on the choice of pleating
surfaces φn. This can be fixed by the following observation.

Lemma 7.5 : After passing to a subsequence of Mn, γn, the sets cn featuring in Lemma
7.4 can be chosen independently of the sequence of pleating surfaces.

Proof : Suppose we have another sequence, φ̄n : S, ᾱn −→ Mn, γ̂n for γ̂n. Let ψ̄n :
ᾱn −→ γ̂n ⊆ En the corresponding lift of of φ̄n|ᾱn. Let ān = (ψ̄n)−1cn ⊆ ᾱn. Let
θn = (ψ̄n)−1 ◦ ψn : α̂n −→ ᾱn. This is a g2-bicontinuous homeomorphism. Applying
Lemma 6.4, we can pass to a subsequence so that ᾱn converges to some lamination µ ⊆ S
and so that θnan → ν(µ). But θnan = ān and ψ̄nan = cn. Thus the same sets cn ⊆ γn

will serve for both sequences of pleating surfaces, (ψn)n and (ψ̄n)n.
Of course, this is somewhat weaker than the claim we made since we are only consid-

ering two non-penetrating sequence of pleated surfaces. To complete that argument, we
would need to observe that the sequence an (and so cn) can be chosen before knowing ψ̄n

(cf. the observation made after Lemma 6.4), and that the same subsequence will serve for
all sequences (ψ̄n)n. We shall not however to go into the details of this, since we shall only
ever deal with at most two sequences of pleated surfaces at a time. ♦
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Next, consider the situation where we have two sequences, (γn
0 )n and (γn

1 )n in Mn,
so that for all n, γn

0 and γn
1 are compatible, i.e. χn(γn

0 ) and χn(γn
1 ) do not cross, so that

χn(γn
0 ∪ γn

1 ) is a multicurve in Σ.
We have pleating surfaces, φn : S, αn ∪ βn → M,γn

0 ∪ γn
1 , with γn

0 = φnαn and
γn
1 = φnβn. Passing to a subsequence, we have αn → l t λ, βn → m t µ and αn ∪ βn →

(l ∪m) t (λ t µ) as in Section 2. We thus get efficient surfaces, F (α), G(α), H(α), F (β),
G(β), H(β) in S. We set Fn

0 = ωnF (α), Gn
0 = ωnG(α), Hn

0 = ωnH(α), Fn
1 = ωnF (β),

Gn
1 = ωnG(β), Hn

1 = ωnH(β). These are all efficient surfaces in Σ. Moreover, as in Section
2, we see that they satisfy all of the properties (F1)–(F8). with {i, j} = {0, 1} and with
Fn

i replacing Fi etc., and with χn(γn
i ) replacing αn.

Moreover, we have sequences cn0 ⊆ γn
0 and cn1 ⊆ γn

1 of γn
0 , γ

n
1 ⊆ En, such that for

i ∈ {0, 1} we have Hn
i = Φ(χnγ̌n

i ) and there is some τ > 0 such that for all t ∈ (0, τ ], for all
sufficiently large n, for all u ∈ [t, τ ], X(Σ, Gn

i ) = Xu(En, γ̂n
i ) and X(Σ, Fn

i ) = Xu(En, cni ).
We can now apply the same argument to a sequence of paths of multicurves.
Suppose for each n, we have a sequence (γn

i )p
i=0 of multicurves in Mn, so that χnγn

i

and χnγn
i+1 are compatible for all n and for all i = 0, . . . , p− 1. For each i ∈ {0, . . . , p− 1}

we choose a sequence φn
i : S, αn

i ∪ βn
i −→ M,γn

i ∪ γn
i+1 of pleating surfaces for γn

i ∪ γn
i+1.

Using induction over i, we pass to successive subsequences, so as to give us surfaces, Fn
i ,

Gn
i , Hn

i in Σ as above. In fact, we can find some u > 0 so that X(Σ, Fn
i ) = Xu(En, cni )

and X(Σ, cni ) = Xu(En, γ̂n
i ) for all sufficiently large n.

