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Let 3 be a compact orientable surface. We define the complezity of ¥ as k(X) =
3g + p — 4, where g is the genus of ¥ and p is the number of boundary components.
Let T'(X) be the mapping class group of X, that is the group of orientation preserving
self-homeomorphisms of ¥ defined up to homotopy.

The curve complex [Harv] of ¥ is the simplicial complex whose vertex set, X = X (%),
consists of homotopy classes of essential non-peripheral simple closed curves of ¥, and
where a (finite) set of such curves is deemed to bound a simplex if its elements can be
realised disjointly in ¥. In the “non-exceptional” cases, that is when x(X) > 0, this
complex is connected and has dimension k(X). Note that I'(X) acts simplicially on the
curve complex. with finite quotient (after taking barycentric subdivision). This action
has been exploited by various authors to study I'(X), see for example [Hare,I,BeF| and
references therein.

All that is directly relevant to the present paper is the 1-skeleton, G(X), of the curve
complex, which we refer to as the curve graph. We write d for the combinatorial metric on
G(X) so that each edge has unit length. In [MaM1], it was shown that, provided x(X) > 0,
the graph G(X) is hyperbolic in the sense of Gromov [Gr,GhH] (see also [Bo2] for another
proof).

Applications of this this result are complicated by the fact that G(X) is far from
being locally finite. To some extent this is remedied in [MaM2], where certain hierarchical
finiteness properties of the curve complex are investigated. In particular, they define
a canonical set of “tight geodesics” connecting any two vertices, a,b of G. They show
that this set is always non-empty and finite. (The existence of tight geodesics is direct
combinatorial argument. For another proof of finiteness, see [Bo4].)

In this paper, we shall refine the above finiteness statement, giving bounds on the
number of points that can lie in a tight geodesics in a bounded neighbourhood of a given
point (Theorems 1.1 and 1.2). We consider applications of this to the geometry of the
action of I'(X) on G(X), in particular, acylindricity (Theorem 1.3) and uniform rationality
of stable lengths (Theorem 1.4 and Corollary 1.5). We remark that acylindricity implies,
in turn, the “weak proper discontinuity” condition used in [BeF].

1. Statement of results.

Let G = G(X) be the curve complex associated to X, where x(X) > 0. This is k-
hyperbolic for some k = k(X). We refer to the elements of X = X(X) simply as curves.
We say that two curves are disjoint if they are adjacent in G(X), otherwise, we say that
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they cross. A multicurve is a subset of X consisting of pairwise disjoint elements. (Such
elements can be rendered simultaneously disjoint, and hence bound a simplex in the curve
complex.)

A multigeodesic is a sequence, (A4;)!_, of multicurves such that for all ¢ # j and all
ac A;and b€ Aj, d(a,b) = |i — j|. We say that (A;); is tight at index i # 0, n if, for all
a € A;, each curve that crosses a also crosses some element of A; 1 U A;41.

We remark that this definition is weaker than that given in [MaM2]. We are effectively
saying that each element of A; is the boundary curve of the (connected) subsurface of %
filled by A;_1UA; 1. In [MaM2] it is required that A; consists of all such boundary curves
(non-peripheral in ¥), though we do not need this additional information here.

We say that a multigeodesic (A;)}_ is tight if it is tight for all indices in {1,...,n—1}.
A geodesic consisting of vertices (a;)_ is tight if there is some multigeodesic (4;)", such
that a; € A; for all 7.

Given a,b € V(G) = X, we write L(a,b) for the set of all geodesics in G connecting
a to b. Let Lr(a,b) C L(a,b) be the subset of tight geodesics. We have observed that
Lr(a,b) is non-empty and finite [MaM2]. We write G(a,b) = |J Lr(a,b) C G.

Let N(c;r) denote the r-ball about ¢ in G. There is some constant kg, depending only
on k and hence on k(X)) such that if ¢ lies in some geodesic from a to b, then each geodesic
from a to b passes through N(c; ko).

We show:

Theorem 1.1 : There is some K\ depending only on k(%) such that if a,b € V(G) and
¢ € G(a,b), then G(a,b) N N(c; ko) has at most K elements.

In view of the choice of kg, this is equivalent to asserting that the slices of G(a,b)
have bounded cardinality (in terms of x(X)). Here a slice of G(a,b) can be defined as a
subset of the form {z € G(a,b) | d(a,z) = p} = {z € G(a,b) | d(b,x) = n — p} for some
pe{0,...,n}.

One might still imagine that the set G(a,b) could change dramatically if we move one
of the endpoints a or b. The following variation of Theorem 1.1 gives some control on this,
and seems to be of more practical use. Given A, B C V(G), let L1 (A, B) = J{Lr(a,b) |
a € Ab € B} and G(A,B) = JULr(A,B) = U{G(a,b) | a € A,b € B} etc. We write
G(a,b;r) = G(N(a;r), N(b;r)). By hyperbolicity, we can again assume that kg is such that
if ¢ € |JL(a,b), then any geodesic connecting N (a;7) to N(b;r) must intersect N(c, ko).

Theorem 1.2 : There are constants ki and K;, depending only on x(X) such that if
a,b € V(G), r € Nand c € G(a,b) with d(c,{a,b}) > r + ki, then G(a,b;r) N N(c; ko) has
at most K, elements.

