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Abstract.

In this paper, we develop the theory of a very general class of treelike structures based
on a simple set of betweenness axioms. Within this framework, we explore connections
between more familiar treelike objects, such as R-trees and dendrons. Our principal mo-
tive is provide tools for studying convergence actions on continua, and in particular, to
investigate how connectedness properties of such continua are reflected in algebraic prop-
erties of the groups in question. The main applications we have in mind are to boundaries
of hyperbolic and relatively hyperbolic groups and to limit sets of kleinian groups. One
of the main results of the present paper constructs dendritic quotients of continua admit-
ting certain kinds of convergence actions, giving us a basis for introducing the techniques
of R-trees into studying such actions. This is a step in showing that the boundary of a
one-ended hyperbolic group is locally connected. There are further applications to con-
structing canonical splitting of such groups, and to limit sets of geometrically finite kleinian
groups, which are explored elsewhere. We proceed in a general manner, discussing other
connections with A-trees, protrees, pseudotrees etc. along the way.

Amer. Math. Soc. Subject Classification: 20F32, 20F08.

0. Introduction

The term “treelike structure” of the title is intended to encompass the many different
kinds of trees that have appeared in the literature, for example, simplicial trees, A-trees
(in particular R-trees), dendrons, protrees, pseudotrees, tree algebras etc. One of the
principal objects of study in this paper will be a very general kind of treelike structure
which we shall call a “pretree”. The axioms of a pretree appear in a paper by Ward [W2],
and were rediscovered in a different context by Adeleke and Neumann [AN], who use the
term “B-set” to refer to the same structure. Here, we aim to develop the theory in a
somewhat different direction.

One reason for interest in pretrees is that most other treelike structures, including
those referred to above, can be viewed as special cases of pretrees. A surprising amount can
be done using the pretree axioms alone, thus unifying many arguments found distributed
through the literature. Another reason, which will form the principal theme of this paper,
will be its application to the topology of continua.

One of the main technical results arising out of this work is a condition on convergence
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groups acting on continuum which implies that every global cut point is a parabolic fixed
point [Bo6]. The principal motivation for this study was the conjecture of Bestvina and
Mess that the boundary of a one-ended hyperbolic is locally connected. This was known
to be equivalent to the non-existence of a global cut point [BeM,Bo2]. This was proven
for “strongly rigid” groups in [Bo3] (see also [L]) and generalised to “strongly accessible”
groups in [Bo4]. Swarup showed how to adapt these arguments to deal with the general
case [Swal]. The result of [Bo6] places this in a more general dynamical setting, which also
has applications to boundaries of relatively hyperbolic groups, and hence in particular to
limit sets of geometrically finite kleinian groups. We discuss this further at the end of
Section 6.

Recall that a “continuum” is a connected compact hausdorff topological space. By a
“dendron” we shall mean a locally connected continuum in which every pair of points can
be connected by a unique arc, where the term “arc” is interpreted here to mean a subset
homeomorphic to a closed real interval. (This is a slightly more restrictive definition than
that often used elsewhere.) Most of the continua in which we are primarily interested
are separable (i.e. contain a countable dense subset). We shall use the term “dendrite” to
mean a separable dendron. An equivalent definition of a dendrite describes it as a separable
continuum in which every pair of distinct points are separated by a third point. (It is this
latter criterion which is often used to define a dendron elsewhere.) The equivalence of
these definitions for separable continua is well-known. In fact, it will follow from some of
the results in this paper. We shall say that a dendrite (or dendron) is “non-trivial” if it is
not just a single point.

One principal construction in this paper associates to any separable continuum a
natural quotient which is a dendrite. This proceeds by analysing the cut-point structure of
such a continuum using pretrees. A condition is given under which the quotient dendrite
is guaranteed to be non-trivial. A particular application is to the boundary of a one-
ended hyperbolic group containing a cut point (and is thus a step toward proving its non-
existence). In this case, we show that the quotient dendrite is always non-trivial. In this
way, we arrive at a convergence action of the group on the dendrite. In [Bo3], it is shown
that such a group must split over a virtually cyclic subgroup. Another proof is given in [L].
The proof of this result involves constructing a non-trivial isometric action on an R-tree,
and applying the result of Bestvina and Feighn [BeF2]. There is a well established theory of
group actions on R-trees (see [Shal,Sha2,Mor,Pa2]), which generalises the classical Bass-
Serre theory on simplicial trees [Ser]. This leads us naturally to consider connections with
convergence actions on dendrites (or more generally dendrons).

The main tool used will be that of a pretree, and we develop some of the general
theory of these structures here. They have also been studied in some detail by Adeleke
and Neumann [AN], though their motivation was somewhat different from ours, and so
we shall be aiming in a rather different direction. Our reason for introducing them (as in
the case of Ward’s paper [W2]) was to capture the cut point structure of a continuum (or
more general topological spaces). It is well known (see for example [HocY]) that set of cut
points which separate a given pair of points in a continuum carries a natural linear order.
If we want to consider the set of all cut points simultaneously, then the pretree axioms give
a natural generalisation. A pretree thus consists of a set with a ternary “betweenness”
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relation arising from the way cut points separate the space.

A pretree is a natural analogue of a protree as defined by Dunwoody [Du2,Du3] where
instead of trying to capture the combinatorial structure of the edge set, we work with the
vertex set. Thus, in a pretree, every finite set of points “looks like” a subset of some finite
simplicial tree, or more formally, the betweenness relation on this finite set is compatible
with that derived from an embedding of this set set in some finite tree. (The same is true
of a protree where vertices are replaced by directed edges, and the betweenness relation
is replaced by a binary relation describing the compatibility of orientations.) Indeed the
above condition could serve, in principle, as the definition of a pretree, though, in fact we
can get away with four simple explicit axioms (see Section 2).

As we stated at the beginning, most of the other kinds of treelike structure have
natural pretree structures associated with them, and so can be viewed as special kinds of
pretrees. We have already talked about protrees. Their connection pretrees is discussed
in some detail at the end of Section 2. There is a also a fairly extensive literature about
pseudotrees (see for example [Ni]), and pretrees seem a natural generalisation of this idea,
as we outline in Section 3.

A another related concept to a pretree is that of a median algebra. Median algebras
(under a variety of names) have been studied for some time — see [BaH] for a survey. A
median algebra consists of a set together with a function which associates to any three
points z, y and z, a fourth point med(x,y, z), called the “median” of x, y and z. The
function med should satisfy certain axioms (see Section 2). An example of a median
algebra would be a dendrite, where med(x,y, z) could be defined as the unique point of
intersection of the arcs [z,y], |y, z] and [z, x]. More generally, in a pretree, a median of
x,y, z could be defined as a point lying between any pair of points from {z,y, z}. Such a
point must always be a unique, but is not in general assumed to exist. A pretree in which
every triple of points has a median will be termed a “median pretree”. A median pretree is
indeed a median algebra, though only very special median algebras arise in this way. For
this reason, much of the general theory of median algebras will not be directly relevant to
us here.

The notion of a median pretree is not a new one. They appear in many places in the
literature under a great variety of names. (In [BaH] they are referred to as “tree algebras”.)
One of the first accounts seems to be that of Sholander [Sho]. Every A-tree, as defined by
Morgan and Shalen [MorS], is an example of a median pretree.

There is a natural completion process which embeds every pretree in a median pretree
(see Section 3). Another (different but related) way of constructing such an embedding is
described in [AN]. We use the term “completion” for our construction since the resulting
pretree also has a certain “completeness” property, namely that every arc (full linearly
ordered subset) is an interval. We remark that Chiswell [Ch1] has shown that any median
pretree (and hence any pretree) can be embedded in A-tree for some ordered abelian group
A. We shall discuss connections between different kinds of trees more fully in at the end
of Section 2.

Returning to the subject of continua, we mentioned earlier a process of associating
to each separable continuum a natural quotient. For our purposes, it will be convenient
to work mainly with pretrees rather than topological spaces. Viewing the construction
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in these terms, we consider the cut point set of our continuum as a pretree, take the
completion of this pretree, and then take an appropriate quotient of this completion. This
quotient is also a topological quotient of the original continuum, and turns out to be a
dendrite. We refer to it as the “dendritic quotient”. There is a much more direct way of
describing this quotient in purely topological terms, as we explain in a moment. First, we
describe some applications.

Suppose M is a separable continuum, and suppose I' is a group acting by homeo-
morphisms on M. Suppose I' acts minimally as a (discrete) convergence group without
parabolics (in the sense of [GeM1]). Precise definitions in this context are given in Section
6. (See also [Tul] or [Bo5].) Suppose that M contains a cut point, and that I" does not
split as an amalgamated free product or HNN extension over a finite subgroup, and does
not contain an infinite torsion subgroup. Then, the dendritic quotient of M is non-trivial.
This is Theorem 6.1. In fact, we can allow parabolics in the hypotheses provided we assume
that no cut point is also a parabolic fixed point.

Of particular interest is the case where M = 0T is the boundary of a (word) hyperbolic
group I', as defined by Gromov [Gr]. The boundary is always a compact metrisable space,
on which I' acts as a convergence group (see [Tul,F,Bo5]). It is not hard to see that o'
is connected if and only if T" has only one end (see, for example, [GhH]). By Stallings’s
theorem [St], this is in turn equivalent to saying that T" is not finite or virtually cyclic, and
does not split over a finite subgroup. In such a case, it was conjectured that the boundary
must be locally connected. Bestvina and Mess [BeM] showed that if OT is connected but
not locally connected, then it must contain a global cut point. A converse was given in
[Bo2].

Now any subgroup of a hyperbolic group is finite, virtually cyclic, or else contains
a free subgroup on two generators (see [GhH]). In particular a hyperbolic group cannot
contain an infinite torsion subgroup. Thus, from Theorem 6.1, we deduce that:

Theorem 0.1 : If the boundary of a one-ended hyperbolic group contains global cut
point, then it has an equivariant quotient which is a non-trivial dendrite.

Now, the group I' also acts as a discrete convergence group on this dendrite. Thus, using
the result from [Bo3] or [L] mentioned earlier, we obtain:

Corollary 0.2 : If the boundary of a one-ended hyperbolic group contains global cut
point, then it splits over a virtually cyclic subgroup.

A somewhat different route through some of this material, also based on the notion of
pretrees, has recently been suggested by Swenson [Swe].

We say that a one-ended hyperbolic group is “strongly rigid” if it does not split over
any virtually cyclic subgroup. Thus a strongly rigid group is “rigid” in the sense that its
outer automorphism group is finite [Pal]. Thus, one consequence of our result is that a
strongly rigid group has locally connected boundary. (In fact, one can build on this to show
that every strongly accessible one-ended hyperbolic group has this property [Bo4|. This
raises the question of whether every hyperbolic group, or indeed every finitely presented
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group, is strongly accessible.)

In the case where the boundary is locally connected, one can obtain the “JSJ splitting”
of Sela [Sel], by analysing the structure of local cut points [Bo2]. A “local cut point” can
be defined as a point whose complement has more than one end. The JSJ splitting, in
some sense, describes all possible splittings of the group over virtually cyclic subgroups.
In particular, provided our group is not fuchsian (i.e. a virtual surface group), we see that
the existence of a local cut point implies that the group is not strongly rigid. The converse
is a fairly simple exercise. Putting this together with Corollary 0.2, we deduce that a one-
ended non-fuchsian hyperbolic group is strongly rigid if and only if its boundary does not
contain a (local or global) cut point. In particular, modulo fuchsian groups, this property
is quasiisometry invariant.

As mentioned earlier, one can push this further using an idea of Swarup [Swal to prove
the cut point conjecture (or equivalently, the local connectedness conjecture) for all one-
ended hyperbolic groups. This result can be placed in a more general dynamical setting
[Bo6] (see Section 6).

The local connectedness of the boundary (or more specifically the non-existence of
a global cut point) has further consequences. The Bestvina-Mess paper [BeM] shows,
in fact, that if a one-ended hyperbolic group does not contain a global cut point in its
boundary, then it must satisfy a kind of coarse uniform local connectedness property for
spheres in its Cayley graph (a property referred to as “I,,” in the original paper). This in
turn implies that the boundary is locally connected, and also that the group is semistable
at infinity (see [Mih]). Now Dunwoody’s accessibility theorem [Dul] tells us that any
finitely presented group (in particular any hyperbolic group) can be decomposed into a
finite number of finitely presented one-ended groups, joined together by finite subgroups
(in the sense of a graph of groups — i.e. a finite sequence of amalgamated free products and
HNN-extensions). It thus follows from the local connectedness theorem, that all hyperbolic
groups are semistable at infinity. (In fact, it has been conjectured that all finitely presented
groups are semistable at infinity.)

The result about splittings of convergence groups referred to ([Bo3,L]) relies on exam-
ining the connection between R-trees and dendrons. One direction of this correspondence
is fairly well understood. Starting with an R-tree (or a more general topological tree) there
is a natural “compactification” process which embeds it in a dendron. One can describe
when an isometric action on an R-tree gives rise to a convergence action in this way. Going
in the opposite direction is more subtle, and many questions remain open. However, one
can construct an isometric action on a certain tree with a “monotone metric” which is the
starting point of the result of [Bo3]. This will be discussed further in Section 7.

Returning to our general continuum, M, we give an explicit description of our dendritic
quotient. We have already observed that, if z,y € M, the set of cut points separating x
from y forms a linearly ordered set. (See for example [HocY]. This also follows from the
more general fact that the set of cut points is a pretree.) We define a relation ~ on M by
saying that x ¢ y if this linear order does not contain any subset which is order-isomorphic
to the rational numbers (i.e. a countable subset which is intrinsically dense). We see (using
the pretree structure of the cut-point set) that ~ is an equivalence relation. Moreover the
equivalence classes are closed. Indeed, it gives an upper-semicontinuous decomposition of
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M, so the quotient M/~ is hausdorff. More specifically, we see almost directly from the
definition, that any pair of distinct points of the quotient will be separated by a third
point. Thus, if M is separable, then M/~ is a dendrite, by the second (apparently weaker)
definition.