Note that, by Lemma 7.5, the same sequence cni ⊆ γ̂n
i ⊆ En serves for both pleated

surfaces φn
i : S, α̂n

i −→ Mn, γn
i and φn

i−1 : S, β̂n
i−1 −→ Mn, γn

i . This means that the
surfaces Fn

i = ωn
i F (αi) = ωn

i−1F (β
i−1

) are well defined.
The earlier discussion shows that for consecutive indices, i, j, the surfaces satisfy all

the conditions (F1)–(F8) of Section 3. Moreover, property (F9) was deduced directly from
(F1)–(F8) and so also holds.

We have shown:

Lemma 7.6 : Suppose we have a sequence, Mn, of complete hyperbolic 3-manifolds,
each admitting a strictly type preserving homotopy equivalence χn : Mn −→ Σ. Suppose,
for each n, we have a sequence (γn

i )n
i=0 of geodesic multicurves in Mn with γn

i and γn
i+1

compatible for all i and n. Suppose that γn
i is non-penetrating for all i and n with respect to

fixed Margulis constants. Then, for an infinite subsequence of n, we can construct efficient
subsurfaces Fn

i , Gn
i , Hn

i of Σ satisfying properties (F1)–(F9) of Section 3, where Fi, Gi,Hi

are replaced by Fn
i , G

n
i ,H

n
i and where αn

i = α̌n
i t α̂n

i are replaced by γn
i = γ̌n

i t γ̂n
i . ♦

8. Proofs of the main results.

In this section, we prove the main results stated in Section 1, namely Theorems 1.3,
1.4 and 1.5.

The key lemma will be the following. Suppose M is a hyperbolic 3-manifold with a
homotopy equivalence to Σ. We can talk about a “(tight) multigeodesic” in M , by which
we mean a sequence of geodesic multicurves in M realising a (tight) multigeodesic in the
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curve graph of Σ. We write L(M,γi) for the maximal length of the components of γi in
M .

We fix a set, T , of Margulis tubes for M . In the case where there are accidental cusps,
we interpret this to include the accidental cusps as well.

Lemma 8.1 : Given k ≥ 0 and p ∈ N, there is some l ≥ 0 such that if (γi)
p
i=0 is a tight

multigeodesic in M with γ0 and γp non-penetrating with respect to T , and p ≥ 12r + 19,
where r = max{d(γ0, X(M,k)), d(γp, X(M,k))}, then there is some i ∈ {0, . . . , p} such
that L(M,γi) ≤ l. Here, l depends on k, p, κ(Σ) and the constants defining T .

Proof : Suppose the conclusion fails.
In that case, we can find a sequence, (Mn)n of 3-manifolds with homotopy equiva-

lences, χn : Mn −→ Σ, and tight multigeodesics, (γn
i )p

i=0 in Mn, with p fixed, so that γn
0

and γn
p are non-penetrating, p ≥ 12rn+19, where rn = max{d(γn

0 , X(M,k)), d(γn
p , X(M,k))},

and with L(Mn, γn
i ) → ∞ as n → ∞ for each i. Here “non-penetrating” refers to sets,

T n, of Margulis tubes and accidental cusps in Mn with fixed constants (independent
of n). Passing to a subsequence, we may as well assume (to simplify notation) that
s = d(γn

0 , X(M,k)) + 1 and t = d(γn
p , X(M,k)) + 1 are fixed. Note that p ≥ 12rn + 19 ≥

6(s+ t− 2) + 19 = 6(s+ t) + 7.
Some component, γn

−1, of γn
0 satisfies d(γn

−1, X(Mn, k)) = s− 1. (Recall that if γ is a
multicurve and Q ⊆ X(Σ), d(γ,Q) is defined as d(X(Σ, γ), Q).) By assumption, γn

0 , and
hence γn

−1 is non-penetrating with respect to T n.
Let γn

−1, . . . , γ
n
−s be a tight multigeodesic connecting γn

−1 to some curve γn
−s ∈ X(Mn, k).