Note that Theorem 1.1 doesn’t quite follow from Theorem 1.2 because of the con-
stant k1. However, it does follow if we include the additional information that there are
boundedly many tight geodesics connecting two given vertices at distance at most kg + k1
apart.

The proofs of Theorems 1.1 and 1.2 make use of 3-dimensional hyperbolic geometry.
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We need to connect two curves a,b € X by some kind of geometric object, and a natural
choice would seem to be a hyperbolic 3-manifold M, homotopy equivalent to ¥, in which
the homotopy classes of curves corresponding to a and b are realised by “short” closed
geodesics. We use two facts about the geometry of M. Firstly there is a system of “bands”
in M as constructed in [Bo3|. (This is related to the block decomposition described in
[Mi].) Secondly, we use the “a-priori” bounds on the length of closed geodesics in M
associated to curves in | J L7 (a,b). These are proven in [Mi] (at least using the stronger
definition of tight geodesic given there). A more direct proof of this particular statement
is given in [Bo4].

We remark that, although the various constants featuring in [Bo3] are (in principle)
computable in terms of x(X), those in [Mi] or [Bo4| make use of geometrical limit argu-
ments. Thus, we have no explicit means of computing the constants Ky and K; featuring
in Theorems 1.1 and 1.2. The same therefore applies to the results that follow, in particular
Theorems 1.3 and 1.4 below.

The above results have consequences for the geometry of the action of I'(X) on G(X)
which we go on to describe.

The following definition makes sense for any isometric action of a group I' on a k-
hyperbolic graph G (or indeed, any path-metric space).

Definition : We say that the action of I' is acylindrical if for all » > 0, there exist
R,N > 0 such that for all a,b € V(G) with d(a,b) > R there are at most N distinct
elements, g, of ' such that d(a, ga) < r and d(b, gb) < r.

This definition will be elaborated on in Section 2. We note the following consequences.

Clearly, setting » = 0, we obtain constants, Ry and Ny such that if d(a,b) > Ry,
then |staba Nstabb| < Ny, where stabz denotes the I'-stabiliser of x. Indeed, if G were
a simplicial tree, this would be sufficient (cf. the acylindricity condition of Sela [S]). The
same applies to a uniformly locally finite graph (i.e. every vertex has bounded degree). A
situation that encompasses both is that of a uniformly fine hyperbolic graph [Bol]. Curve
graphs, however, fail to have this property.

A more significant consequence is that one can partition the elements of ¥ into elliptic
and loxodromic elements. Moreover, there is the positive lower bound on the stable lengths
of loxodromic elements (Lemma 2.2). Recall that the stable length, ||g||, of g € G is defined
as lim,, oo +d(z, g"z) for some (any) z € V(G).

We shall show:

Theorem 1.3 : If k(X) > 0, then the action of I'(X) on G(X) is acylindrical.

In this case, the division into elliptic elements and loxodromic elements is a conse-
quence of Thurston’s classification of mapping classes. An element of I'(X) might be finite
order or reducible. In the latter case, it preserves some simplex of the curve complex.
Both cases are clearly elliptic. All other elements of I'(X) are pseudoanosov. In [MaM1] it
is shown that pseudoanosov elements are loxodromic. The positive lower bound on stable
lengths however seems to be new.
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Note that if a,b € X (X) satisty d(a,b) > 3, then aUb fills ¥, and it is easily seen that
| stab a N stab b| is uniformly bounded in terms of xk(X).

We also remark that a weaker version of acylindricity, termed “weak proper discontu-
ity” is proven in [BeF]. In fact an elaboration of their argument shows that if » > 0, and
a,b € X(X) with d(a,b) > 2r 4+ 3, then {g € I' | d(a,ga) < r,d(b,gb) < r} is finite. It is
unclear, however, how one could use these methods to bound the cardinality of such sets.

It turns out that one can get more information about stable lengths than is implied
directly by acylindricity. We show:

Theorem 1.4 : Given k = k(X) > 0 there is some m = m(X) such that if g € G(X) is
loxodromic (i.e. pseudoanosov) then g™ preserves some bi-infinite geodesic in G.

Thus ¢™ translates this geodesic some distance p € N, and so ||g|| = ||¢g"||/m = p/m.
It follows that stable lengths are uniformly rational:

Corollary 1.5 : Given k = k(X) > 0, there is some n = n(X) > 0 such that if g € T,
then nl|g|| € N.

The analogous statement for hyperbolic groups is given in [Gr], and an elegant proof
can be found in [D].

2. Acylindrical actions.

Let G be a k-hyperbolic graph with vertex set V' (G) and combinatorial metric d. Let
0G be its Gromov boundary, defined as equivalence classes of quasigeodesic rays, where
two rays are deemed equivalent if the Hausdorff distance between them is finite.

Suppose that 7 C G is an (oriented) geodesic segment with vertices zox; .. .z,. Given
r > 0, we refer to the geodesics x, ;11 ...2T,_, as the r-central segment of 7. If ©/ =
YoY1 - - - Yn is another segment (of the same length) we say that = and #’ are r-close if
d(z;,y;) < r for all i. More generally, if [ € Z, we say that n’ is r-closely translated a
distance 1 from 7, if d(y;, x;4;) < r for all i € {0,...,n—1}.

We state the following observation as a lemma, since it is central to what follows.