It’s not hard to see that any subcontinuum (i.e. closed connected subset) of a dendrite
is itself a dendrite (cf. Lemma 1.4). Moreover, the preimage in M of any subcontinuum
of M/~ will be a subcontinuum of M (Proposition 5.22).

There are several ways one can see that a dendrite D by the first definition (in terms of
separation properties) satisfies the hypotheses of the first definition (in terms of arcs). For
example, first show that D is locally connected, then use the fact that a locally connected
separable continuum is arc connected, and finally observe that D cannot contain any
topologically embedded circles. We shall not write out the details of this argument here.
The result is a standard one in continuum theory. It will also follow, by a somewhat
contorted route, directly from the results of this paper. For example, we shall see directly
by a different argument, that for any separable continuum M, the quotient M/~ is a
dendrite by the first definition. If M already happens to be a dendrite by the second
definition, then clearly the relation ~ is just equality, so M can be identified with its
quotient.

The route taken in this paper is not intended to be the shortest to any particular
objective. Instead we explore at some length various operations on treelike structures of
the types we have outlined.

It seems that the idea of using treelike structures of some sort in relation to the cut
point problem arose independently from a number of sources at various times — both before
and after I began work on the present paper. In this connection, one should mention the
efforts of Phil Bowers, Bill Grosso, Michah Sageev, Eric Swenson, and no doubt others.
Although some progress was made in a number of directions, as far as I am aware, no
published work emerged from these other attempts.

The structure of this paper in outline is as follows. In Section 1, we review some facts
about dendrons and more general topological trees. In Section 2, we give the definitions
of pretrees and median pretrees, and get the subject off the ground. We look at various
additional hypotheses one can impose on pretrees, and give a characterisation of dendrites
in these terms. We also look at connections with other types of treelike structures. In
Section 3, we define what we call “flows” on a pretree. We define the completion of
a pretree as the in terms of flows, and investigate some of its properties. In Section
4, we look at some natural quotients of a median pretree, in particular we construct
“dense” median pretrees. In Section 5, we get involved in some general topology, and
put together the various ingredients to describe our dendritic quotient. In Section 6,
we consider convergence groups, and give a condition for the quotient to be non-trivial.
In Section 7, we examine connections between isometric group actions on R-trees and
convergence actions on dendrons.

I would like to thank Martin Dunwoody, Damien Gaboriau and Frédéric Paulin for
helpful conversations, particularly in relation to R-trees. Shortly after starting work on
this paper, I received a copy of the preprint of Samson Adeleke and Peter Neumann, which
I found very informative, and has influenced this paper in many places. This paper was
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revised at the Universities of Ziirich and Melbourne. I’'m grateful to both these institutions
for their hospitality, and in particular, to Viktor Schroeder and to Craig Hodgson and
Walter Neumann for their respective invitations.

1. Trees

In this section we summarise some of the basic facts about treelike topological spaces.
A much more detailed account will be given in Section 7, after we have developed the
theory of pretrees. For the moment, we are principally interested in defining the terms
“real tree” and “dendrite”, and describing their basic properties. We begin fairly generally,
and add additional hypotheses as we need them.

Definition : A uniquely arc-connected space, T', is a hausdorff topological space in which
every pair of distinct points are joined by a unique arc.

(Here, the term “arc” should be interpreted as a subset homeomorphic to a closed real in-
terval.) Equivalently, it can be defined as a path-connected hausdorff space which contains
no topologically embedded circle.

We write [z, y] for the arc joining x to y, with the obvious convention that [z, z] = {z}.
We write [z,y) = (y, z] for [z,y]\ {y} and (z,y) = [z,y] \ {z,y}. Note that if z € [z, ],
then [z,y] = [z, 2] U [z,y] and [z, z] N [z, 2] = {z}. Conversely if [z, z] N [z,y] = {z}, then
z € [z,y]. Note that every closed arc in T is an interval, i.e. has the form [z, y| for some
z,yeT.

Suppose z,y,z € T. Since T has no embedded circle, we see that [z,y| N [z, 2] is
connected, and thus has the form [z, m] for some m € T. Now [y, m] N [m,z] = {m} so
m € [y, z]. Thus m lies in the intersection [z,y] N [y, 2] N [z, z]. Indeed m will be unique
with this property. We see:

Lemma 1.1 : Givenx,y,z € T then [z,y|N]y, 2] N[z, ] consists of a single point m € T.

O

We refer to m as the median of x, y and z, and write m = med(zx,y, z).

Note that the above argument shows that the the union of these three arcs is a “tripod”
consisting of the three “legs” [z, m], [y, m] and [z, m] which are joined at the point m. (It
is possible that one or more of these three legs may consist of just a single point.)

More generally, given a finite subset A C T', write hull(A) = | J{[z,y] | z,y € A}. An
induction argument shows:

Lemma 1.2 : If A C T is finite, then hull(A) is a finite tree. &

Here, and in the rest of this paper, by a “finite tree” we really mean the topological
realisation of a finite simplicial tree.
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If z,y,z € T we shall say that z lies between x and y if z € (z,y). We shall denote
this by writing xzy. This defines a ternary “betweenness” relation on 7. Note that we are
dealing with “strict” betweenness — xzy implies that x, y and z are all distinct. (This is
in contrast to some other formulations elsewhere.) Using Lemma 1.2, its easily seen that
this relation satisfies the axioms of a median pretree as laid out in Section 2.

We are not really interested in uniquely arc-connected spaces in this generality. For
a start, we shall want to impose some local connectedness hypothesis. We shall call the
resulting structure a “real tree”. A convenient way of formulating this is as follows:

Definition : A real tree is a uniquely arc-connected space T such that for every z € T
and every neighbourhood V' of x, there is a neighbourhood U of z, such that if y € U then
[z,y] C V.

Lemma 1.3 : If T is a real tree then the map [(x,vy,2) — med(x,y,2)] : T — T is
continuous.

Proof : This follows easily from Lemma 1.2. Suppose the points z’,4’, 2’ are close re-
spectively to x,y, z € T. Consider the tree hull{z,y, z, 2, y’, 2’}. By local connectedness,
the arcs [z, 2'], [y,y'] and [z, 2’] lie respectively in small neighbourhoods of z, y and z. By
considering the combinatorial possibilities for the finite tree, we see easily that the median
cannot move very much. &

If we fix two points a,b € T', we may define the projection map proj = projy, 4 : ' —
[a, b] by proj(z) = med(a,b,z). By Lemma 1.3, this map is continuous.
For subsets of real trees, connectness coincides with the obvious notion of convexity:

Lemma 1.4 : A subset Q of a real tree T is connected if and only if [z,y] C @ for all
T,y € Q.

Proof : The “if” bit is obvious, so suppose @ is connected. Suppose, for contradiction,
a,b € Q and ¢ € [a,b] \ Q. Write ™ = proj, ;). Now 7~ 1(c) cannot be open (otherwise we
could write T as a disjoint union of the two open sets 7~ [a, ¢] and 7~ 1[b, ¢)). Thus there is
some point € 771 (c) at which 7 is not locally constant. By local connectedness, there is
a neighbourhood U of = such that y € U, then [z, y] N [a,b] = 0. But we can choose y € U
so that 7(y) # m(z). Considering the tree hull{a,b, z,y} we see that [7(z),n(y)] C [z, y]
which gives [z,y] N [a, b] # 0. %

Suppose that V' C T. Applying Lemma 1.4, we see that x,y € V lie in the same
connected component of V' if and only if [z,y] C V.

Lemma 1.5 : Suppose V C T is open. The connected components of V' are open.

Proof : Suppose @ C V is a component of V', and x € V. There is a neighbourhood U of
x such that if y € U, then [z,y] C V. Thus U C @, and so @ is open. &
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Note that it follows that T is locally connected in the usual topological sense: if
x lies in an open set U, then the component of U containing z is an open connected
neighbourhood of z.

Given x € T, the degree of x is the cardinality of the set of components of 7'\ F'. We
write it as deg(x).

We say that x is an terminal point of T if deg(x) = 1. We say that x is a node if
deg(z) > 3. Note that x is an terminal point if and only if it does not lie between any pair
of points.

For some purposes, we shall want to add a hypothesis of separability. There are several
notions of dense subset which we should first clarify.

Suppose R C T'. We use the term topologically dense to mean the usual thing, namely
that every open subset of T' contains a point of R. We say that R is weakly dense if for
any pair of distinct points x,y € T, there is a point z € R such that med(z,y, 2) € (z,y).
We say that R is strongly dense (sometimes called “interval dense”) if for any pair of
distinct points x,y € T, (x,y) N R # (). Clearly strongly dense implies topologically dense
which in turn implies weakly dense (using local connectedness and continuity of projection
respectively). Moreover, if R is weakly dense, then the set {med(z,y,z) | z,y,z € R} is
strongly dense (see Lemma 2.11).

Definition : We say that a real tree T' is separable if it contains a countable dense subset.

From the above discussion, we see that it doesn’t matter which of the three notions of
density we take.

Lemma 1.6 : IfT is separable, then T" has at most countably many nodes, each of which
has at most countable degree.

Proof : The latter statement follows from Lemma 1.5. To prove the first part, let R C T
be a countable topologically dense subset. If w € T is a node, we can choose z,y,2 € R
lying in distinct components of T\ {w} (using Lemma 1.5). Thus w = med(z, y, z). There
are thus at most countably many possibilities for w. &

Definition : A dendron is a compact real tree. A dendrite is a separable dendron.

(This usage of “dendron” is not quite standard. The more usual definition is that it
is a continuum in which every pair of point is separated by a third point. This is more
general than our notion. If we add an assumption of separability, however, these definition
become equivalent; so our notion of “dendrite” agrees with the usual one.)

Note that every compact metrisable space is separable. For dendrons, we have a
converse:

Lemma 1.7 : A dendrite is metrisable.
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Proof : Let T be a dendrite. By the metrisability theorem for separable spaces, it is
enough to show that 7' is regular and second countable (see [Ke, Theorem 4.17]). Since T
is compact hausdorft, it is certainly regular.

Given z,y € T, let H(x,y) = proj[_;y]([:v,y)). Thus, by continuity of projection,
H(x,y) is an open subset of T. Note that if z € [z,y) then H(z,y) = H(z,y). Suppose
that R C T is strongly dense, then we claim that {H (z,y) | =,y € R} forms a subbase for
the topology. ;From the previous observation, we can allow x to vary over all of T'.

To prove the claim, suppose x € T" and that U is an open neighbourhood of z. Let V'
be an open connected neighbourhood of x, whose closure, V is contained in U. By Lemma
1.5, and compactness, all but a finite number, Wy, W, ..., W,,, of components of T\ V are
contained in U. For each i € {1,2,...,n} choose some w; € W;, and let y; € [z, w;]"VNR.
Thus [z,y;] C V. Now if z € W;, then [z, w;]| N [z, y;] = 0, so we see that y; € [z,z]. In
other words, med(z,y;,2) = y; so z ¢ H(x,y;). This shows that W; N H(x,y;) = 0. Tt
follows that (;_, H(z,y;) C U. The result follows. %

It’s not hard to see that a dendrite is locally connected in the usual topological sense
and thus a Peano continuum (i.e. a locally connected continuum). In fact, a dendrite
may be defined as a separable Peano continuum which contains no topologically embedded
circle (see [Ni], [Na] or [Ku] for a discussion). Dendrites have a long history. For example,
they arise as cut loci on certain convex surfaces, and were considered by Poincaré [Po].

Note that is was shown independently by Bing and Moise that a metric Peano con-
tinuum admits a path-metric [Bil,Moi] (see also [Bi2]). Now if we put a path-metric on a
dendrite, every arc will necessarily be geodesic, and so in fact we get an R-tree. In other
words, yet another definition of a dendrite is a compact separable R-tree (but without
any preferred metric). For a more general discussion, see [MayO]. We shall discuss these
matters further in Section 7.

2. Pretrees

In this section we define the notion of a “pretree”. As we mentioned in the introduc-
tion, the axioms for a pretree, in complete generality, appear in a paper by Ward [W2],
and were rediscovered in the article of Adeleke and Neumann (where they are referred to a
“B-sets”). As we described in the introduction, a pretree is essentially set T" together with
a ternary “betweenness” relation, such that every finite subset of T" “looks like” a subset
of a finite simplicial tree — see Lemma 2.5. It is thus analogous to a protree as defined by
Dunwoody [Du2,Du3].

Betweenness relations of various sorts have been considered by many authors. The
idea of betweenness is fundamental in the axiomatisation of euclidean geometry (see for
example [V]). Since then other kinds of betweenness relations have been studied in relation
to treelike objects (see for example some of the references given in [BaH]). In particular,
what we call “median pretrees” appear in [Shol], and have since appeared in a number of
places under a variety of names. We shall say more about this at the end of this section.

Given x,y, z, we shall write xyz for the ternary relation, and say that y lies between
x and z.

10
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7

We shall make frequent use of the logical symbols A, V and — for “and”, “or” and

Lcnot” i

Definition : The set 1" with such a ternary relation is a pretree if the following three
axioms are satisfied:

(TO) (Vx,y)(—wyx),
T1

(T1) 22y & ye,
(T2) For all x,y, z, =(zyz A x2y),
(T3)

T3) If xzy and z # w then (zzw V yzw).

We shall write T3(zzy, w) for the third axiom.

Note that putting (T0) and (T1) together, we see that zyz implies that z, y and z
are all distinct.

Clearly any subset of a pretree is a pretree. We shall say that x is a terminal point if
(Vy, z € T)(—yzxz).

Given z,y, z,w € T we write xyzw to mean (xyz A yzw A zyw A xzw).