Now γn
−s is non-penetrating with respect to some other set of Margulis tubes depending

on k. Thus, by Lemma 5.2, we can find yet another set of tubes, T n
0 , with respect to which

the multicurves γn
−i are non-penetrating for all 1 ≤ i ≤ s. Since s is bounded in terms of

p, the constants of T n
0 depend only on those of T n and on k, p and κ(Σ). We can assume

that each tube of T n
0 is contained in one of T n. (Though, of course, not every tube of T n

need contain one T n
0 .)

We get a similar multigeodesic, γn
p+1, . . . , γ

n
p+t, with γn

p+1 ⊆ γn
p , with L(Mn, γn

p+t) ≤ k
and with all curves non-penetrating with respect to T n

0 . Lemma 5.2 also tells us that
γn
0 , . . . , γ

n
p is non-penetrating with respect to T n

0 .
Thus, for each n, we have a path (γn

i )p+t
i=−s of multicurves in Mn. It is non-penetrating

with respect to T n
0 for all i, and tight for all i ∈ {1, . . . , p− 1}. In the notation of Section

7, γ̂n
i 6= ∅ for all i ∈ {0, . . . , p}. We are now in the situation described in Lemma 7.6. We

thus obtain a sequence of efficient subsurfaces, Fn
i , G

n
i ,H

n
i of Σ, satisfying (F1)–(F9). In

particular, (by (F6)), Fn
i 6= ∅ for all i ∈ {0, . . . , p}, and (by (F9)) the sequence (Fn

i )i is
taut for all i ∈ {1, . . . , p− 1}.

Applying Corollary 2.2, we see that d(Fn
0 , F

n
p ) ≤

[
2
3 (p+ 1)

]
+ 1 < 2

3p + 2. In other
words, there are curves α ⊆ Fn

0 and β ⊆ Fn
p with d(α, β) < 2

3p+ 2.
Now Fn

0 ⊆ Gn
0 and the surfaces Gn

−i t Hn
−i and Gn

−i−1 ∪ Hn
−i−1 are compatible for

all i ∈ {0, . . . , s − 1}. Moreover γn
−s ∈ X(Mn, k), so γ̂n

−s = ∅, and so (by (F5)) Gn
−s = ∅.

Moreover, by (F6), Hn
−s = Φ(γn

−s). It follows that d(α, γn
−s) ≤ s. Since d(γn

0 , γ
n
−s) < s, we

get that d(α, γn
0 ) < 2s.
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Similarly, we see that d(β, γn
p ) < 2t. Thus d(γn

0 , γ
n
p ) < 2

3p+ 2 + 2(s+ t).
But (γi)

p
i=0 is a multigeodesic, and so γn

0 and γn
p are exactly distance p apart. Thus,

p < 2
3p+ 2 + 2(s+ t), giving p < 6(s+ t) + 6.
This contradicts the earlier assertion that p ≥ 6(s+ t) + 7. ♦

We will also need the following “interpolation” lemma.

Lemma 8.2 : Given l ≥ 0 and q, κ(Σ) ∈ N, there is some K ≥ 0 such that if M
is a hyperbolic 3-manifold with a homotopy equivalence to Σ, and if (γi)

p
i=0 is a tight

multigeodesic with p ≤ q, and L(M,γ0) ≤ l and L(M,γp) ≤ l, then for all i ∈ {0, . . . , p},
we have L(M,γi) ≤ K.

Proof : Suppose the conclusion fails.
We find a sequence of manifolds, Mn, each with a tight multigeodesic (γn

i )p
i=0 for

some fixed p ≤ q, with L(Mn, γn
0 ) ≤ l and L(Mn, γn

p ) ≤ l, and with L(Mn, γn
i ) → ∞ for

at least one i. Now Lemma 5.1 tells us that each γn
i is non-penetrating with respect to a

set of Margulis tubes with fixed constants (depending only on l and κ(Σ)). We now apply
Lemma 7.6 to give us, for some n, a sequence of surfaces, Fn

i , G
n
i ,H

n
i satisfying (F1)–(F9).