Lemma 2.1 :  There is some constant ko > 0 such that if © € L(a,b) and 7’ €
L(a',b"), then the r-central segment of m is kg-close to a segment of n’, where r =
max{d(a,a’),d(b,b")}. %

Here ky is a fixed (universal) multiple of k. Recall that £(a,b) is the set of all geodesics
from a to b.

Now suppose the group I' acts on G. If g € T, its stable length ||g|| is defined as
lim;, o 1d(z, g"z) for x € V(G). One verifies that this is well-defined, independently of
x, that it is a conjugacy invariant, and that ||g"|| = n]|g|| for all n € N.
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Definition : An element g € T" is elliptic if some (hence every) (g)-orbit in G has finite
diameter.

An element g € I' is lozodromic if ||g|| > 0.

Clearly these are two categories are mutually exclusive (though not exhaustive in general).
If g is elliptic, one can show that there is some (g)-orbit whose diameter is bounded
purely in terms of k. If g is loxodromic, then for any x € V(G), (¢"2)nez is quasigeodesic
sequence, i.e. each point lies in a (g)-invariant bi-infinite quasigeodesic. One deduces that
g has precisely two fixed points in 0G.
Given a,b € V(G), and r > 0, let A(a,b;r) = {g € T | d(a,ga) < r,d(b,gb) < r}.
Recall that the action of I on G is acylindrical if

(Vr > 0)(3R, N > 0)(Va,b € V(G))(d(a,b) > R = |A(a,b;7)| < N).

In view of Lemma 2.1, one verifies easily that if g € A(a,b;r) and 7 is the r-central
segment of 7, then 7 is (3ko)-closely translated some distance | = I(g). (Up to an additive
constant, I(g) could be defined as 3 (d(a, gb) — d(b, ga)).)

From this observation, one can see that it is sufficient to verify the criterion of acylin-
dricity for some fixed r = r¢ depending only on k.

One consequence of acylindricity is the following;:

Lemma 2.2 : Suppose I acts acylindrically on G. Then each element of I is either elliptic
or loxodromic. Moreover, there is some ¢ > 0 depending only on k and the parameters of
acylindricity such that if g € " is loxodromic, then ||g|| > €.

This can be proven by an argument similar to that which shows that any infinite-
order element of a hyperbolic group is loxodromic (see [GhH]). Moreover, in the case of
the mapping class group acting on the curve complex, the conclusions can be deduced from
other considerations (see Corollary 3.5). For these reasons, we only give a sketch of the
argument below.

Proof : Suppose g € I'. Let x € V(G), and let D = d(x,gx). Let h > 0 be a constant
depending only on k as described below, and set » = 10h. Let R and N be the constants
given by the acylindricity hypothesis for this r, and set L > R+ 2(N + 1)D + 2h plus a
suitable constant depending on k.

If g is not elliptic, there is some power, ¢gP, of g with d(z, gPz) > R. Set y = gPx. Let
m € L(z,y) and let 1y C 7 be its (N + 1)D-central segment. This has length greater than
R+2h+2D.

Suppose i € {1,...,N+1}. Now d(z, g'z) = d(y, g'y) < (N+1)D, and so g is (3ko)-
closely translated some distance l; € Z. Moreover, since d(g'z, g**1x) = d(g'y, ¢*1y) = D,
we see that |l; — ;41| is at most D plus a constant depending on k.

Now applying the acylindricity assumption to the endpoints of my, we see that for
some i € {1,...,N+1}, g* closely translates mg a distance at least h and at most h+ D up
to additive constants. But 7y has length at least 2(h+ D). Thus, provided h is chosen large
enough in relation to k, one can show that g is loxodromic, with ||g*|| bounded below by
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some positive constant, say h/2. (This uses the fact that paths that are quasigeodesic over
all sufficiently long subpaths are globally quasigeodesic. From this one deduces that the
translates of 7y under (g) lie uniformly close to a bi-infinite (g)-invariant quasigeodesic.)
We deduce that ||g|| > h/2i > h/2(N +1), so we may set € = h/2(N + 1), which ultimately
depends only on k£ and the acylindricity parameters as claimed. &

3. Tight geodesics.

Let G be a k-hyperbolic graph. Given a,b € V(G) let L(a,b) be the set of all geodesics
from a to b. We suppose that we are given a non-empty subset, Lr(a,b) C L(a,b) of
geodesics, which we refer to as tight. We suppose that every subpath of a tight geodesic is
tight. We write G(a,b) = J Lr(a,b). We define Lr(a,b;r) and G(a,b;r) as before.

We can define a tight geodesic ray or bi-infinite geodesic as one for which every finite
subpath is tight. We extend the notations L(a, b), L1 (a,b), G(a,b) to allow a,b € V(G)UIG.

Let us suppose that the collection L7 = (L7(a,b))qpev(g) satisfies the conclusions of
Theorems 1.1 and 1.2, namely it has the following finiteness properties:

(F1): (3P € N)(Va,b e V(G))(Ve € G(a,b))(|G(a,b) N N(c, ko)| < Pp).
(F2): (3P, k1 € N)(Vr > 0)(Va,b € V(G)) for all ¢ € G(a,b) with d(c, {a,b}) > r + ki, we
have |G(a,b;7) N N(c, ko)| < P.

Recall that kg is the constant of Lemma 2.1. Note also that in view of Lemma 2.1, it
is enough to verify (F2) for r = k.