We get ourselves off the ground with four elementary lemmas. These results can also
be found in [AN].

Lemma 2.1 : (zyz Ayzw) = xyzw.

Proof : We have to show zyw A zzw. By axiom (T2), x # w. Since yzw, we have -ywz,
so zyw (by T3(xyz,w)). Similarly, zzw. O

Lemma 2.2 : (zyw A yzw) = zyzw.

Proof : By Lemma 2.1, it’s enough to show zyz. But note z # x, so if ~zyz, then zyw
by T3(zyw, z), contradicting yzw. &

Lemma 2.3 : (zyw A zzw) = (zyzw V xzyw).

Proof : By T3(zzw,y), we can assume without loss of generality that yzw, and so zyzw
by Lemma 2.2. &

Now there are precisely four combinatorial possibilities (up to pretree isomorphism)
for the betweenness relation of a set F' of four points embedded in a finite simplicial
tree. They are illustrated in Figure 1, and labelled (A), (B), (C) and (D). The black dots
represent the points of F'. Clearly, we can assume that the tree is equal to the hull of F'.
Thus, (A) is “four in a row”, (B) is a tripod with whose node is in F', (C) consists of a
tripod whose node is not in F' and so one branch contains two points of F', and (D) has a
node of degree 4 which is not in F'. Case (D) is referred to as a “null” pretree — there are
no relations — a concept that shall prove more useful than one might imagine. Note also
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that case (D) is really the same as a tree with two nodes of degree 3, since the difference
would not be noticed in F'.

In fact there was no need to assume a-priori that F' admits an embedding in a simplicial
tree — these are the only pretrees on four points. Expressed another way:

Lemma 2.4 : Suppose x,y, z,w are distinct points of in pretree. Then the betweenness
relations on {z,y,z,w} are compatible with one of the pictures (A), (B), (C) or (D)
described above.

Proof : If not (D), then without loss of generality, zyz. By T3(zyz,w), we can also
assume ryw. If not (C), then we must have another relation — without loss of generality
one of xzw, yzw, wrz or wyz. By the previous lemmas, either xzw or yzw implies zyzw.
In this case, no other relations are possible, so we are in case (A). If wzz, then since zyz
we would have yxw contradicting xyw, so this case is not possible. Finally, if wyz, we
verify that not other relations are possible (by applying the previous lemmas to derive a
contradiction), and so we are in case (B). &

We can generalise Lemma 2.4 to any finite pretree F'. We aim to embed F' in a finite
tree, T, conisting of a set, V, of vertices, and a finite set F of edges. Let N =V \ F. We
can suppose that each vertex of N has degree at least 3. Moreover we can suppose that
each edge has at least one endpoint in F' (otherwise we could contract it to a point without
altering the betweenness relations on F'). Note that if F' is known to arise in this way then
it must have at least two terminal points (assuming it has at least two points).

Recall that pretree F' is null if (Vx,y, z € F)(—zyz).

Lemma 2.5 : If F is a finite pretree, then it can be embedded in a finite tree T (in the
manner described above) so that the pretree structure is induced by that on T.

Proof : By induction on the cardinality of F', we can suppose that the lemma is true for
any proper subset of F'. We assume that I’ has at least 3 points.

We first claim that there is some point p € F' which is terminal. For suppose not.
Choose any = € F. Now F'\ {z} can be embedded in a tree and so has at least two terminal
points, say y and z. But y is not terminal in F', so there is some w € F with zyw. If w = 2
then xyz. Also if w # z, then since y is terminal in F'\ {z}, by T3(zyw, z), we deduce
again that zyz. But reversing the roles of y and z, we obtain zzy. This contradiction
shows that there must indeed be some terminal point, say p € F'.

We now embed F’' = F'\ {p} in a finite tree 7/ with vertex set set N Ll F’ and edge
set E as described above. We shall put an orientation on some of the edges E as follows.

Suppose e € E has both its endpoints x and y in F’. We orient e from x to y if zyp
and from y to x if yxp. Otherwise we leave e unoriented.

Suppose v € N, and let F,, C F’ be the set of adjacent vertices. Thus F,, is null. If
F, U{p} is also null, then we orient all edges incident on v towards v. If not, then there
exist z,y € F, with xyp. We see that zzp for all z € F, (using T3(yxp, z)). Thus z is
determined uniquely. In this case, we orient the edge joining v to x towards z, and we
direct all other edges incident on v towards v.

12
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This process accounts for every edge in E. By construction, each vertex in N has at
most one incident edge pointing away, and all other incident edges pointing towards it.
Also (for example by applying Lemma 2.4), we see that if 2 € F’, then all but at most one
edge incident on z points towards . (The remaining edge might be unoriented, or might
point in either direction.) It now follows that there is either a unique vertex v € N U F’
towards which all edges of E are oriented, or else a unique edge e € E with is unoriented
and towards which all other edges of E are oriented.

We can now extend 7’ to a finite tree containing all of F' as follows. In the first case,
we join p to v by a new edge. In the second case we split the edge e in two by inserting a
new vertex w in its interior, and then join p to w by new edge. In this way we obtain a
new tree 7.

We need to verify that the relations on F' are precisely those induced from 7. By
construction, we need only worry about relations involving the point p. To begin with,
we should note that p is terminal in both F' and 7, so we only have relations of the form
xyp. Now by the construction of 7, we see that if x,y € F’, then y lies between x and p
in 7 if and only if the interval [z, y] C 7" consists of a sequence of edges of E which are all
oriented towards y. We thus need to verify that this can only happen if zyp. ;From the
construction of the orientations on F, this easily reduced to the assertion that if x,y, z are
distinct points of F” with zzy, then zyp if and only if zzp and zyp. This can in turn be
seen for example by applying Lemma 2.4 to the set {z,y, z, p}. &

This lemma is useful in working with pretrees. Often we find ourselves dealing with
only a finite number of points at a given moment, and so this allows us to assume for the
purposes of argument that we are living in a finite tree.

Given distinct points x,y in a pretree T, we shall write (z,y) = {z € T | zzy},
[z,y) = (y,2] = (z,y) U{z} and [z,y] = (z,y) U {z,y}. We refer to these sets as open,
half-open and closed intervals respectively, and collectively as intervals. Note that without
reference to the points z and y the distinction between open, half-open and closed might
be ambiguous. We shall use the convention that (z,z) = [z,2) = 0 and [z, z] = {z}. We
say that two points distinct points, x,y € T are adjacent if (z,y) = 0.

Lemma 2.6 : If xg,21,...,%, is a finite sequence of points of T, then [zg,z,] C

Uis i [@i—1, 2.

Proof : This can be proved by induction over n. The case where n = 2 is a simple
consequence of axiom (T3). O

Note that a pretree can alternatively be defined in terms of closed intervals. In other
words, we have a set T', and to each pair of elements x,y € T, we associate subset [z, y] C T.
The pretree axioms then translate as [z,y] = [y,z], [y,2] C [z,y] U [z,z], and ((y €

[z,2])) A (2 € [2,9]) = (y = 2).
We shall need some further definitions:

Definitions :
A subset A of T is full if [x,y] C A for all z,y € A.

13
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A subset A is linear if for all distinct z,y, z € T, we have zyz V yza V zxy.
An arc is a nonempty full linear subset.

If A is a linear subset of T, a direction on A is a linear (i.e. total) order < on A such that
zyz o ((r<y<z)V(z<y<uz)). Werefer to (A, <) as a directed linear set.

Note that if (A, <) is a directed linear set, then so also is (4,>) where x >y < y < z. In
fact, by applying Lemma 2.5, it is easily verified that:

Lemma 2.7 : A linear set with at least two elements admits precisely two directions.

¢

Note that every interval is an arc, though the converse need not hold in general. Given
an interval, say [a,b], we can define a direction on [a,b] by writing z < y if and only if
x € la,y), or equivalently y € (x,b].

Note that the points a and b are precisely the terminal points of [a,b]. Thus, if
[a,b] = [a’, V'] then {a,b} = {a’,b'}. (This fails in general for half-open or open intervals,
but see Lemma 2.9 and the subsequent discussion.)

Definition : Given z,y,z € T, we shall say that ¢ € T is a median of x,y,z if ¢ €
[z, 9] O [y, 2] N [z, z].

Applying Lemma 2.5, we see that if a median exists, then it must be unique. In this case
we write ¢ = med(z, y, 2).

Definition : A median pretree is a pretree in which every set of three points has median.

Thus in median pretree, we have a map med : 72 — T. Applying Lemma 2.5, we see
that this map must satisfy the axioms of a median algebra, namely
(M1) med(zx, z,y) = x,
(M2) med(z,y, 2z) = med(z, z,y) = med(y, z, x), and
(M3) med(med(z,y, 2),u,v) = med(x, med(y, u, v), med(z, u, v)).
A survey of median algebras is given in [BaH]. Recently median algebras have been studied
from a more geometric viewpoint by Roller [R]. In particular, “discrete” median algebras
turn out to have close connections with non-positively curved cubed complexes. Note that
median algebras are much more general than median pretrees (for example the cartesian
product of two median algebras is naturally a median algebra). We shall not have much to
say about this general theory here. Note that various kinds of betweenness relations and
their connections with median algebras are to be found in [Sho].

In a median pretree, we can define projection to any closed interval projp,  : 1" —
[CL, b] by proj[a,b] (.’13) = med(a7 b7 .’13)

There are various other conditions we shall want to put on pretrees, for example
density, completeness and separability. We shall consider these in turn.
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Definition : A pretree T is dense if for all distinct z,y € T there exists z € T with zzy.
In other words, no two points in 7" are adjacent.

Lemma 2.8 : Suppose T is a dense pretree, and z,y,z € T. If [x,y) C [x,z] then
y € [z, z].

Proof : Suppose the conclusion fails. In particular, y # 2, so we can find w with ywz.
By T3(yzw, ), we have zwx V ywx. But since [z,y) C [z, z], ywz implies zwz. Thus zwz,
and so w = med(z,y, z). Now choose w’ so that ww’z. Thus yw'z so applying the same
argument we get w’ = med(z,y, z) contradicting the uniqueness of medians. &

Lemma 2.9 : Suppose T is a dense pretree, and x,y,z € T. If [x,y) = [z, 2) theny = z.

Proof : We have [z,y) C [z, z] so by Lemma 2.9, we see that y € [z, 2] so [z,y] C [z, 2].
Similarly, we also have z € [z, y] and so y = z. O

Note that in a dense pretree, x is the unique terminal point of [x, %) so in this case we
might generalise Lemma 2.9 to say that if [z, y) = [2/,y’), then x = 2/ and y = y'. An open
interval (z,y) has no terminal points. In this case (for example by splitting it into two
half-open intervals), we see that if (z,y) = (2/,y), then {z,y} = {2/,y'}. In particular,
note that in a dense pretree, one can speak unambiguously about open, half-open and
closed intervals.

By a cut of an interval [a, b] we mean a partition of [a, b] into two non-empty subarcs,
[a,b] = AU B. Clearly no proper subarc of [a, b] can contain both a and b. Thus, without
loss of generality we can suppose that a € A and b € B.

Definition : A pretree is complete if every arc is an interval.

There is an alternative way of formulating competeness by saying that every directed arc
has a “supremum” as we shall describe in Section 3.

Lemma 2.10 : Suppose T is complete and dense. Suppose a,b € T and that [a,b] = AUB
is a cut with a € A and b € B. Then there is some ¢ € [a,b] such that either A = |a, ]
and B = (¢,b] or else A = [a,c) and B = [c, b].

Proof : The case where either A or B is a singleton is trivial, so we shall assume that this
is not the case. By the completeness hypothesis, there are points x,y € T such that A is
equal to [a, z] or [a,z) and B is equal to [b, y] or [b,y). Lemma 2.8 tells us that x,y € [a, b],
and by our initial assumption we see in fact that z,y € (a,b). Now if x # y, then by
Lemma 2.3, we have either axyb or ayxb. By choosing any z € (z,y) C [a,b], we get the
contradiction z ¢ AU B in the former case, and the contradiction z € AN B in the latter
case. We conclude that z = y. Now = must lie in either A or B, say A. Then A = [a, z]
and B = [b, x) as required. O
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Lemma 2.11 : A complete dense pretree is median.

Proof : Suppose, for contradiction, that the three points z,y,z € T do not have a
median. Certainly x, y and z are all distinct. Let A = [z,y] N[z, 2], B = [y, 2] N [y, 2] and
C = [z,2]N[z,y]. Thus A, B and C are all arcs, and thus intervals.

Now if w € (z,y), then (using T3(xwy, z)) we have w € [z, z] or w € [y, z]. Thus
[x,y] = AU B. Also any point of A N B would have to be a median of xz,y, z, and so
ANB =10. Thus [z,y] = AU B is a cut. By Lemma 2.11 one of A and B is a half-open
interval, while the other is a closed interval. (Recall that this is a well-defined distinction
for dense pretrees.) But the same argument applies to the partitions [y, z] = B U C and
[z,z] = C'U A, so we arrive at a contradiction. O

We now want to consider separability of dense median pretrees.

Given distinct points z and y in a median pretree T, we write H (x,y) = proj [_xly] ([x,v)) :I

{z € T | med(z,y, z) # y}. We write P(z,y) = H(z,y)NH(y,z). Generalisting definitions
in Section 1, we define:

Definition : A subset R C T is weakly dense if for any pair of distinct points =,y € T,
RN P(x,y) # 0.
A subset R C T is strongly dense if for any pair of distinct points x,y € T, RN (x,y) # 0.

Note that saying that 7" is dense is the same as saying that it is strongly dense in itself. In
fact, the existence of any strongly dense subset implies immediately that 7" must be dense.

Lemma 2.12 : Suppose that T is a median pretree and that R C T is weakly dense in
T. Let R = {med(z,y,2) | x,y,z € R}. Then R’ is strongly dense.