By (F6), at least one of the Fn
i is non-empty. Moreover, Gn

0 = Gn
p = ∅ and Hn

0 = Φ(γn
0 )

and Hn
p = Φ(γn

p ). We now derive a contradiction exactly as in the proof of Theorem 1.1
given in Section 3. ♦

Proof of Theorem 1.3 : From the definition of a tight geodesic, we can prove the state-
ment for a tight multigeodesic, (γi)

p
i=0. By assumption, L(M,γ0) ≤ k and L(M,γp) ≤ k.

By Lemma 5.1, the sequence (γi)i is non-penetrating with respect to fixed Margulis con-
stants, depending on k and κ(Σ). We can assume that k ≥ k0, so that by the quasicon-
vexity of X(M,k) as discussed in Section 4, there is some R depending only on k and
κ(Σ) such that d(γi, X(M,k)) ≤ R for all i. Let D = 12R + 19. By Lemma 8.1 there
is some l ≥ k such that any sequence of consecutive (γi)i of length D must contain an
element γi with L(Mn, γi) ≤ l. In other words, we can find a subsequence of indices,
0 = i(0) < i(1) < · · · < i(q) = p, with i(j + 1) ≤ i(j) +D for all j = 0, . . . , q − 1, and with
L(M,γi(j)) ≤ l for all j.

Now interpolating using Lemma 8.2, we find some K, depending on l, D and κ(Σ), so
that L(M,γi) ≤ K for all i ∈ {0, . . . , p}. Thus K depends ultimately only on k and κ(Σ).

♦

Proof of Theorem 1.4 : This is just a variation of the proof of Theorem 1.3.
First, note that by the hyperbolicity of the curve graph and the quasiconvexity of

X(M,k), the multicurves γi are at most some bounded distance from X(M,k) for all i
between r and p− r, where this bound, R, depends only on k and κ(Σ). Lemma 5.3 now
gives us some r1 ≥ 0 so that for all i between r + r1 and p− r − r1 the multicurves γi are
non-penetrating. Again r1 and the Margulis constants depend only on k and κ(Σ). Let
D = 12R + 19. We now apply Lemma 7.6 as before to give us a subsequence of indices,
r+ r1 ≤ i(0) < i(1) < · · · < i(q) ≤ p− r− r1 with i(0) ≤ r+ r1 +D, p− r− r1 ≤ i(q) +D,
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and i(j + 1) ≤ i(j) + D for all i, such that L(Mn, γi(j)) is bounded for all j. We now
use Lemma 8.2 to interpolate between the indices i(j). Setting r0 = r1 +D, we see that
L(Mn, γi) is bounded for all i between r + r0 and p− r − r0 as required. ♦

One can also give relative versions of these results for fixed subsurfaces of Σ. An
example of a relative version of Theorem 1.3 has been formulated as Theorem 1.5. The
proof is essentially the same except that we now deal with the curve graph, G(Φ), associated
to Φ, rather than that associated to Σ. This is hyperbolic with constants depending on
κ(Φ), and hence bounded in terms of κ(Σ).

We should make some remarks regarding the interpretation of “pleating surfaces” in
this context.

Suppose that Φ ⊆ Σ is a fixed connected efficient surface. Write δ for the multicurve
associated to the relative boundary, ∂ΣΦ, of Φ in Σ, i.e. ∂ΣΦ with any pair of homotopic
curves identified. Suppose that γ is a multicurve in XM(Φ). Thus γ ∪ δ is a multicurve
which we can realise in M . Let φ : S, α t β −→ M,γ t δ be a pleating surface for
γ t δ. In the hypotheses of Theorem 1.5, L(M, δ) and hence L(S, β) is bounded. Since
ωφ(β) = χ ◦ φ(β) = δ is fixed, we can assume that β is a fixed multicurve in S. Indeed
we can define a fixed map, ξ : Φ −→ S, possibly identifying relative boundary components
but otherwise injective, so that ωφ ◦ ξ|∂ΣΦ is homotopic to the inclusion of ∂ΣΦ into Σ.
(Recall that ωφ = χ◦φ : S −→ Σ.) We can thus talk about a pleating surface relative to Φ
as a composition of f = φ ◦ ξ : Φ, β −→M, δ, with the property that ωf |∂ΣΦ is homotopic
to the identity, where ωf = χ◦f , and such that the curves f(∂ΣΦ) have bounded length in
M . The earlier discussion of pleating surfaces now applies, where the mapping class group
of Σ is replaced by that of Φ (fixing setwise each component of ∂ΣΦ). In particular, in the
“modified definition” in Section 7, we can take a fixed hyperbolic structure on Φ where
each component of ∂ΣΦ is totally geodesic, and is mapped to the corresponding geodesic
in M . The lipschitz constants involved depend on κ(Σ) and on the constant, k, which
bounds the length of these boundary geodesics in M , as given in the hypotheses of the
theorem.