Lemma 3.1 : For all a,b € V(G)U9G, Lr(a,b) # (.

Proof : We prove this in the case where a,b € 9G. The case where a € V(G) and b € 9G
is similar.

Let (z,,)nez be a sequence of vertices with z_,, — a and x,, — b as n — 0o. Given any
R > 0, for all sufficiently large m and n, any geodesic from z_,, to x,, is ko-close to any
geodesic from x_,, to z,, in the ball N(zq, R). The result follows by taking tight geodesics,
applying property (F2) and taking a diagonal subsequence of segments that converge on a
bi-infinite tight geodesic. %

In particular, it follows that £(a,b) # 0 for all a,b € V(G) U 9G — a fact not true for
an arbitrary hyperbolic graph.
The following is also easily verified using Lemma 2.1:

Lemma 3.2 : The finiteness properties (F1) and (F2) hold for a,b € V(G) U 0G. &

Here we deem d(c,a) = oo if a € 0G. The constants, Py and P; arising may differ
from the originals. Henceforth, we fix a constant P that works in all cases.

Now suppose that I' acts on G and suppose that L is [-equivariant, i.e. gLr(a,b) =
Lr(ga,gb) for all g € I and a,b € V(G) (hence for all a,b € V(G) UIG).

Let us suppose that the action of I' satisfies:
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(F3) There are constants, Ry, Ng € N such that if a,b € V(G) with d(a,b) > Ry, then
| staba N stabb| < Np.

Lemma 3.3 : Suppose that I' and G satisfy (F2) and (F3). Then the action of T' is
acylindrical.

Proof : Let k1 and P be the constants of (F2) and let ko be a constant depending only
on k as described below. Let » > 0, and let R = Ny + 4r + 2k + 2ks.

Suppose a,b € V(G) with d(a,b) > R, and set A = {g € " | d(a, ga) < r,d(b,gb) < r}.
We want to bound |A|.

Let m € Lp(a,b) and let z,y € 7 satisfy d(x,a) = d(y,b) = 2r + k1 + k. Thus,
d(x,y) > Np.

Suppose g € A. Applying Lemma 2.1, we see that gr € N(p; ko) and gy € N(q; ko)
for some p,q € m. Moreover, d(x,p) < r + ko and d(y,q) < r + ko, where ko just depends
on k. In particular, d(a,p) > r+ k1 and d(b,q) > r+ k1. Now since gz € gr € gLr(a,b) =
Lr(ga, gb), applying (F2) we see there are at most P possibilities for gz for a given p. Since
d(z,p) < r + ky there are at most (2r + 2k; + 1) P possibilites in total for the point gz.
The same applies to gy. But d(gx, gy) = d(x,y) > Ny, so by (F3), at most Ny elements of
A can send x and y a given pair of points. We conclude that |A| < (27 + 2k; + 1)2 Ny P2
as required. &

In particular, this partitions the elements of I' into elliptics and loxodromics, as de-
scribed in Section 2.

Suppose g € I' is loxodromic. It has two fixed points a,b € 9G. Any two geodesics
in L(a,b) are ko-close. Moreover, G(a,b) is a locally finite (g)-invariant graph, and we
see that G(a,b)/(g) is finite. Indeed if ¢ € G(a,b) then |G(a,b) N N(c; ko)| < P and any
geodesic in Lr(a,b) meets this set. We claim:

Lemma 3.4 : If g is loxodromic, then there is some m < P? and some 7 € L(a,b) with
g =T.

(Note that we are not claiming that 7 is a tight geodesic.)

Proof : The argument follows that in [D] for hyperbolic groups. Let E be the set of
directed edges in G(a,b). Now E/(g) is finite, so we can label the orbits of F using a
bijection to {1,...,p} for some p € N.

Let Lg(a,b) = {7 € L(a,b) | m C G(a,b)}. Clearly Lr(a,b) C Lg(a,b) so this
is non-empty. We say that m € Lg(a,b) is lexicographically least for all vertices x,y €
7, the sequence of labels of directed edges in the segment w9y C 7 between x and y is
lexicographically least among all geodesic segments from z to y in G(a, b). Here we assume
x separates from a from y in 7, and that we are dealing with geodesic segments oriented
from x to y. Let L (a,b) C Lg(a,b) be the subset of such lexicographically least geodesics.
This is (g)-invariant. We claim:

(1) Li(a,b) # 0.
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To see this, start with any geodesic in Lg(a,b) and let (z,,)nez be its sequence of
vertices. For each n € N, let 7, be a lexicographically least geodesic in G(a,b) from z_,,
to . (This is necessarily geodesic in G.) By the local finiteness of G(a,b), a diagonal
sequence argument gives us a subsequence (m,,); that converges over arbitrarily large
subsets to a bi-infinite geodesic w. This must be lexicographically least, for if we could
improve on some finite subsegment, 7/, then we could improve on any ,, containing 7’.

(2) 1£1(a,b)] < N?.

If not, we can find N2 + 1 elements of £z (a,b) which all differ in some sufficiently
large compact subset of G(a,b). In particular, we can find z,y € G(a,b) so that each
of these N2 + 1 geodesics has a subsegment connecting N (x; ko) to N(y;kq), and these
subsegments are all distinct. Thus, at least two must share the same endpoints. Taking
x and y far enough apart, we can also assume them to be oriented in the same direction,
from x to y, say. But each of these is the unique lexicographically least geodesic segment
in G(a,b) connecting x to y, giving a contradiction.