Proof : Given distinct z,y € T, choose any a € RN P(z,y) and let z = med(z,y,a) €
(z,y). We claim that z € R’. To see this, choose b € RN P(z,z) and ¢ € RN P(y, z). Now
applying Lemma 2.5 to the set {x,y, 2, a, b, c} we see that z = med(a, b, ¢). O

Definition : A median pretree is separable if it contains a countable dense subset.

By Lemma 2.12, we can interpret “dense” to mean either weakly dense or strongly dense,
with the same result. A separable pretree is necessarily dense.

Suppose that T is separable and that a,b € T are distinct. Let the total order < be a
direction on [a, b] (see Lemma 2.7). If R C T is strongly dense, then RN |a,b] is dense with
respect to this order. If R is countable, then RN (a,b) has the order type of of the rational
numbers. If T is also complete, then Lemma 2.10 tells us that [a, b] has the Dedekind cut
property (i.e. “no gaps”). We conclude:

Lemma 2.13 : Suppose T is a complete separable pretree, and a,b € T are distinct.
Let < be a direction on [a,b]. Then ([a,b], <) is order-isomorphic to the real interval [0, 1]
with the standard order. O
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We now give a characterisation of dendrites as compact topological spaces with com-
patible pretree structure.

Theorem 2.14 : Suppose that T' is a compact separable topological space. Suppose T
also carries a complete dense pretree structure such that H(z,y) is open for any pair of
distinct points x,y € T. Then T is a dendrite. Moreover if x,y € T, then the interval
[z,y] (as defined by the pretree structure) is the unique arc joining x to y.

We shall need some more preliminary discussion before proving this fact.

It’s clear that T" must be hausdorff, since given distinct x,y € T', choose any z € (z,y);
then x € H(x,z2),y € H(y,z) and H(z,2)NH(z,y) = (). By Lemma 2.11, we know that T
is a median pretree. Also T is separable as a pretree; since if R C T is topologically dense,
and x,y € T are distinct, then P(x,y) = H(x,y) N H(y,x) is open, so RN P(x,y) = 0,
and so it follows that R is weakly dense.

Now, suppose a,b € T are distinct. Then the “closed” interval [a.b] is closed in the
topological sense. To see this, suppose = € T \ [a,b]. Let ¢ = med(a,b,x) and choose
y € (¢,z). Then xz € H(x,y) and H(z,y) N [a,b] = 0. Thus [a, b] is closed, and is therefore
compact.

Let < be a direction on [a,b]. We can assume that a < b, so the order is given by
x<y< x € la,y). We know by Lemma 2.13, that [a, b] is order isomorphic to the real
closed interval [0,1]. If z,y € [a,b] then from the characterisation of a direction, we see
that (z,y) = {2 € [a,b] | x < y < z}, so this agrees with the usual notion of open interval
for totally ordered sets. Note that (x,y) = [a,b] N P(z,y), and so is topologically open in
[a, b] with its given compact topology coming from 7. But now [a, b] can be given another
topology arising from some (in fact any) order isomorphism with the interval [0, 1]. In this
“order topology”, [a,b] is thus homeomorphic to [0, 1]. Since open intervals form a base
for the order topology, we see that the given topology is finer than the order topology. In
fact, these topologies must agree. This follows from the observation:

Lemma 2.15 : Let Ty be the standard order topology on [0,1]. If T is a compact
topology on [0, 1] finer than Ty, then in fact T = Ty.

Proof : The identity map from ([0,1],7) to ([0, 1], 7o) is a continuous bijection from a

compact space to a hausdorff space, and hence a homeomorphism. &
In summary, we have shown:

Lemma 2.16 : Suppose a,b € T are distinct. Then [a,b] (in the subspace topology) is

homeomorphic to the closed real interval [0, 1]. Moreover, pulling back the standard order
by this homeomorphism gives us a direction on |a, b]. &

In particular, this shows that 7" is topologically arc-connected. Our next objective is
a form of local connectedness. We first show that the median map is continuous at certain
points:
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Lemma 2.17 : Suppose x,z € T are distinct. Suppose V is a neighbourhood of x.
Then there exist open sets U > x and O > z such that if y € U and w € O, then
med(z,y,w) € V.

Proof : Using Lemma 2.16, we can find some t € (z, z] with [z,t] C V. Let U = H(x,t)
and O = H(z,t). If y € U and w € O, then (using Lemma 2.5) we see that med(z, y, w) =
med(z,y, 2z) € [x,t) C V as required. &

We deduce the following formulation of local connectedness. (Recall that any pair of
points x,y € T are joined by a preferred topological arc namely [z, y] as derived from the
pretree structure, applying Lemma 2.16. However, we have not yet shown that it is the
only topological arc between these points.)

Lemma 2.18 : Suppose x € T and that V is a neighbourhood of x. Then there is a
neighbourhood U of x such that if y € U then [z,y] C V.

Proof : We can suppose that V is open so that 7'\ V' is compact. Given z € T'\ V, choose
open sets U(z) about z and O(z) about z satisfying the conclusion of Lemma 2.17. Let
{O(z:) | 1 <i < n} be a finite subcover of T\ V, and let U = (;_, U(z;). We claim that
if y € U, then [z,y] C V. For if not, choose z € [z,y] \ V. Now z € O(z;) for some ¢, and
y € U(z;). Thus med(z,y,2) € V. But z € [z,y] so med(z,y,z) € z ¢ V. This proves the
claim. &

It remains to show that there is only one topological arc joining two given points.
Since shall refer to this again later, we shall formulate this result for general pretrees
(without any compactness assumption).

Lemma 2.19 : Suppose that S has the structure of both a pretree and a hausdorff
topological space. Suppose that for allx,y € S, the pretree interval, [z, y], is homeomorphic
to a closed real interval with endpoints at x and y. In addition, suppose that S is locally
arc-connected in the sense that if x € S, and V is a neighbourhood of x, then there is a
neighbourhood U of z such that for all y € U, we have [z,y] C V. Then, S is topologically
a real tree. Moreover the induced pretree structure agrees with the original.

Proof : Suppose x,y € S are distinct, and that h : [0,1] — S is a continuous injective
map with h(0) = x and h(1) = y. Then, we claim that h([0, 1]) = [z, y].

Since h is a homeomorphism onto its range, we know that A([0,1]) is an arc joining x
to y. By Lemma 2.16, so is [z, y]. Clearly if one were a subset of the other, they would have
to be identical. Thus, suppose for contradiction, that there exists z € [z,y]\ h([0, 1]). Note
that S\ {z} is open. ;From the local connectedness hypothesis, we see that if ¢t € [0, 1],
there is some open interval J(t) > ¢ such that if u € J(¢), then z ¢ [h(t), h(u)]. By the
Heine-Borel theorem, we can find points 0 = t; < t; < --- < t,, = 1 such that for each
i=1,...,n, we have t; € J(t;—1). Let x; = h(t;), then z ¢ [z;,z;—1]. But z = x¢ and
Y = Ty, SO z € [x,y] = [x0, z,] contradicting Lemma 2.6.

We thus see that T' is uniquely arc-connected in the topological sense. The local
connectedness hypothesis now reduces to that used in the definition of a real tree, and so
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the result follows. %
Proof of Theorem 2.14 : By Lemmas 2.16, 2.18 and 2.19. &

Before we finish this section, we describe how examples of pretrees occur in “nature”.
One of the principal motivations for introducing the idea was to capture the cut-point
structure of a continuum. This will be discussed in some detail in Section 5. Pretrees can
also be viewed as a kind of generalisation of pseudotrees as discussed in Section 3. Other
connections with partial orders and their automorphism groups are discussed in [AN] and
[Tr].

The special case of a median pretree (under a variety of different names) has been
studied in various contexts for some time. They can be found in Sholander’s paper [Sho,
and have appeared in various guises, for example see [He] and [Chl].

More recently, a connection has been made between median pretrees and and A-trees
as defined in [MorS|. The case of R-trees will be discussed in some detail in Section 7,
and Z-trees are mentioned in Section 6. We recall briefly the definition. Let A be an
ordered abelian group. A A-tree, T, is a A-metric space such that given any z,y € T,
there is a unique segment [z,y] C T joining x to y, where a “segment” is a subset of T
A-isometric to an interval in A. In addition, 7" must satisfy the two axioms: (Vz,y,z €
T)(Fw € T)([x,y] N [z, 2] = [z,w]) and [z,y] N[z, 2] = {z} = [z,y] U [z, 2] = [y,2]. It is
easily verified, and has been observed elsewhere, that a A-tree is also a median pretree,
where the betweenness relation is defined by interpreting a segment [z,y] as a pretree
interval. Conversely, it has been shown by Chiswell [Chl], that every median pretree can
be embedded in a A-tree for some suitable A. Moreover, a countable median pretree can be
embedded in an R-tree. Now, the completion process (Theorem 3.19) embeds any pretree
in a median pretree. Another construction which achieves this is given in [AN]. It follows
that every pretree can be embedded in a A-tree. A modification of the completion process
(along the lines of that given in [AN]) shows that every countable pretree embeds in a
countable median pretree, and hence in an R-tree. For further details, see the remarks
after Lemma 3.29.

Returning to general pretrees, another natural connection, which we shall discuss in
more detail here, can be made with protrees, as defined by Dunwoody [Du2]. It turns
out that any protree can be viewed as a special kind of pretree (with some additional
structure). Also the vertex set of a protree has a natural structure as a median pretree.

Recall the definition of a protree. It is a partially ordered set (E, <), together with an
order-reversing involution [z — z*| : E — E satisfying the “nesting condition”, namely
that given any z,y € F, precisely one of the following six statements is true: =z = y,
r=y"x <y, x<y',xr>yorax>y" Notethat every subset of a protree, which is
closed under the involution, is itself a protree. We should imagine x as directed edge, and
x* as the same edge directed in the opposite sense. We can interpet x < y intuitively to
mean simultaneously that x “points towards” y, and y “points away from” z. This can
be made precise if, for example, E' were the set of directed edges of a simplicial tree, in
particular, of a finite (simplicial) tree. In fact, every finite protree arises in this way. This
can be viewed as an analogue of Lemma 2.5. In fact, it is a corollary of Lemma 2.5, as we
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shall see.
Suppose E is a protree. Let T be the (set-theoretic) quotient of E under the involution.
Thus an element of T' is formally a pair {z, x*}, which can be thought of intuitively as an

undirected edge of the protree. We define a betweenness relation on 7" as follows. Given
X,Y, Z €T, we write XY Z to mean that (3x € X)(Jy € Y)(Fz € Z)(z < y < 2).

Proposition 2.20 : With this structure, T', is a pretree.

Proof :
(T1): If z < y < z, then z* < y* < z*, and so ZY X.

(T2): Suppose XYZAXZY. Now,z <y <zandz' <z <y, wherea' € X,y €Y and
2 € Z. Now since x < y and 2’ < ¢/, the uniqueness part of the nesting condition tells us
that x = 2/ and y = y’. Similarly, we find that z = 2’. But then y < z and z < y.

(T3): Suppose XY Z and W € T'\ {Y'}. We have = < y < z. Now by the nesting condition
(repalacing w by w* if necessary) we see that there is some w € W with (y < w)V (w < y).
Thus XYW VWY Z as required. &

Of course, a lot of information is lost in passing in this way from a protree to a pretree.
Perhaps a more useful way is to associate to every undirected edge of the protree a pair of
points, which can be thought of as corresponding to the “endpoints” of the edge. A more
formal way to approach this construction is to first define the “binary subdivision” of a
protree.

Suppose that E is a protree. Let £ = E x {—,+}. We think of (x,—) and (z,+) as
subdividing the directed edge = into two halves, with (x, —) at the tail end of x and (z, +)
at the head end. With this in mind, we define a protree structure on E’ as follows. Given
x € E, we set (x,—)* = (2%, +) and (z,+)" = (z*,—). Given z,y € F and 0,7 € {—,+},
we write (z,0) < (y,7)if (z < y)V((zr =y)A(c = —) A(7 = +)). In particular,
(x,—) < (z,4) for all x € E. It is now a simple exercise to verify that E’ with this
structure is indeed a protree.

Now, given any protree, FE, we can define a pretree, ¥ = X(F), by first taking the
binary subdivision, E’, and then taking the associated pretree (of undirected edges) as pre-
viously defined. An element of ¥ thus consists of an unordered pair f(x) = {(z, —), (z*, +)}
for some = € E. Note that ¥ comes with a natural involution which sends g(z) to (z*).
This involution can be thought of intuitively as swapping the endpoints of an undirected
edge, {z,z*}, of E.

Note that the last construction is invertible in the sense that we can recover the
protree, F/, from the pretree % together with the involution. Thus a protree can be viewed
as a particular kind of pretree together with an involution. It’s not difficult to write down
a set of axioms required of such an involution in order for it to give rise to a protree,
though we shall not bother with that here.

One consequence to note from this construction is that if F is finite, then so is .
Thus, applying Lemma 2.5, we see that 3 can be embedded in a finite tree 7. Moreover, we
can assume that for every undirected edge {z, x*} of E, the corresponding pair of elements
{B(x), B(x*)} C X, are the endpoints of some (undirected) edge, e(x), of 7. We can thus
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associate to x the directed edge é€(x) of 7, with tail at f(x), and head at B(z*). In this
way, if x,y € E, we have x < y if and only if €(z) points towards e(y) and €(y) points away
form e(z). If we like, we can now contract to a point each component of 7 minus the union
of the interiors of all the edges of the form e(z). In this way, we can identify F as precisely
the set of directed edges of a finite tree. This can be viewed as an analogue of Lemma
2.5. It can also be seen as an instance of a more general construction which embeds every
countable protree in an R-tree [Du2]. A still more general connection between protrees
and A-trees is explored in [Ch2].