Proof of Theorem 1.5 : This now follows exactly as in the proof of Theorem 1.3.
Pleating surfaces are interpreted as maps from Φ into M as above. In the combinatorial
arguments, the curve graph, G(Σ), is replaced by the curve graph, G(Φ). Efficient surfaces
are defined in Φ. ♦

As remarked in Section 1, together with Proposition 9.3, this gives the bound on
lengths of curves in a hierarchy. The notion of a “hierarchy” was defined in [MaM2].
In that paper, a hierarchy has a lot more structure, but here we will just consider the
underlying set of curves, i.e. a subset of G(Σ). This is defined by an inductive procedure.
Here, we consider a simplified version. As far as length bounds go, this includes the case of
[MaM2] — the underlying set of a hierarchy there will always be a set of the type described
below.

Suppose Q ⊆ X(Σ). We construct a larger subset, J(Q) ⊆ X(Σ), as follows. Suppose
we can find a connected efficient subsurface, Φ ⊆ Σ, and two curves α, β ∈ X(Φ) ⊆ X(Σ),
such that α, β and all components of ∂ΣΦ lie in Q. If γ ∈ X(Φ) lies on a tight geodesic
in G(Φ) from α to β then we include γ in J(Q). Thus J(Q) consists of Q together with
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all curves, γ, arising in this way. If α and β are any two elements of X(Σ), we can always
take Φ = Σ. Thus J({α, β}) is the union of all tight geodesics from α to β in Σ (or vertices
thereof). For each n ∈ N, we define inductively the sets Jn(Q) by Jn+1(Q) = J(Jn(Q)).

Now it follows from Theorem 1.5 that given k ≥ 0, there is some K ≥ 0 such that
J(X(M,k)) ⊆ X(M,K). Thus there is some Kn depending on κ(Σ), k and n such that
Jn(X(M,k)) ⊆ X(M,Kn).

To apply this to hierarchies, we need a slight modification, that will use a result we
postpone until Section 9. We define J ′(Q) ⊆ J(Q) as for J(Q), except that we allow
κ(Φ) = 0, and in this case take replace G(Φ) by the modified curve graph H(Φ) defined in
Section 9. We define J ′n(Q) by iterating this construction. Bringing Proposition 9.3 into
play, the previous paragraph also applies to J ′n(Q).

If α, β ∈ X(Σ), the vertices of a “hierarchy” between α and β form a canonical
subset H(α, β) ⊆ X(Σ). All we care about here is that H(α, β) ⊆ J ′n({α, β}) for some n
depending only on κ(Σ). (This applies to both [Mi4] and [Bow5].) We can thus deduce:

Corollary 8.3 : Given k ≥ 0, there is some L ≥ 0, depending only on κ(Σ) and k such
that if α, β ∈ X(M,k), then H(α, β) ⊆ X(M,L). ♦

This is essentially Lemma 7.9 of [Mi4], which is one of the key steps towards the
Ending Lamination Conjecture. This also gives the “a-priori bounds” statement required
for [Bow5].

9. Length bounds for exceptional surfaces.

In this section, we give an account of length bounds for the exceptional surfaces,
namely the one-holed torus and four-holed sphere. In these cases the curve graphs as
defined earlier are just countable sets of points, and it is natural to consider the modified
curve graph (denoted H) defined below. Our proof is based on certain trace identities that
can be found, for example, in [Go].