Now take any m € L (a,b). Its elements are permuted by (g), and so we have some
m < P? with ¢™n = 7.

Corollary 3.5 : Suppose I' acts on G with equivariant tight geodesics satisfying (F2).
There is a constant, ¢ € N, depending only on k and the parameters of (F2) such that if
g € T is loxodromic, then ql|g|| € N.

Proof : Set ¢ = P2!. By Lemma 3.5, g9 translates some bi-infinite geodesic some distance
p € N. Thus q||g|| = |[¢?|| =p € N. %

We remark that if G were uniformly fine, we could simply set Lr(a,b) = L(a,b),
i.e. every geodesic is deemed to be tight, and obtain the above results. This applies, in
particular, to trees and uniformly locally finite graph (such as hyperbolic groups) but not
to the curve graph.

4. Quasifuchsian groups.

In this section, we recall some facts and definitions from [Bo3] that are used in our
proof of the main results.

Let F be the set of homotopy classes of non-empty connected non-annular proper
subsurfaces of 3 such that each relative boundary component in X is essential and non-
peripheral. Given ® € F we write 0® for its relative boundary in . We allow for
the possibilty that some component of ¥\ ® may be a (non-peripheral) annulus, so two
components of 0® might correspond to the same curve of X. We write X (3, ®) C X for
the set of curves lying in (or more precisely that can be homotoped into) the surface ®.

Now let M be a complete hyperbolic 3-manifold admitting a homotopy equivalence,
X : M — X, with the property that parabolics in M correspond exactly to boundary
components of ¥ (i.e. “strictly type preserving”).

We fix some appropriate Margulis constants as in [Bo3| (an additional requirement on
these constants will be given in Section 5) and let P and 7 be the sets of Margulis cusps
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and Margulis tubes respectively. The boundaries of each cusp and tube are foliated by
euclidean circles or longitudes, all of which we can assume to have length equal to a fixed
constant. We write Mp = M \ Jpcpint P and Mg = M \ |Jporint T respectively for
the non-cuspidal part and the thick part of M. The injectivity radius of the thick part is
bounded away from 0. Given T' € 7, x(T') is homotopic to a curve of X which we denote
by ¢(T).

Let Y be the convex core of M. In this paper, we can restrict attention to the
quasifuchsian case, where Y N Mg is compact. Thus, 7 is finite, and Y N Mp is compact.
We write © =Y N Mp and O¢c =Y N M. There is a homeomorphism from ¥ x [—1, 1]
to ©. We write 0g©® =0Y NMp =% x {—1,1} and 0y© =Y NIMp = 0¥ x [—1,1].

Let ® € F. Suppose that B is the image of a homeomorphism, 0 : & x [-1,1] —
O\ 0y O such that the composition of & — ® x {0} with x 06 is homotopic to the inclusion
of @ into X. We write 0y B = 6(® x {—1,1}) and 9y B = 0(0® x [—1, 1]) for the horizontal
and wvertical boundaries. We suppose that dy B C |Jpeq 0T U Jpep OP, and that each
component of dy B is bounded two longitudes of the corresponding tube or cusp. As in
[Bo3], we say that B is a band (or primative strip) if it also has the property that if 7' € 7,
then TNB =0 or T C BorTNB is asolid torus bounded in T by the annulus 7T'N dy B.
(We can also assume that B is unknotted in O, but that need not concern us here.) We
refer to ® as the base surface of B, and denote it by ¢(B).

By a collared band we mean a pair of bands, (B, B) such that B is the union of three
bands, B = B_ UBU B, with B_N By =0 and BN (B_UB,) = dyB (so that B, B_,
By and B all have the same base surface.) The bands B_ and B are the collars of B.

Given a path 7 in ©, we write [(m) for the rectifiable length of 7 N O, which refer to
as the exterior length of .

Given a band, B, the height, H(B), is the infimum of I(7) as 7 varies over paths in
B\ 0y B connecting the two components of 9y B. The depth of Q@ C B denoted D(Q, B)
is the infimum of [(7) as 7 varies over all paths from @ to 0y B in B\ 0y B. We say that a
band is h-collared if there is a collared band (B, B) with D(B, B) > h. This is equivalent
to saying that H(B_) > h and H(B4) > h.

Let’s fix a contant Hy to be determined later. Let A be the set of (outermost) bands
in © constructed in [Bo3]. Among the properties of A described there, we note:

(1) The elements of A are mutually disjoint.
(2) Each element of A is Hy-collared.

(3) There is some Wy such that for each B € A, each component of 0y BNO ¢ has diameter
at most Wy in O¢.

(4) There is a constant Ly such that the total length of (0T N©)\ |JA is at most L.

Note that (07N ©) \ |JA is a union of annuli. Each annulus is bounded by two
euclidean geodesiscs and its length is defined as the intrinsic euclidean distance between
the two boundary components. The total length is thus the sum over all such annuli in
OT'. In practice, this also bounds the number of such annuli.

In the properties stated, the constant, Wy depends only on k(X). We are free to
choose Hy as we please, but then L depends on this as well as x(X). Everything will also
depend on our choice of Margulis constants.
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5. Closed geodesics.

We use the same notations as in Section 4. Our aim here will be to discuss how closed
geodesics in O relate to bands in our band system.