As already mentioned, there is another way in which a protree gives rise to a pretree.
An orientation, a, on E, is a transversal to the involution. In other words, for any = € F,
precisely one of the statements x € a, x* € a holds. A wvertexr of E is an orientation, a,
with the property that if y € a and z < y then = € a. Note that this condition forbids
the possibility of having x,y € a with £* < y, in other words, the edges x and y pointing
away from each other. We can thus intuitively imagine all the directed edges in a pointing
towards some phantom vertex, which we can abstractly identify with a.

We write V = V(F) for the set of vertices of E. Thus V' C P(E) where P = P(FE) is
the power set of 2. We shall describe a pretree structure on V.

Note that P is a distributive lattice with respect to the operations of union and
intersection. There is a standard way of defining a median in such a lattice, namely given
a,b,c e P, set

med(a,b,c) = (aUb)N(bUc)N(cUa)=(aNb)U(bNc)U(cNa).

One can verify (though we won’t need to here) that P is a median algebra. Now, given
a,b € P one can define the “median algebra interval”, [a,blp C P as [a,b]p = {c € P |
med(a,b,c) = c}. Thus, in this case, ¢ € [a,b]p if and only if ¢ C a Ub. Note that
med(a, b, c) € [a,blp N [b,c]p N [c,a]lp. So far, these are basic constructions for median
algebras (see [BaH]). Note that P is not in any sense a “treelike” object. However the
situation changes, when we restrict to V' C P.

Now, it’s a simple exercise to verify that V is closed under the operation of taking
medians. We claim, in fact, that V is a median pretree, where we define the betweenness
relation, by interpreting [a,b] = {¢ € V | ¢ C a U b} as a pretree interval.

We begin with the following lemma:

Lemma 2.21 : Suppose a,b,c,d € V and d C a UbU c. Then at least two of the three
statements d C aUb, d CbUc and d C ¢ U a hold.

Proof : Suppose not. Then, without loss of generality, we can find z € d \ (a Ub) and
y €d\ (aUc). Thus, z*,y* € a. Since z,y € d, we have =(z* < y), and since z*,y* € a,
we have —(z < y*). Thus, by the nesting condition, we have (x < y) V (y < x). Now,
dCaUbUc,s0x € cand y € b. If x < y we obtain the contradiction = € b, whereas if
y < x we obtain the contradiction y € c. &

Proposition 2.22 : With the structure defined above, V' is a median pretree.
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Proof :
(T1): Clearly [a,b] = [b, a].
(T2): Suppose b € [a,c] and ¢ € [a,b]. Then b CaUcand ¢ CaUb. If z € b\ ¢, then

r*€ecCalUb,sox* €a. But x € b C aUc, contradicting z* € a N c. We conclude that
b C c. Similarly ¢ C b. Thus b = c.

(T3): Suppose d € [b,c] and a € V. Now d CbUc C aUbUec. Thus, by Lemma 2.21, we
see that d CaUbor d C aUec. Thus d € [a,b] U [a, ¢|]. This shows that for all a,b,c € V,
we have [b, ¢] C [a,b] U [a, c].

This shows that V' is a pretree, and the existence of medians has already been observed.

¢

We remark that this construction can also be interpreted in terms of flows in pretrees,
and ties in with the previous construction. Given a protree, E, we construct the pretree,
Y = ¥X(FE), as above, and then embed ¥ in the complete pretree ®(X) as constructed in
Section 3. Now V' can be identified as a certain subset of ®(X)\ X. In this way, we obtain
a natural pretree structure on the disjoint union X U V. We shall not work through the
details of this construction here.

3. Flows

In this section, we describe what we call “flows” on a pretree. For a finite pretree, a
flow can be imagined by first embedding it in a finite tree, and then putting orientations
on each of the edges in such a way that they all point towards a single vertex (which may
or may not lie in our original pretree). This was essentially the structure that arose in the
proof of Lemma 2.5. (Note that the vertex to which all the edges point should be allowed
to have degree 2, so it might correspond to an unoriented edge in that proof.) This gives
rise to a binary relation given by the property that two points should be connected by a
sequence of positively oriented edges. A flow on a general pretree is thus a binary relation
which is consistent with the above picture for all finite subsets.

We note that there is close connection between flows on pretrees and pseudotrees as
we discuss after Proposition 3.4.

One purpose in introducing flows is that enables us to embed any pretree, T, in a
complete median pretree, ®. This embedding will have the property that for any distinct
pair of points x,y € ® \ T, there is some z € T with zzy. Also for any pair of distinct
points z,y € T, there is some z € ® with xzy. The pretree ® arises as the set of flows on
T given an appropriate pretree structure.

In some respects, ® is larger than really necessary. For example, even if T' is already
a complete median pretree, then ® \ T # () (unless T is a singleton or empty). However,
once we have constructed ® there are various ways one could trim it down to give a more
sensible notion of completion, if desired. These will be discussed later.

Note that a means of embedding a pretree in a median pretree is given in [AN] (or in
their terminology embedding a “B-set” in a “B-set of positive type”). Their construction
is different, and does not guarantee completeness.
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In outline, what we propose to do is to define the set, P, of flows on a pretree T, and
put a pretree structure on 7' LI P extending that on 7'. In this structure, every point of
P is terminal. In particular, P is null, so it’s not very interesting in itself. However, we
can use the pretree T LI P to define a new pretree structure on P which admits a natural
embedding of T'. Since we shall eventually want to revert to using our original notation
for the betweenness relation, we shall be obliged to rename P as ®. We can then regard
T as a subset of ® without a clash of notation.

As already mentioned, a flow, p, on T is a binary relation which we shall denote by
xy.p for x,y € T. Thus, in some sense, we imagine p as flowing from x to y.

Definition : The binary relation p is a flow on T if it satisfies the following axioms for
all z,y,z € T:

(F1) =(zy.p A yz.p),
(F2) zzy = (xz.p V yz.p), and

(F3) (zyp Az #y) = (zyz V zy.p).

Note that (F1) implies that if zy.p, then z # y.

We have already observed that any subset S of a pretree T' is a a pretree. Also we
can restrict a flow, p, to S to give a flow on S which we shall denote by p|S.

A simple example of a flow is obtained by choosing any a € T, and defining a =
flow(a) = flowr(a) by

xy.a <y € (v,a

(i.e zy.a < zyaV (y = a A x # a)). It is easily verified that a is indeed a flow. In fact it
has a simple characterisation which will be useful later:

Lemma 3.1 : Suppose p is a flow on T. Then p = a if and only if (Vx € T\ {a})(za.p).

Proof : The “only if” bit follows immediately from the definition of a. For the “if” bit,
suppose (Vz € T\ {a})(za.p). We want to show that zy.p < xy.a. We can assume that
y # a. By axiom (F1) we have —ay.p. If zy.p, then by (F3), zya, so xy.a. Conversely, if
xy.a then zya, so by (F2), xy.p. Thus p = a as required. O

There is a sense in which all flows on T arise in this way, but we might first have
to add an extra point. Thus, suppose p is a flow on 7. We put a pretree structure on
T U {p} which extends that on T" by declaring that p is terminal (i.e. (Vx,y € T)(-xpy)),
and if z,y € T, we set xyp < pyxr < xy.p. The fact that this is indeed a pretree is almost
immediate: axiom (T1) is contained in the construction, axiom (T2) follows from (F1)
given that p is terminal, and axiom (T3) follows from (F2) and (F3) again given that p is
terminal. Also, directly from the construction, we see that p is just the restriction to T" of
flow towards p in 7'U {p}. We have shown:
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Lemma 3.2 : Ifpis a flow on T, then there is a natural pretree structure on T LI {p}
(as defined above) such that p = flow(p)|T. O

In fact, we can generalise this result to take account of all possible flows simultaneously.
Let P be the set of all flows on T'. We put a pretree structure on 7' LI P as follows. We
assume that the induced structure on T agrees with the given structure. The following
three cases account for all other possibilities:
(C1) If p e P and u,v € T U P, then —upv.
(C2) If pe P and z,y € T, then zyp < zy.p.
(C3) If p,ge P, p+# qand x € T, then prq < (Vy € T\ {z})(yx.pV yz.q).

Note that for any p € P, the structure induced on the subset 7' {p} agrees with that
defined as for Lemma 3.2. In case (C3), it is important to insist that p # ¢, otherwise if
x € T and p = flow(x) then we would have pxp which is not allowed in a pretree.

Lemma 3.3 : With the betweenness relation defined above, T' LI P is a pretree.

Proof : The proof is fairly mechanical. We verify the axioms in turn:

(T1): This is implicit in the construction.

(T2): This follows from (C1) and axiom (T1) for 7'

(T3): There are essentially four cases to consider. Throughout, we shall assume that
x,y,z €T and p,q,r € P.

Case(a), T3(zyp, z): Now xy.p so by (F3), we have xyzV zy.p and so xyzV zyp as required.
Case(b), T3(xyp,q): Again, we have zy.p and want to show zy.q V pyq. Suppose the
conclusion fails. Then —zy.q A —pyq. The latter states that =(Vz € T'\ {y})(zy.p V 2y.q)
so (Jz € T\ {y})(—zy.p A zy.q). But xy.p A —zy.p implies zyz by (F3). Thus, by (F2), we
have zy.q V zy.q. But we already know that —xy.q A —zy.q. This contradiction shows that
we must indeed have zy.q V pyq, so zyq V pyq as required.

Case(c), T3(pxq,y): We have pzq so (Vz € T)(zz.p V zx.q). In particular, yx.p V yx.q so
yxp V yrq as required.

Case(d), T3(pzq,r): We have pxrq and we want pzrV gxr. Suppose, for contradiction, that
—pxrA—qgrr. Then (Jy € T\{z})(—yz.pA—-yx.r) and (Iz € T\{z})(—-zzx.qA—-zz.r). jFrom
pxq, we have yx.pV yz.q, and so since ~yx.p, we deduce yx.q. Now since yr.q A —zx.q we
have yxz by (F3). Thus, by (F2), we obtain yz.r V zz.r, contradicting —~yx.r A ~zz.r. We
thus conclude that pzr V qxr as required. &

JFrom the construction, we see that the structure on 7'/ P induces the original pretree
structure on 7. In addition it satisfies the following:
(P1) Every point of P is terminal,
(P2) Every flow on T has the form flow(p)|T" for some p € P, and

(P3) If p,q € P and flow(p)|T = flow(q)|T", then p = q.
Although we shall not need it, we make the observation that T'U P is characterised
by properties (P1)—(P3):
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Proposition 3.4 : Suppose T U P is another pretree satisfying (P1)—(P3) (with P’
replacing P). Then there is a pretree isomorphism from T U P to T U P’ fixing T.

Proof : By (P2) and (P3), there is a natural bijective correspondence between P’ and
the set of flows on T, so we may identify P’ with P. Given u,v,w € TU P =T U P’ we
denote the pretree relation coming from 7'U P’ by |uvw|. We thus want to show that this
is the same as that already defined. By hypothesis, we have |zyz| < zyz for z,y,z € T.
Also, from the nature of our identification, we have |ryp| < zy.p < xyp for z,y € T and
p € P. We thus need to verify that if z € T and p, g € P, then |pxq| < pxq.

Now if |pxq|, then for all y € T'\ {z} we have |yxp| V |yzq| (by (T3)), so yz.pV yx.q.
Thus, by definition, pzq. Conversely, suppose —|pzq|. By (T3), we have |yxp| < |yzq|,
and so yx.p < yx.q, for y € T. Now, if pzq, then for all y € T'\ {z} we have yx.pV yz.q
and so yx.p A yxr.q. Thus, by Lemma 3.1, we see that p = ¥ = ¢ contradicting prq. We
thus deduce —pxq as required. &

Remark.

We shall digress for a moment to describe a connection with pseudotrees, about which
there is fairly extensive literature (see [Ni], and the references therein). Recall that a
pseudotree is a partially ordered set, (X, <), with the property that the set of predecessors,
{y € X |y <z}, of any element x € X, is totally ordered. The infinum, inf{z,y} of two
elements = and y, if it exists, is the maximum of the set of common predecessors of x and
y. If every pair of elements of X have an infinum, then X is a meet-semilattice, where the
meet operation is defined by = A y = inf{x, y}.

Now, suppose that T' is a pretree with a flow p. Given x,y € T, write z < y < yx.p.
We can easily verify that (T, <) is a pseudotree. (This is probably most easily done using
Lemma 3.2, which reduces us to considering flow towards a point, and Lemma 2.5, which
reduces us to finite trees.) Now, if (7, <) has a minimum a € T', we see that p = flow(a).
If also T" is a median pretree, then (7', <) is a meet-semilattice with A y = med(a, z, y).

Conversely, suppose we are given a pseudotree (T, <). We can put a compatible pretree
structure on 7', though this will not in general be unique. The simplest pretree structure
to describe would be to set xzy if and only if precisely one of the relations z < z and z < y
holds. The pretree axioms are readily verified. However, probably a more natural pretree
structure is obtained by adding to this all relations of the form xzzy where z = x A y. In
either case, the binary relation, p, defined by yx.p < y < x gives a flow on T

The advantage of the second definition is that if (7', <) happens to be a meet-semilattice, |
and has a (globally) minimal element, a, then 7" is a median pretree, with med(z,y, z) =
max{x Ay,y A z,z A x} (which exists by the pseudotree axioms). Moreover, the flow de-
fined by the partial order is equal to flow(a). We see that there is a natural bijective
correspondence between median pretrees with a preferred point, and pseudotrees which
are meet-semilattices with minima.

Note that the construction of Lemma 3.2 has a simple interpretation in terms of
pseudotrees: if the pseudotree does not have a minimum, then we simply adjoin one.

It seems that much of the theory of pseudotrees can be carried out in the more general
context of pretrees. For our purposes, the latter will be more natural, and we shall not
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make any further direct use of pseudotrees.

Before we continue with our discussion of the set of flows, we first need to describe
particular flows which arise from directed arcs.