Let 1HT and 4HS denote respectively the one-holed torus and four-holed sphere. If
Φ is one of these surfaces, we write X(Φ) for the set of non-peripheral simple curves as
before. The modified graph, H = H(Φ) has vertex set V (H) = X(Φ), and α, β ∈ X(Φ)
are deemed adjacent if they have minimal possible intersection, i.e. can be realised so that
|α ∩ β| = 1 for 1HT and |α ∩ β| = 2 for 4HS. In both cases, H is isomorphic to the Farey
graph.

Suppose ρ : π1(Φ) −→ SL(2,C) is any homomorphism. Given α ∈ X(Φ), write
t(α) = tr ρ(α), where α ∈ π1(Φ) is any representative of the free homotopy class of α. The
complex length, λ(α) is defined by the formula 2 coshλ(α) = 2 trα and is well defined in
C/2πiZ. The (real) length, L(α), of α is the real part of λ(α) and is well defined in R.
Indeed L(α) and |t(α)| depend only on the projection of ρ to PSL(2,C). Note also that
L(α) is bounded above in terms of |t(α)| and conversely.

If Φ is a 1HT, write ζ for its boundary curve, and set L(∂Φ) = L(ζ) and |t|(∂Φ) =
|t(ζ)|. If Φ is a 4HS, write ζ1, ζ2, ζ3, ζ4 for the boundary curves, and set L(∂Φ) =
max{L(ζi) | i = 1, 2, 3, 4} and |t(∂Φ)| = max{|t(ζi)| | i = 1, 2, 3, 4}.
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We first show:

Lemma 9.1 : For all l there exists L such that if ρ : π1(Φ) −→ SL(2,C) is any
representation, and α, β ∈ X(Φ) with L(α), L(β), L(∂Φ) ≤ l, there is some arc, π, from α
to β in H(Φ) such that L(γ) ≤ L for all γ ∈ π ∩ V (H).

Note that by an earlier observation, this can be translated into an equivalent statement
about absolute values of traces, which is what we actually prove.

We shall focus on the case of the 4HS. The case of 1HT can be dealt with by a
similar, but somewhat simpler argument, as described in [Bow1]. (That paper assumed
the peripheral curves to be parabolic, though that does not affect this particular argument.)
A detailed discussion of discrete 1HT groups is given in [Mi1] (again under the assumption
that peripheral subgroups are parabolic), where a similar result is proven by geometric
arguments. A more general discussion, including a proof of Lemma 9.1 for the 1HT, is
given in [Z].

For the 4HS, our argument is based on the following trace identity. Let P,Q,R, S ∈
SL(2,C), with PQRS = I. Let p = trP , q = trQ, r = trR, s = trS, a = trPQ = trRS,
b = trQR = trSP , c = trPR, d = trQS, then

ab+ c+ d = pr + qs.

We can interpret this in terms of the Farey graph, H = H(Φ). We say that four
curves, α, β, γ, δ, in V (H) form a rhombus if α, β are adjacent and γ, δ are the opposite
vertices of the two triangles meeting along the edge αβ. In this case, for suitable choice
of representatives ζ

i
or ζi, we can represent α, β, γ, δ by α = ζ

1
ζ
2
, β = ζ

2
ζ
3
, γ = ζ

1
ζ
3

and δ = ζ
2
ζ
4
. Suppose ρ : π1(Φ) −→ SL(2,C) is any representation. Write zi = t(ζi),

a = t(α), b = t(β) c = t(γ), d = t(δ). We see that ab+ c+ d = z1z3 + z2z4. In particular,
|ab+ c+ d| ≤ 2k2, where k = max{|zi| | i = 1, 2, 3, 4}. Note that k is bounded in terms of
L(∂Φ).

We now put transverse orientations in the edges of the Farey graph. (This can be
interpreted in terms of orienting edges of the dual tree as in [Bow1].) Throughout we use
the convention that Greek letters α, β, γ, δ etc. denote vertices of H and the corresponding
Latin letters denote traces, i.e. a = t(α), b = t(β) etc.