Each curve a € X = X(X) can be realised uniquely as a closed geodesic, «, in ©, i.e.
so that y(«) is homotopic to a. We write L(M,a) for its length in M. Given t > 0, write
X(M,t) ={a € X | L(M,a) < t}. Any multicurve in X can be realised as a union of
closed geodesics in M.

Convention : Throughout the remainder of this paper, we use lower case Latin letters,
a, b, c ete, for elements of X (or multicurves) and the corresponding Greek letters, a, (3,7
etc, for the corresponding closed geodesics in M (or unions thereof).

We need also the notion of a pleated surface surface in M, see for example, [CEG].
The technicalities of this subject need not concern us here, since we can deal simply with
1-lipschitz maps, or uniformly lipschitz maps.

For us, a pleated surface consists of a complete finite-area hyperbolic metric, o, on
intX = X\ 9%, together with a 1-lipschitz map, f : int¥X — M such that y o f is
homotopic to the inclusion of int ¥ into . Indeed, it is sufficient that f be A-lipschitz for
some fixed constant .

Suppose that f is a pleated surface. For each P € P, f~'P is a neighbourhood of the
corresponding cusp. If T € 7, then f~!T is homotopic into ¢(T). We can assume that
f is in general position with respect to the boundaries of all such P and T'. Thus, each
component of f~'M¢ is a compact subsurface. We say that such a component is non-
trivial if it is not homotopic into any curve in 3. After adjoining any complementary discs,
such a surface is either ¥ itself, or (homotopic to) an element of F. There is combinatorial
bound on the number of such surfaces. There is also a lower bound on the injectivity
radius of such a surface coming from the bound in My. Thus, the diameter of each such
surface is bounded above. From this, we conclude:

Lemma 5.1 : If f is a pleated surface, and x,y € f(X) N Mp, with [(7) bounded above
by some constant Cy, and such that m meets at most xk(X) elements of T . &
(Recall that x(X) + 1 bounds the number of elements in any multicurve in 3.)

The following is a key fact concerning pleated surfaces (see for example [CEG]:

Lemma 5.2 : If a is a multicurve in X, there is a pleated surface, f : int ¥ — Y and a
realisation of a in ¥ such that f|a maps a locally isometrically onto «.

In other words, we can extend any geodesic multicurve in M to a pleated surface. (Recall

that Y is the convex core of M.)
We note the following corollary:

10
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Corollary 5.3 :  Suppose a,b € X and d(a,b) € X and d(a,b) < n. Suppose that
xr€an® andy € fN0O, with I(7) < Cyn, and such that m meets at most n(k(X) + 1)
elements of T .

Proof : Let a = ag,a1,...,a, = b be a path in X connecting a to b, and z; € «; with
xo =z and x,, = y. Now {a;,a;11} is a multicurve, for each i = 0,1,...,n — 1, so we can
connect z; to x;11 by a path m; using Lemma 5.1 set m = |J ;. &

Now fix some ¢y > 0, to be determined in later sections. Let Xg = X (M, ty). We can
choose our Margulis constants so that if a € Xog, P € P and T € 7, then aN P = () and
either a NT = ) or « is the core geodesic of T.

Lemma 5.4 : Suppose B is a band in © and let ® = ¢(B) and suppose a € XoNX (3, ).
Suppose that there is some a N B with D(z, B) > Cy. If b € X is adjacent to a in G, then
b does not cross any curve of 0.

Proof : Note that {a,b} is a multicurve, so there is a pleated surface f : ¥ — Y with
f(a) = « and f(b) = B. Now there is some p € a C ¥ with f(p) = z. Let F C ¥
be the component of f~!(B) containing p. The boundary of B in M is 0B U 0y B, so
OF C f~Y0uB) U f~1(0yB). Now if ¢ € f~1(dy B) we see, as in Lemma 5.1, that we
could connect p to f(q) by a path 7 in B\ 9y B with [(7) < Cj. This gives the contradiction
that D(z, B) < Cy. We therefore deduce that F C f~1(dy B). Thus each curve of OF is
either homotopically trivial or peripheral in ¥ or is homotopic to a curve in 0®. Moreover,
each curve in F lies in X (X, ®). It now follows easily (cf. [Bod|) that F is equal to ® up
to homotopy, possibly with some discs removed. In particular, each boundary curve of ®
is also a boundary curve of F. Thus, if b were to cross such a curve it would also have
to cross OF. Thus, 8 has to meet 9T for some T € 7. But, by the choice of Margulis
constants and the assumption that b € X, either 3NT = () or 3 is a core curve of T,
either way giving a contradiction. &

We note that following addendum to Lemma 5.4:

Lemma 5.5 : With the hypotheses if Lemma 5.4, if we assume that b € X (3, ®), then
8 C B and D(3,B) < D(z,B) — Cy.