Recall that a directed arc (A, <) is a nonempty full linear subset with a total order
< such that for z,y,2 € A, 2yz < ((r <y < 2) V(2 <y < x)). If A happens to be an
interval, we shall use the convention of writing it in the form [a,b] or [a,b) etc. where we
assume that a < b.

A final segment of a directed arc A is a nonempty subset, B C A, such that if z € B
and x <y € A, then y € B. Clearly B is itself a directed arc. We say that two directed
arcs, A and A’, are cofinal if they have a common final segment. In such a case, AN A’
will be such a segment (as we shall see later). Clearly cofinality is an equivalence relation
on the set of directed arcs.

We say that a € A is a mazimum of A if {a} is a final segment of A. Obviously a
maximum, if it exists, must be unique. We write a = max(A). We shall say that A is
endless if it has no maximum.

Lemma 3.5 : Suppose that A is an endless directed arc. Then given any x,y € T, the
following statements are equivalent:

(1) (Vz € A)(Fw € A)(zyw A z < w).
(2) (3z € A)(Vw > 2)(xyw)

Proof :

(1) = (2): Suppose (2) fails. Then (Vz € A)(Jw € A)(—zyw A z < w). Applying (1) and
—(2) alternately, we can find points a < b < ¢ in A with ~zya A xyb A —zyc. By T3(zyb, a)
and T3(zyb, c), we see that a,c € [z, y]. Now, since abe, we have b € [x,y], so —zyb. This
contradiction shows that (2) must hold.

(2) = (1): Let 2o be the point given by condition (2). If z is any other point of A, then
choose w € A greater then both z and z5. We have zyw. &

Given a directed arc, A, we shall define a flow, flow(A) = flowy(A) on T, which we
denote by xy.A for x,y € T as follows. If a = max(A) we set flow(A) = flow(a) as defined
earlier. If A is endless, we write zy.A if either (hence both) of the statements of Lemma
3.5 is are satisfied. We shall verify that this does indeed define a flow. First we make a
couple of observations.

Lemma 3.6 : If A and B are cofinal, then flow(A) = flow(B).
Proof : If a = max(A), then a = max(B) so flow(A) = flow(a) = flow(B). So suppose A

and B are both endless. We can assume that B C A is a final segment. We use condition
(1) to see that zy.A = zy.B, and condition (2) to see that zy.B = xy.A. O
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Lemma 3.7 :  Suppose that A is a directed arc, and x,y € T.
(1) If x,y € A, then 2y. A < x < y.
(2) If x,y ¢ A, then 2y.A < (3z € A)(zyz) & (Vz € A)(zyz).

Proof :

(1) If a = max(A), then z < y & y € (x,a] < xy.A. So suppose A is endless. If z < y
then (Vz > y)(zyz) and so zy.A. If xy.A then (32)(zyz Ay < 2) so z < y.

(2) Note that if w,z € A, then since —~wyz, we have zyz < zyw (by T3(zyz,w) and
T3(zyw, z). The statement now follows easily. &

Lemma 3.8 : For any directed arc, A, flow(A) is a flow on T.

Proof : We have already observed that for any point, a, flow(a) is a flow. We can thus
assume that A in endless. We need to verify the axioms (F1)-(F3) for any set of four
points x,y, z, w. Now using Lemma 3.6 and the fact that A is endless, we can suppose
that each of these points lies outside A. This allows us to apply the condition given by
Lemma 2.7(2). We thus choose any a € A, and so for any pair u,v € {z,y, z,w} we have
uv.A < wva. So again, the result follows from the fact that flow(a) is a flow. &

Lemma 3.9 : Suppose A is directed arc and x € A. If y € T, then zy. A & (y € ANz <
y)-

Proof : If a = max(A), then A = flow(a), so 2y A <y € (x,a] & (y € ANz < y) as
required. So suppose A is endless. In this case, if zy.A, then (32 € A)(zyz) so y € A, and
by Lemma 3.7(1), z < y. The converse follows directly from Lemma 3.7(1). &

JFrom this, we may deduce the following partial converse of Lemma 3.6:

Lemma 3.10 : Suppose A and B are directed arcs with ANB # () and flow(A) = flow(B)
then A and B are cofinal.

Proof : Choose x € ANB. Let C ={y €T |zy.A} ={y € T | xy.B}. By Lemma 3.9, if
C'is empty, then x = max(A) = max(B). Otherwise, C' is final segment of both A and B.
¢

The following observation will prove useful:

Lemma 3.11 :  Suppose S C T is a full subset, and (A, <) is a directed arc in T
with ANS # (. Then (AN S, <) is a directed arc. Moreover, if AN S is endless, then
flowp(A)]S = flows(ANS).
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Proof : Let B = AN S. The fact that this is a directed arc follows directly from the
definitions.

Suppose B is endless, and x,y € S. We want to verify that zy.A < zy.B. Now, since
B is endless, we can suppose, using Lemma 3.6, that x,y ¢ A. Choose any a € AN S.
Then, by Lemma 3.7(2), we see that zy.A < xya < zy.B. &

It will be convenient to have a slightly different formulation of the notion of complete-
ness from that given in Section 2. We begin by making some observations about directed
arcs.

Recall the definition of a directed arc (A, <) given after Proposition 3.4. The set of
final segments of (A, <) are totally ordered by set inclusion. If z € A then {y € A | x <y}
is a final segment. Also, if B C A is a subarc, and contains a final segment of A, then B
is itself a final segment. (To see this, suppose C' C B is a final segment of A. Choose any
z€C. Then {w € A|z<w} C B. Now, if x € B, and y > x, then either y > zsoy € B,
ory < zsovy € [r,z] and again y € B, since B is full.) This justifies the assertion made
earlier that if directed arcs A and A’ are cofinal, then AN A’ is a common final segment.

Consider now an interval [z,b). We consider [z,b) as a directed arc so that x is a
minimum. If y € [z,b), then [y,b) is a final segment. Note, more generally, that if z,y,b
are distinct points of T', then [z,b) and [y, b) are cofinal if and only if [x,b) N [y,b) # 0
(since if z € [x,b) N [y, b) then [z,b) is a common final segment).

Suppose now, that A is any directed arc, x € A, b € T and [x,b) is cofinal with A.
Then [z,b) is a final segment of A. (To see this, choose y € A such that [y,b) is a final
segment of both A and [z,b). Now [z,b) C [z,y] U [y,b) C A. Thus [z,a) is subarc of A
cofinal with A, and so, as observed above, [z,b) is a final segment of A.)

Lemma 3.12 : Suppose A is an endless directed arc. If z,y € A and b € T, then [z,b)
is a final segment of A if and only if [y, b) is.

Proof : Without loss of generality, z < y.

Suppose [z,b) is a final segment. Now y € [z,b) so [y,b) is a final segment of [z, b)
and so also of A.

Conversely, suppose that [y, b) is a final segment. Since A is endless, we can choose
some z € (y,b). Now z <y < z so zyz. Also y # b and —byz, so xyb. Thus y € [z,b). In
particular, the intervals [x,b) and [y, b) intersect and are thus cofinal. It follows from the
discussion immediately before the lemma that [z, b) is a final segment. &

Definition : Given a directed arc (A, <), and b € T', we say that b is a supremum of A if

either b = max(A) or if A is endless, and [z, ) is a final segment of A for some (and hence
all) x € A.

Note that if a is a minimum of A, then A = [a,b] or A = [a,b) depending on whether or
not b € A. More generally, if both (A, <) and (A, >) have suprema, then A must be an
interval. We see:
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Lemma 3.13 : A pretree is complete if and only if every directed arc has a supremum.

¢

Note that in general, a directed arc might have more than one supremum. However
in a dense pretree or a median pretree, a supremum, if it exists, will be unique.

We now return to our pretree 7' U P satisfying the conditions (P1)—(P3) described
earlier.

By (P1), we see that if p,q € P, then (p,q) C T. If (p,q) = (), then given z,y € T, we
have —pyx, so xyp < xyq, and so, by (P3) we see that p = ¢. In other words, no pair of
points of P are adjacent in in T'LJ P.

To each x € T, we associate the unique point z € P such that flow(z) = flow(z)|T.
Note that 2 and T are adjacent, i.e. (x,Z) = ().

Lemma 3.14 : Ifz €T, and a € T, then [a,Z) = [a, x].

Proof : We have already noted that (z,z) =0, so [z,Z) = {z} = [z, z]. So suppose that
a # x. Now, azx.Z, so axZ and so = € (a,z). Thus [a,Z) = [a, 2] U [z,Z) = [a,z] U{z} =
[a, z]. ¢

Lemma 3.15 : Ifz,y € T and x # y, then (z,y) = [z, y].

Proof : Now (Z,y) # 0, so choose any a € (Z,y). We see that x € [a,z] = [a,T) C (T, 7).
Thus, (z,y) = (Z,2] U [2,9) = {z} U[z,y] = [2,y]. O

Lemma 3.16 : Suppose that A C T is an endless directed arc with minimum a € A.
Then there is some m € P, such that A = [a,m).

Proof : By (P2) there is some m € P such that flow(A) = flow(m)|T. Now, using Lemmas
3.6, 3.11 and 3.14 respectively, we see that flow(A) = flow(m)|T = flow([a,m])|T =
flow([a, m]NT) = flow([a, m)). Thus, by Lemma 3.10, A and [a, m) are cofinal. Since a is
the minimum of A we see that A = [a, m). &

Now if p,q,r € P, by Lemma 2.7, we have [p,q] C [p,7] U [r,q]. So, intersecting
with 7', we get (p,q) C (p,r) U (r,q). Similarly, we have (¢,7) C (p,q) U (p,r) and so
(p,7) € (p,q) = (¢,7) € (p, g)- We deduce:

Lemma 3.17 : Ifp,q,r € P, then the following are equivalent:

(1) (p:q) = (p,7) U (r,9),

(2) (p,r) € (p,9);

(3) (¢:7) € (p,9)- O
Note that if (p,q) = (p,7) U (r, q), then any point of (p,r) N (r,q) must be a median

of p,q,r. We see that, in such a case, (p,r) N (r,q) can contain at most one point. In fact,
if x € (p,r) and y € (7, q) then either pxyq, or x = y = med(p, q, ).
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Note also that if (p, )N (r,q) = 0 then it necessarily follows that (p,q) = (p,r)U(r, q).

We write T = {z |2z € T} C P.

We are now ready to define a new pretree structure on P as follows. We shall denote
the new betweenness relation by (pgqr) for p,q,r € P.

We write (prq) if p,q,r are distinct points of P, and either (3z € T)(r = T A pzq) or
(rgT)A((p,r) N (rq) =0).

Applying Lemma 3.15, we see that if z,y,z € T, then (Zyz) < wyz, so that T is an
isomorphic copy of T'.

Lemma 3.18 : Suppose p,q,r € P are distinct. Then:
(1) (p,r) N (r,q) =0 = (prq).
(2) (prq) = (p,q) = (p,7) U (r,q).

Proof : If (p,r) N (r,q) = 0, then it follows from Lemma 3.14, that » ¢ T, so (prq) b
definition. Suppose (prq). Then if r = Z for some x € T, then by definition, x € (p, q), s
(p,q) = (p,z] U [z,q) = (p,r) U (r,q) by Lemma 3.14. If r ¢ T, then (p,r) N (r,q) = 0 so
from the earlier discussion we have again that (p,q) = (p,r) U (r, q) as required.

o <

When referring to the new structure, (P, ()), we shall speak of “()-arcs” and “()-
medians” etc. We shall use the notation ([p, ¢q]) or ([p,q)) etc. for ()-intervals in (P, ()).
We are now ready to prove the main result of this section:

Theorem 3.19 : (P, ()) is a complete median pretree.

Proof : We first need to verify the axioms of a pretree.

(T0): This holds by hypothesis.

(T1): This is immediate from the construction.

(T2): Suppose (prq) A (pqr). Now, if ¢ = 7 and r = g for z,y € T, we get pry A pyZ so
pxy A pyzx, contradicting (T2) for T'U P. So suppose r ¢ T. ;From (pgr), and Lemma
3.18, we get (¢,7) C (p,r), and from (prq) we get (p,r) N (¢,7) = 0. Thus (¢,r) = @ and
so ¢ = r, contradicting the fact that p, ¢, must be distinct.

(T3): Suppose (prq) and s # r. If r = z, for x € T, then pzrq so pxrs V gxs, and so
(prs)V (grs) as required. Thus, suppose r ¢ T, so that (p,r)N(q,r) = 0. If =(prs) A—=(qrs)
then we can find x € (p,r)N(r, s) and y € (q,r)N(r, s). We must have z # y. Also resAryz,
so without loss of generality, rzys. But ryq, so rxyq. Thus x € (g,r) contradicting
(p,7) N (gq,7) = 0. We must therefore have (prs) V (grs) as required.

This shows that (P, ()) is a pretree. The next job is prove the existence of medians.
To this end, suppose p, q,r € P. We can suppose that these are all distinct.

Now if (p,r) N (r,q) = 0, we would have (prq) so r would be ()-median of p,q,r. We
can thus suppose that (p,7) N (r,q) # 0. Similarly, we suppose (r,q) N (¢,p) # O and
(g,p) N (p,7) # 0.
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Suppose z € (q,p) N (p,r) N (r,q). Now if Z = r, then, since pzq, we would have
(prq), and so r would be a ()-median. We can thus suppose that  # r, and similarly, that
T # p and T # ¢q. It then follows that T is a ()-median of p, g¢,r. We can thus assume that
(¢.p) 0 (p,7) N (r,q) = 0.

We now define a flow on 7', denoted by xy.s for x,y € T, by the condition that

xy.s < (xyq A xyp) V (xzyp A xzyr) V (zyr A xyq).