Suppose that α, β, γ, δ, form a rhombus in H. We say the edge αβ is transversely
oriented from γ to δ if |c| ≥ |d|. (If |c| = |d| one can assign the orientation arbitrarily.) If
|ab| ≥ 6k2, this implies that |c| ≥ 1

3 |ab|. To see this, note that |ab+ c+ d| ≤ 2k2 ≤ 1
3 |ab|,

so |c+ d| ≥ |ab| − 1
3 |ab| ≥

2
3 |ab|, Since |c| ≥ |d|, we get |c| ≥ 1

3 |ab| as claimed.
We also note that if |c|, |d| ≤ 3k2, then min{|a|, |b|} ≤ 3k, for if not, we would derive

the contradiction 3k2 = 9k2 − 6k2 ≤ |ab| − |c| − |d| ≤ |ab+ c+ d| ≤ 2k2.

Proof of Lemma 9.1 : Suppose k is any constant greater than max{|t(∂Φ)|, 1}.
Let V0 = {ε ∈ V (H) | |t(ε)| ≤ 3k}. Let H0 ⊆ H be the full subgraph on vertex set V0.

The second observation above tells us that if α, β, γ, δ form a rhombus with α, β /∈ V0, then
either γ /∈ V0 or δ /∈ V0. In other words any two distinct components of V0 are distance at
least 3 apart.
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We claim that H0 is, in fact, connected. For if not, we can find a triangle abc in H\H0

such that the edges ab and ac are oriented away from c and b respectively. (This most
easily seen in terms of the dual tree, T . Note that every edge of H separates, so crosses
an edge of the dual tree. Let T0 be the union of edges such that the crossing edge of H
meets H0. If H0 is not connected, then neither is T0. Consider an arc, τ , connecting two
components of T0. At the initial and final edges of τ , the flow is out of τ , and so there
is some vertex of τ at which the flow on the two incident edges is outward. This gives us
our triangle.) But, by the first observation, we have |ab| ≤ 3|c| and |ac| ≤ 3|b| so that
|a| ≤ 3 ≤ 3k, giving the contradiction that a ∈ V0.

To apply this to Lemma 9.1, we just take L to be bigger than k and l. ♦
We have shown that lengths are bounded on some arc from α to β. We would like

to say that they are bounded on all geodesics. The following argument, suggested by Ser
Peow Tan, greatly simplifies my original.

We use the following trace identity. Given P,Q,R, S ∈ SL(2,C) with PQRS = I,
and traces a, b, c, p, q, r, s as defined earlier, then

a2 + b2 + c2 + abc− (pq + rs)a− (ps+ qr)b− (pr + qs)c+ p2 + q2 + r2 + s2 − pqrs = 4.

We only need note that it has the form c2 + Ac + B = 0, where A,B are polynomials in
the other traces. Thus, c is bounded above in terms of a, b, p, q, r, s. We obtain:

Lemma 9.2 : If α, β, γ ∈ V (H) are the vertices of a triangle, then L(γ) is bounded
above by a fixed function of max{L(α), L(β), L(∂Φ)}. ♦

We can now prove the main result of this section:

Proposition 9.3 : Given l ≥ 0, there is some L ≥ 0, such that if ρ : π1(Φ) −→ PSL(2,C)
is any representation, and if α, β ∈ V (H) with max{L(α), L(β), L(∂Φ)} ≤ l, then L(γ) ≤ L
for any γ lying in any geodesic from α to β.

Proof : Since π1(Φ) is free, ρ lifts to a representation to SL(2,C), so by Lemma 9.1,
there is a path π from α to β, with L(γ) uniformly bounded in terms of l along π. Now
if δ ∈ V (H) \ V (π) lies in any other geodesic from α to β, then from the combinatorics of
the Farey graph, we see that γ is adjacent to two vertices in V (π). Thus L(δ) is bounded
by Lemma 9.2 as required. ♦

The proofs we have given make reference only to 4HS. The case of 1HT is essentially
the same. This time, we use the trace identity trPQ + trPQ−1 = trP trQ. Applied
to a rhombus α, β, γ, δ, this gives ab = c + d, and the argument proceeds as before. See
[Bow1,Mi1] for further discussion of this case.
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