Proof : In this case we have 8 C f(F) C B as claimed. Moreover, if z € (3, as in

Lemma 5.1, we can connect x to z by a path 7 in B\ dy B with [(7) < Cjy. It follows that
D(z,B) < D(z,B) + () < D(z,B) + C. &

Lemma 5.6 : Suppose cocicacs is a tight multigeodesic in G, where each element of each
of the multicurves c; lies in Xy. Suppose that B C © is a band and that x € BN~,. Then
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Proof : First note that | J(co Ucz) and | J(c1 U cg) are connected in ¥ and that | J(co U c3)
fills 3. Let ® = ¢(B). Suppose D(z, B) > 2Cy, and let z € o C 71, and let a C ¢; be the
corresponding curve. Thus a is adjacent to each of the curves in ¢y U co. Now applying
Lemma 5.4, none of these curves can cross 0®. Since | J(co U cz) is connected, it either lies
in, or is disjoint from ®. But in the latter case, cocicocs cannot be tight at ¢, since any
curve that crosses a and is contained in ® will not cross either c¢g or co. Thus, ¢y and cs
are contained in ®. In particular, co C X (X, ®). Now applying Lemma 5.5, 2 C B and
if y € B then D(y, B) > 2Cy — Cy > Cy. We can thus apply the same argument again to
show that ¢; and c3 are contained in ®. In other words |J(c; Ucs) C @, contradicting the
fact that this fills 3. &

6. Bounding numbers of curves.

Let A be a system of bands satisfying the conditions laid out in Section 4. In this
section, we show:

Lemma 6.1 : Given C > 0, there is some N such that if x € © \ | A, then there are at
most N curves a € X such that « N A = () and x can be connected to o in © by a path
7w with [(7) < C.

Recall that o C O is the closed geodesic realising a, and that X is the set of curves,
a, such the a has length at most some fixed constant ¢ty to be determined later. As in
Section 5, we can assume that we have fixed the Margulis constants such that « is either
a core curve of some element of 7 or else lies in O¢. Here, C will depend on k(X), tg, the
Margulis constants, and the constants Wy, Hy and Lg featuring in the properties of A. All
of these constants will ultimately depend only on x(X%).

We shall denote the induced path metric on O¢ by p.

Before proving Lemma 6.1, we first note that we can assume that 7N 90y B = () for all
B € A, since we can replace it by a path 7/ with the same endpoints having this property,
and with /(") < C” where C’ depends only on C. To achieve this, note that there is a
bound on the number of elements of A that m can enter. Moreover, the boundary of a
band, B € A in © is contained in g B U 0y B. Now 0y B meets at most 2(k(X) + 1)
elements of 7 and each component of 0y B\ |J7 is assumed to have diameter at most Wy
in ©¢. Thus any two points of dy B U gy B can be connected by a path not meeting dy B
anywhere else and of bounded exterior length. We can now easily modify 7 so as to avoid
OJy B completely.

We now construct a graph A as follows. Fix some € > 0 so that 3¢ is smaller than
both the injectivity radius of ©¢, and the minimal distance between distinct elements of
7. For each T € 7 let Vi be an e-net in 0T N © (i.e. a maximal e-separated subset of
0T N O). We extend |Jpc Vr to an enet, V, in ©¢. Let A be the graph with vertex set
V and with x,y € V adjacent if p(z,y) < 3e. We can define a map 6 : A — O¢ which
extends the inclusion of V' into ©¢, by mapping each edge of A to a geodesic segment.

Given T € T, write Q(T) = 0T N O \ |JA, and let T be the complete graph on
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V N Q(T). Note that Property (4) of A means that the cardinality of V(Yr) =V N Q(T)
is uniformly bounded (in terms of Ly and €). Let T be the graph AU {Jpcr Tr.

Now as discussed in [Bo3], the degree of each vertex of A and hence of T is bounded.

Let z and a be as in the hypotheses of Lemma 6.1. We can suppose that z € V(A).
Either « lies in ©¢ or it is the core curve of some element of 7.

Suppose first that « C O¢. We can find a closed curve, g(a), of length at most ty/e
in A such that 6(q(a)) is homotopic to a in ©¢, hence in M. In particular, a € X is
determined by ¢(a). We also have a path 7 connecting = to a with {(7) bounded, which
we can suppose intersects each 7' € 7, if at all, only in points of Q(T"). We therefore see
that 7 similarly gives rise to a path p = p(m) in T, of bounded length, connecting z to
q(a). Since all vertices of T have bounded degree, this places a bound on the number of
possibilities for p, hence for ¢(a) and hence for a.

The argument in the case where a is the core curve of some T' € 7T is similar. In this
case, we choose any point, g(a) € V. This determines T and hence a. We can connect z
to g(a) by a path of bounded length as before, and this places a bound on the number of
such a.

These bounds are entirely definable in terms of the constants C, to, (%), the Margulis
constants, and the constants featuring in the properties of A. This proves Lemma 6.1.

Corollary 6.2 : Given n > 0, there is some N > 0 satisfying the following. Suppose
a € Xog with «N|JA = (. Then there are at most N elements, b, of Xy with SN|JA=10
and with d(a,b) < n.

Proof : Let x € a. By Lemma 5.3 any point of 8 can be connected to x by a path m in
© with [(7) bounded. &

7. Proofs.

In this section, we give proofs of the main results of Section 1.

Before starting, there are two additional ingredients we need to cite. The first of these
are the “a-priori” bounds on the lengths of closed geodesics corresponding to curves in
tight geodesics in the curve complex. These are proven in [Mi] (at least with the stronger
condition of tightness given there). More direct proofs are given in [Bod|, and the two
results, Theorems 7.1 and 7.2, are quoted directly from there.

As remarked earlier, the bounds given by these results are not constructive. Modulo
these, however, all other bounds are constructive, so it would be interesting to attempt to
circumvent the geometric limit arguments featuring in [Mi] and [Bo4] that give rise to this
ineffectiveness.