In other words, at least two of the conditions zyp, zyq and xyr should hold. We first need
to verify the axioms of a flow. We take x,y, z to be arbitrary elements of 7.

(F1): If zy.s A yx.s, then, without loss of generality, zyp A yxp which is impossible.

(F2): Suppose zzy. By (T3) for T'LI P, we have (zzp V yzp) A (xzq V yzq) A (zzr V yzr),
which clearly implies xz.s V yz.s.

(F3): Suppose zy.s and z # y. Without loss of generality, we have zyp A zyq. If —zyz,
then zyp A zyq so zy.s.

This shows that what we have defined is indeed a flow, and so, by (P2), there is some
s € P such that xys < zy.s for z,y € T. We claim that s is a ()-median.

First, we show that (p,s) C (p,q). To see this, suppose pzs. Thus for all y € T'\ {z}
we have (by (T3) for T'U P) yxpV yxs which implies xyp V zyq. But directly from the way
in which the structure on 7'LJ P was defined, namely (C3), (or indirectly from properties
(P1)—(P3)), we see that prq as required.

Now we can permute p, ¢ and r as we please, so we see that (p,s) C (¢,p) N (p,7),
(q,s) C (r,q) N (q,p) and (r,s) C (p,r) N (r,q). Since (q,p) N (p,r) N (r,p) = 0, it follows
that (p,s), (¢, s) and (r, s) are mutually disjoint. It now follows from earlier assumptions
that s must be distinct from p, ¢ and 7. We thus have (gsp) A (psr) A(rsq). In other words,
s is a ()-median of p, q,r.

In summary, we have so far shown that (P, ()) is a median pretree. It remains to show
that it is complete. By Lemma 3.13, this is equivalent to showing that every directed arc
has a supremum. Before we start, we make the following observation.

Suppose p,q,r,s € P and (pgrs). Then we claim that (p,q) N (r,s) = 0. To see this,
suppose x € (p,q) N (r,s). Now, from (pgr), we have (p,q) C (p,r), so x € (p,r) N (r,s).
Since (prs), we must have r = Z. But we can similarly deduce that ¢ = Z, so we arrive at
the contradiction that ¢ = r. This proves the claim.

We are now ready for the final task, of showing that a directed arc as a supremum.

Suppose then that (B, <) is a directed ()-arc. We can suppose that it is <-endless.
We can also assume, for convenience, that B has a minimum of the form a for some
a € T. (Note that B must meet T, since if p,q € T are any distinct pair of points, we
can choose a € (p,q). Thus paq, so (paq) and so a € B. We can now replace B by the
final segment {p € B | a < p}.) Note that the order on B can now be described by
p=<q< {apq) V (p=aAq#a). By Lemma 3.14, for any p € P, we have (a,p) = [a, q).
Note that if p < ¢ then [a,p) C [a, q).

Now let A = {J,cpla,p). We can think of each interval [a, p) as a directed arc with
minimum a. Also this sequence is a nested, so we see that A is an arc, which we may order
so that a is a minimum. We denote this order by <. Thus if z,y € A, then =z < y < azy.
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Note that if p,q € B then (p,q) C A. (We can assume that p # a and that p < ¢q. Thus
(apq), so (p,q) € (a,q) € A.)

Suppose that A has a maximum, say b. Thus A = [a,b]. Now, from the definition of
A, there is some p € B such that b € [a,p). Thus A C [a,p) and so A = [a,p). Since B
is endless, we can find ¢,r,s € B, with p < ¢ < r < s. Thus (agrs), so (a,q) N (r,s) = 0.
But A = (a,p) = (a,q), and so (r,s) = 0, giving us the contradiction r = s.

It follows that A must be endless. Thus, by Lemma 3.16, there is some m € P such
that A = [a, m).

First we observe that m ¢ B. Clearly, m # a, since we know that A is endless, and
l[a,a) = {a}. For if m € B, we could choose p,q € B with m < p < q. Now (ampq)

( ,m)N(p,q) = 0. But (p, q) € A= (a,m), so (p,q) =0, and we get the Contradlctlon
= ¢q. Thus m ¢ B as claimed.

We now claim that B is equal to the ()-interval ([a,m)). This shows that m is a
()-supremum of B, and so, we can deduce that (P, ()) is complete.

First we show that ([a,m)) C B. Suppose p € ([a, m)). We can assume that p # a, so
(apm).

Consider, first, the case where p = Z for some = € T'. Then axzm, so x € (a,m) = A.
¢ From the definition of A, there is some ¢ € B such that x € (a,q). Thus azq so (apq).
Since a,q € B and B is full, we see that p € B as required.

Now consider the case where p ¢ T. Since (apm) we have (a,p) N (p,m) = 0. Also,
(a,m) = (a,p) U (p,m). We see that if x € (a,p) and y € (p, m), then axrym. Now choose
any y € (p,m). Now y € (a,m) = A, so there is some g € B such that y € (a, q), i.e. ayq.
Suppose that z is some point of (a,p). Then axy, so aryq. Thus zyqg A zym. It follows
that —gxm (since if gzm then yxq V yxm). Also, = € (a,p) so x & (p,m), i.e. ~psm. It
follows that = ¢ (p, q) (since if pxq then prm V grm). In other words, we have shown that
if x € (a,p) then x ¢ (p,q). Thus (a,p) N (p,q) = 0 so (apq). As before, we see that p € B
as required.

Finally, we want to show that B C ([a, m)). Thus suppose p € B, and that p # a. We
want to deduce that (apm).

Suppose first that p = Z for some 2 € T. By Lemma 3.15, x € (a,z) C A = [a,m).
Thus axm so (apm) as required.

Thus suppose that p ¢ T. Now (a,p) € A = (@, m) so, by Lemma 3.17, (a,m) =
(a,p) U (p,m). We want to show that (a,p) N (p,m) = (. Suppose then that x € (a,p) N
(p,m). Since A = (a, m) is endless, we can find y € (a,m) with ary. Now there is some
q € P with p < g and with y € (a@,¢). In summary, we have azym A axyq A prm. Now
pxm A zym so pxy. Also xyq so prq. Thus x € (a,p) N (p,q) contradicting the fact that
(apq). We conclude that (a,p) N (p,m) = (. We showed earlier that m ¢ B, so m # p.
Thus (apm) as required.

This finally proves the theorem. &

We have already observed that (P, ()) contains an isomorphic copy of T', namely T,
and can thus be thought of as a kind of completion of 7. However, as we have already
mentioned, the pretree (P, ()) is somewhat larger than one might ideally hope for in a
completion. There are ways in which one can cut (P, ()) down to size if desired. These
will be clearer if we give a couple of simple examples.
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The case of a finite pretree has already been alluded to indirectly in the proof of
Lemma 2.5. Here, completeness is not an issue, but the existence of medians is. Suppose
we embed our finite pretree, T, in a finite simplicial tree, 7, such that 7 = hull(7), i.e.
every terminal vertex of 7 lies in 7. We can identify 7" with T, and there is a natural
bijective correspondence between P\ T and the set of connected components of 7\ 7. A
component of 7\ 7' is of one of two types: either it is homeomorphic to a real interval —
or it isn’t. Now in the latter case (as in the proof of Lemma 2.5), we can assume that
it has the form of a wedge of at least three intervals connected at a common endpoint.
We can identify each point of P with a point in one of these components. In the former
case, we can choose any point, to give a new vertex of degree 2. In the latter case we take
the vertex at connecting point of our wedge of arcs. Clearly, vertices of the second type
(degree > 3) are essential if we are to obtain a median pretree. However, those of the
first type (degree = 2) can be thought of as artifacts of the construction. We would loose
nothing by deleting them. In fact, we would achieve the probably desirable result that the
completion finite median pretree just gives us back our original pretree.

At the other extreme, we might consider examples of dense linear orders. In this
case, the existence of medians is not an issue, whereas completeness is. Consider, for
example, the (already complete) closed real interval [0,1]. We can describe (P,()) as
([0,1] x {—,0,+}) \ {(0,—),(1,4)} given the lexicographic order (where — < 0 < +).
Thus, if x € T = [0, 1], then £ = (2,0). The points (z,—) and (x,+) arise respectively
as flow([0, z), <) and flow([1,x),>). As another example, consider the totally ordered set
T = (0,1) N Q, where (0,1) denotes the open real interval, and Q the rational numbers.
In this case, the completion (P,()) can be identified as a subset of the case described
above, namely ([0,1] x {0}) U ((0,1) N Q) x {—,0,+}. In these examples, the points of
the form (z,+) are superfluous for the purposes of achieving completeness, and could be
safely omitted.

Essentially these are the only types of unnecessary points, though the general case is
a bit more complicated to describe. It will be clarified by a classification of flows, which
we now go on to describe. This discussion will also be relevant to later sections.

We have already seen examples of flows of the type flow(a) for a point a € T and
flow(A), where A is an endless directed arc. There is a third type already alluded to in the
proof of Theorem 3.19, and our discussion of finite trees, which we now go on to describe.

Suppose F' C T is (for the moment) any subset of 7. Given y € F, let N(y) =
[y} U{z e F | (32 € F)(ay2)}.

Lemma 3.20 : Ifz € N(y)\{y} and z € T\ N(y), then zyz.

Proof : By hypothesis, there is some w € F with zyw. Since z ¢ N(y), we have
—zyw A z # y. Thus zyz. O

Lemma 3.21 : N(y) is full.

Suppose, for contradiction, that a,b € N(y), z € T\ N(y) and azxb. If y # a,b then by
Lemma 3.20, we have ayx and byx. But since azxb, we get the contradiction yzy. If y =10
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so a # y, we get ayx i.e. abx which contradicts axb. &

Recall the definition from Section 2:
Definition : A subset F' C T is null if (Vz,y,z € T)(-xyz).

Now if F' is null then clearly N(y) N F = {y}. In fact, if z € N(y), then [z,y] C N(y)
and so [z,y] N N(y) = {y}. Also, if z # y then N(x) N N(y) = 0.

Definition : A null subset of F' is a maximal null subset if it is not contained in any
strictly larger null subset.

Assuming that 7" is not a singleton, then a maximal null subset must contain at least
two elements (since any 2-element set is null). Note that if F' is maximal null, and z € T,
then either (Jy € F')(z € N(y)) or else, (Jy, z € F)(yxz) (otherwise F' U {x} would be a
larger null subset).

Definition : A star is a maximal null subset which is full.

JFrom the previous observations, we see that if F'is a star, then T can be expressed
as a disjoint union: T'= | |, N(y).

Lemma 3.22 : IfF is astar, andy € F, then for x € T, we have x € N(y) < [z,y|NF =

{y}-

Proof : We have already shown the implication (=). For (<) suppose z ¢ N(y). Then
x € N(z) for some z # y. Thus z € [x,y) N F, so [x,y] N F # {y}. O

We define the map h = hp : T' — F by the condition that x € N(h(z)). In other
words, [z, h(z)|NF = {h(zx)}.

Lemma 3.23 : Ifz,y € T, then [z,y] C [z, h(x)] U [y, h(y)]. Also, if h(x) # h(y), then
[z, y] = [a, h(z)] U [y, h(y)].

Proof : By Lemma 2.7, we have [z,y] C [z, h(z)] U [h(z),h(y)] U [h(y),y] = [z, h(x)] U

[y, h(y)].
Suppose h(x) # h(y). If z € [y, h(y)], then z ¢ N(z), so by Lemma 3.20, we have

h(z) € [z,z). Also by Lemma 3.20, we have h(z) € [z, h(y)] and h(y) € [y, h(x)]. Putting
these facts together, we see that z € [z,y]. Thus [y, h(y)] C [z,y]. Similarly [z, h(x)] C
[z, y]. &

Given a star, F', we define a flow, flow(F) = flowr(F') on T, which we denote by xy.F
for z,y € T by zy.F < y € (z, h(x)].

Lemma 3.24 : If F is a star, then flow(F') is a flow on T'.
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Proof :

(F1): If zy.F A yz.F, we get z,y € [h(z),h(y)] = {h(x),h(y)}, so z,y € F which is
impossible.

(F2): Suppose zzy. Then z € (z,y) = (z, h(x)] U (y, h(y)] by Lemma 3.23, so zy.F' V za.F
as required.

(F3): Suppose zy.F' Az # y. If h(z) # h(z), then by Lemma 3.20, we have xyz. So suppose
h(z) = h(z). Nowy € (z, h(z)] C (z,2)U[z, h(x)], so either zyz, or y € [z, h(x)] = [z, h(z)].
But z # y, so in the latter case, we get zy.F. &

We shall show (Proposition 3.25) that every flow on a pretree, T, is of one of the three
types we have already described; namely a flow towards a point of T, a flow derived from
an endless directed arc, or a flow derived from a star.

In order to describe this classification, we shall refer to the pretree structure on 7'LI P.
Recall that every flow on T' has the form flow(p)|T" for some p € P. In fact it will be
enough for us to consider the tree T'LI {p} (see Lemma 3.2).

Associated to any point = € T is an arc [x,p) C T. Clearly, any two such arcs must
be either cofinal or disjoint. Moreover, if [z,p) N [y,p) = 0, then [z,y] = [z,p) U [y, p).
We define a relation ~ on T by © ~ y < [z,p) N [y,p) # . We see easily that this is an
equivalence relation. We write A = T'/~. Note that if z € C' € A, then [z,p) C C. We see
that C' must be full (since if z,y € C then [z,y] C [z,p) U [z,y) C C). In fact, the same
argument shows that the union of any set of equivalence classes is full.

We can split A as a disjoint union, A = EUF, so that if x € |J € then [z, p) is endless,
whereas if € | J F, then [z, p) has a maximum.

If x € |JF, we write the maximum of [z,p) as h(z). Thus [z,p) = [z, h(x)]. Clearly,
if z,y € |JF, then x ~ y < h(x) = h(y). Let F = {h(x) | z € JF}. Clearly, if x € F,
then h(z) = z. More generally, if z € |JF, then [z, h(z)|NF = {h(x)}. Note that F' is a
transversal of F.