Theorem 7.1 : Given € > 0, there is some t > 0 depending only on € and k(%) such
that a,b € X(X) with L(M,a) < e and L(M,b) < € and if c € X(X) is a vertex in a tight
geodesic from a to b (i.e. ¢ € V(G) N G(a,b)), then L(M,c) < t. O
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Theorem 7.2 :  There is some ko > 0 depending only on k(X) such that if ¢ > 0,
there is some t > 0, depending € and k(X) such that if a,b € X(X) with L(M,a) < €
and L(M,b) <e¢, ifr > 0 and ¢ € X lies on a tight geodesic from N(a;r) to N(b;r) with
d(c,{a,b}) > r+ ko then L(M,c) < t. &

The other ingredient we need is the existence of such a manifold M.

Proposition 7.3 : Given any € > 0 and any a,b € X (X) there is a complete manifold M
hyperbolic 3-manifold and a strictly type preserving homotopy equivalence x : M — X,
such that L(M,a) < e and L(M,b) < e. Moreover, we can assume M to be quasifuchsian
(geometrically finite without accidental parabolics).

(In fact, any € > 0 depending only on k(%) would do for our purposes.)

Proof : There are a number of ways to see this. For example, the deformation space of
quasifuchsian groups is homeomorphic to the product of two Teichmiiller spaces, where
each coordinate corresponds to the conformal structure of one of the surfaces at infinity
(i.e. a quotient of the discontinuity domain). Moreover, there is a universal bound on
Teichmiiller distance between such a surface and the boundary of the corresponding convex
core boundary [EM]. By choosing the structure so the extremal lengths of a and b are each
sufficiently small in one of the surfaces, the lengths of the corresponding curves in M will
be arbitrarily small.

Alternatively, using hyperbolisation, one could find a geometrically finite manifold in
which a and b are both parabolic, and then deform slightly. &

We can now set about proving Theorems 1.1 and 1.2. We fix any constant ¢ > 0.
Let to = t be the constant given by Theorems 7.1 and 7.2 (taking the maximum of the
two). This depends only on (). We set Xg = X(M,ty). We can now fix the Margulis
constants, as in Section 5, so that if « € X and P € P then aNP = (), and if T' € T either
anNT =0 or « is the core curve of T. These Margulis constants now give us a constant
Wy, as in the description of the band system A is Section 4. We also have a constant Cj
described by Lemma 5.1. Fix any Hy > 2Cy. This gives us another constant, Lg, as in
property (4) of the band system.

Let kg be the constant of Lemma 2.1, given the hyperbolicity constant, k, of the curve
graph G(X). Let N be the constant of Corollary 6.2 given n = k.

Proof of Theorem 1.1 : Let a,b € X and let ¢ € X lie in a tight geodesic from a to b.
If d(a,b) = 2, then ¢ is a boundary curve of the subsurface of X filled by a U 3, and there
is clearly a bound on the number of possibilities for such. We can therefore suppose that
d(a,b) > 3, and so c lies in a tight geodesic of length 4. Let M be as given by Proposition
7.3, and let A be the band system described in Section 4. If B € A, then by Property
(2), there is a collared band, (B, B) with D(B,B) > Hy > 2Cy. Thus, by Lemma 5.6,
v N B ={. In other words, v C © \ |J A.

Now if ¢ € G(a,b) N N(c; ko) we similarly have v/ C ©\ | J.A. By Corollary 6.2, there
are at most N possibilities for such a ¢/, and so we can set Ko = N. &
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Proof of Theorem 1.2 : The argument is essentially the same, using Theorem 7.2 in
place of Theorem 7.1. By setting k1 = ko + ko if d(c, {a,b}) > r + k1 and d(c, ') < ko,
then d(¢/,{a,b}) > r + ko. If ¢/ € G(a,b;r), then Theorem 7.2 tells us that L(M,c") < tg,
and the argument proceeds as before. &

To deduce Theorem 1.3, we need the following observation:

Lemma 7.4 :  There is some n depending only on k(X) such that if a,b € X with
d(a,b) > 3, then | staba Nstabb| < n.

Proof : (cf. [BeF]) If we realise a,b € ¥ so as to minimise the number of intersections,
then a U b, as a combinatorial graph embedded in ¥, is determined up to isotopy. Since
d(a,b) > 3, this graph fills ¥. One can construct from it a cononical singular metric on
the surface ¥’ consisting of ¥ with each boundary component collapsed to a point (cf.
[Bo2]). Now |staba N stabb| acts by isometry on this surface, and hence by conformal
automorphism on the corresponding punctured Riemann surface. But it is well-known
that the cardinality of such an automorphism group is bounded in terms of x(X). &

Proof of Theorem 1.3 : Let Lr(a,b) be the set of tight geodesics from a to b as defined
in Section 3. Theorem 1.2 tells us that the collection L7 = (Lr(a,b))qpcv(g) satisfies
Property (F2) of Section 3. Lemma 7.4 tells us that the action of I'(X) on G(X) satisfies
Property (F3). Lemma 3.3 now tells us that the action of I'(X) on G(X) is acylindrical as
required. &

Proof of Theorem 1.4 : Since L satisfies (F2), we can apply Lemma 3.4. &
Finally Corollary 1.5 follows from Corollary 3.5.
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