Now, if y,z € F, then [y, 2] C [y,p) U [z,p) = {y} U{z} and so (y,z) = 0. In other
words, F' is null and full.

Suppose that € # (). Choose x € |J&, so that [z, p) is endless. Applying lemma 3.11,
we see that flow(p)|T = flow([z, p])|T = flow([z,p] N T) = flow([z, p)). Thus the flow has
the form flow(A) where A is an endless directed arc.

Suppose now that &€ = ). Let us first consider the case where |F| = 1, so that
F = {a} for some a € T. Given any x € T, we have [z,p) = [x,a]. Thus, if z,y € T, then
xyp < y € (z,p) = (x,a], and so flow(p)|T = flow(a).

Finally suppose that £ = () and |F| > 2. We know that F is null and full. Also if
x € T, then [z,p) = [z, h(x)] and [z, h(x)] N F = {h(x)}. Note that if y € F'\ {h(z)}
then h(x) € [z,p) = [z,y] U [y,p) = [z,y]. If © ¢ F, then x # h(z) and we have
h(z) € (z,y). Thus F U {z} is not null. This shows that F' is, in this case, a maximal
null subset. Thus F' is a star. Using Lemma 3.22, we see that the definitions of the
map h agrees with that given earlier in defining flow(F'). Now, given x,y € T, we have
xyp <y € (z,p) = (x,h(z)] & zy.F. Thus, flow(p)|T = flow(F).

We have shown:
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Proposition 3.25 : Any flow on a pretree, T, has one of the forms flow(a), flow(A) or
flow (F'), where a € T', A is an endless directed arc, and F' is a star. &

Given p € P, we can associate a pair of cardinals, E(p) = (|€|, |F|). Given cardinals
m and n, write P(m,n) = {p € P | E(p) = (m,n)}. Thus, T = E(0,1). Those elements
of (P, ()) which appeared to be superfluous in our earlier examples were either in P(0,2)
or P(1,1). In fact (P \ (P(0,2) U P(1,1)),()) is a complete median pretree.

We shall return to this point later. First we discuss further the structure of (P, ()).
We want to consider when two points of (P, ()) are ()-adjacent. This is relevant to the
matter raised in the preceding paragraph, and will also be referred to later in the paper.

First, suppose that F' is a star, and that p = flow(F). Now, if z € F, we have
(z,p) # 0 (from the construction), and so Z and p are adjacent. Moreover, if x,y € F are
distinct, then then certainly (x,p) N (y,p) = 0, and so (Zpy).

We now claim that we cannot have two elements of T' being ()-adjacent. For suppose
xz,y € T and z,y are ()-adjacent. Now, {z,y} C T is null and full. Also, it is maximal
null, for suppose that z € T'\ {z,y}. Let m = med(z,y, z). If {z,y, z} were null, then m
would be distinct from Z and y, so (Tmy). We conclude that F' = {z,y} is a star. Let
p = flow(F'). {From the preceding paragraph, we see that (Zpy). This proves the claim.

Given a € T, write L(a) = {p € P | (a,p) = 0}. Thus, p € L(a) < (a,p) = {a}. Note
that L(a)N'T = 0.

Lemma 3.26 : L(a) is the set of points of P which are ()-adjacent to a.

Proof : Suppose p € L(a), and (arp). Now {a} = (a,p) = (a,r) U (r,p), so (r,p) = {a}.
In particular, rap. Since a # 7, p we deduce (rap) contradicting (arp).

Conversely, suppose there is some point = € (a,p). Now, from the earlier discussion,
we know that Z is not ()-adjacent to a, so we can assume that p # z. Thus (aZp) and so
p is not ()-adjacent to a. ¢

Lemma 3.27 : Suppose p and q are distinct points of L(a). Then (paq). Moreover, if
r € P with (prq), then r = a.

Proof : We know that p, ¢,a must have a ()-median. Since p and ¢ are adjacent to a, the
only possibility for this median is a itself. Thus (paq).
Suppose (prq). If r # a we get the contradiction (parq) V (praq). &

Note that it follows from Lemma 3.27 that L(a) U {a} is ()-full.

Lemma 3.28 : Two points p,q € P are ()-adjacent if and only if (3a € T)(p=aANq €
L(a))V(FaeT)(g=aANpe€ L(a)).

Proof : The “if” bit has already been done by Lemma 3.26. For the “only if” bit, suppose
that p and ¢ are ()-adjacent. Now (p,q) # 0, so there is some a € (p,q). Since —(pag),
without loss of generality, we must have ¢ = a. Thus, by Lemma 3.27, p € L(a). &
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The picture we have given of (P, ()) will be clarified if we give an explicit description
of the set L(a) in terms of flows on 7. Our analysis can be viewed as a generalisation
and extension of that concerned with the classification of flows on 7". (The latter can be
viewed as dealing with a terminal vertex, p, in the pretree T' U {p}.) For this reason, we
adopt similar notation.

Suppose a € T. There are two natural equivalence relations we can put on 7'\ {a}.
The first, ~, can be defined by = ~ y < [x,a) N [y,a) # (. The second, =, can be
defined by = ~ y < —zay. It is easily verified that these are indeed equivalence relations.
Clearly, z ~y =z ~y. lf x ® y Az 4y, then [x,y] = [z,a) U (a,y]. If x % y then
[z,y] = [z,a) U {a} U (a,y]. (The relations ~ and ~ are described in some detail in [AN],
where they are referred to respectively as “R,” and “R} relations”.)

As before, we write A = (T'\ {a})/~, and partition A as £ LU F according to whether
or not the arcs [x,a) are endless. We can also define a transversal, F' to F, and define a
map h : |JF — F such that if x € |JF, then [z,a) = [z, h(x)] and [z, h(z)|NF = {h(z)}.
Also if x,y € JF, then = ~ y < h(x) = h(y).

Next, we claim that if z,y € |J&, then x = y < flow([z,a)) = flow([y,a)). To see this,
suppose first that = ~ y. If x ~ y, then [z,a) and [y, a) are cofinal so we apply Lemma
3.6. If ¢ y, then [x,y] = [x,a) U (a,y]. Given any z,w € T, we can find final segments,
A and B of [z,a) and [y,a) respectively, such that z,w ¢ AU B. Note that AU B is
an arc, and so in particular is full. We see that if a € A and b € B, then zwa < zwb
(cf. Lemma 4.1). Now, by Lemma 3.7(2), we have zw.A < z2wa < zwb < zw.B. Thus
flow([z,a)) = flow(A) = flow(B) = flow([y,b)) as required. Conversely, suppose = % y.
Then zay. Thus za.[y,a) A —za.[z,a), and so flow([y,a)) # flow([x,a)). This proves the
claim.

Now let H be a ~-equivalence class of T'\ {a}. Let Ay = {N € €| N C H}. Thus
A gives a partition of H into ~-equivalence classes. Let g = EN Ay and Fyg = FNAg.
Thus Ay = Ex U Fy.

Let Gy = (FNH)U{a}. fx € FNH, then (z,a) =0. f z,y € FNH, then z ~ y so
—zay, and it follows that (x,y) = (x,a) U (a,y) = 0. This shows that G is null and full.

Suppose £y = 0. In this case, Gy is maximal null. (Since if x € H \ F, then setting
y = h(x) € FNH, we have ayz. If x € T\ (HU{a}) and y € FN H, we have x # y
and so zay. Either way, Gy U {z} is not null.) In other words, G is a star. We set
pa = flow(Gg). Note that since a € Gy, we have (Vx € T')(-az.pg).

Suppose that &g # 0. If x,y € |JEm, then since x ~ y, we have flow([z,a)) =
flow([y, a)). In this case, we write py for the flow thus defined. Again, (Va € T)(—za.pg).

Lemma 3.29 : L(a) ={py | H € (T'\ {a})/~}.

Proof : Suppose p ¢ L(a). Then there is some = € (a,p). Now axp so az.p. Thus we see
that p cannot have the form py for any H.

Conversely, suppose p € L(a), so (a,p) =0. If z € T'\ {a}, then [z, p) must be equal
to either [x,a] or [z,a). Let H = {x € T\ {a} | a ¢ [z,p)}. If 2,y € H, then —zay
(otherwise zap V yap), so x ~ y. Conversely, if x ~ y, then —zay, so xap < yap. We see
that H is a ~-equivalence class. Note that for each z € H, we have [z,p) = [z,a). We
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claim that p = pg.

Suppose that €y # (. Choose any = € |JEy. Now flow(p)|T = flow([z,p])|T =
flow([z,p] N T') = flow([z, p)) = flow([z,a)), so p = px.

Finally, suppose £ = (). Thus Gy = (F N H) U {a} is a star. Define h: T — Gy
as in the definition of the flow py = flow(Gy). If © € H, then [z,p) = [x,a) = [z, h(x)] by
the definition of h. If z ¢ H, then [z, p) = [z, a], by the definition of H. Also [x,a]NH = 0,
so [z,a] N Gy = {a}. Thus in this case a = h(x) and again we have [z,p) = [z, h(x)]. If
follows that xy.p < zyp < y € (x,p) = (z, h(z)] & zy.py. Thus p = py. O

JFrom the above discussion, it’s not hard to see that the trimmed down tree (P \
(P(0,2) U P(1,1)),()) is a complete median pretree as claimed earlier. Moreover, if T is
already a complete median pretee, then P = TUP(0,2)UP(1,1), so the above construction
doesn’t change anything.

Note that if we were only interested in obtaining a median pretree (not necessarily
complete), we could also remove all the points of the form P(2,0). In other words, P’ =
TUJ{P(m,n) | m+n > 3} is a median pretree. Note that, it T is countable, then so is
P’. This shows that any countable pretree can be embedded in a countable median pretee
(and hence in an R-tree — see [Chl]).

As observed at the beginning of this section, it will be convenient to revert to our
original notation for the betweenness relation on the completion. In this case, we shall
write ® = ®(T) instead of (P,()). We shall identify 7" with T, so that T C ®. In ® we
drop the angled brackets, (), when denoting the betweenness relation. As observed earlier,
this is consistent with the betweenness relation already defined on 7T'.

We can give a characterisation of ® analogous to the pretree 7Ll P (Proposition 3.4.)

Suppose that © is a pretree, and 7' C ©. We say that this is a complete embedding if
every flow on T" has the form flowg(p)|7 for a unique element p € ©.

Thus T C ® is an example of a complete embedding. Another is T C (T U P) \ T.

It is clear from the definition that if 7' C © is a complete embedding, then © can be
identified set-theoretically with the set of lows on T". Thus such embeddings can only differ
essentially in the pretree relations on ©. ;From the definition, we see that all relations
of the form zyp for x,y € T and p € © are completely determined, and, in fact, so also
are those of the form pxq for z € T and p,q € © (Lemma 3.30). The issue then is which
relations of the form prq with r € © \ T are satisfied. This is not competely determined.
For example, if © = ® there will in general be many such relations, but if © = (T'UP)\ T,
there are none. However, if we add the additional hypothesis that © be a median pretree
(or the weaker hypothesis of being a “saturated pretree” as described below), then this
completely identifies © as .

Suppose, for the moment, that 7" C © is any complete embedding. the uniqueness
hypothesis tells us that for p,q € © we have that (Va € T)([a,p]NT = [a,q]NT) = p =q.
This implies that if [p, g] = ) then p = ¢ (since [a, p| C [a, q]U[p, ¢] and [a, ¢] C [a, p]U]p, q]).
If an embedding satisfies this latter criterion, we refer to it as a dense embedding.

Lemma 3.30 : IfT C © is a dense embedding, and p,q € O are distinct, then [p,q| =
ﬂxeT([x7p] U [x7Q])
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Proof : The inclusion (C) follows immediately from the fact that [p, q] C [z, p] U [z, ¢] for
all . For the reverse inclusion, choose any y € [p,q|NT. Then (. ([z,p] U [z,q]) C

[y, plU [y, q] = [p,aql. %

In particular, we have [p,q] NT = [\, cr([z,p] U [z,q]) N T. Now we have already
observed that relations of the form zyp for x,y € T and p € © are determined by the
hypotheses of a complete embedding (identifying © with the set of flows). In other words,
sets of the form [x,p] N T are determined. Lemma 3.30 now shows that intervals of the
form [p,q] N T are determined.

In order to determine the intervals [p,q] completely, we will need to add another
hypothesis.

Definition : We shall say that a pretree, S, is saturated if, given any x,y,z € T, [z, z] N
[y, 2] = {z} = z € [z,y].

(In the terminology of [AN] and [Tr], S is said to have a “true betweenness” relation.)
Clearly, any median pretree is saturated.

Lemma 3.31 : Suppose T' C © is a dense embedding, and that © is a saturated pretree.
Then, given p,q € O, we have [p,q|\T ={r€ ©O\T | [p,r]N[q,r]NT = (}.

Proof : The inclusion (C) is clear. For (D), suppose that r € © \ T and r ¢ [p,q|.
Then there is some s € [p,r) N g, 7). Now [s,7) C [p,7) N [g,7). Since r ¢ T, we have

,T
[s,7)NT #£ (), and so [p,r] N [q,r] NT # (. O

Now if T C © is a complete embedding, we know that sets of the form [p,q] N T
are determined. It follows that if © saturated, then [p,q] = ([p,¢/ NT) U ([p,¢] \ T) is
determined. In summary, we conclude:

Proposition 3.32 :  Suppose T' C © is a complete embedding. Suppose that © is
a saturated pretree (for example that it is a median pretree). Then there is a pretree
isomorphism from © to ® fixing T. O

There is another interpretation of the saturation condition on a pretree, which has
been described by Truss [Tr]. Given two pretree relations on the same set, S, we shall
say that one is an augmentation of the other if every relation in the latter structure holds
in the former. In other words, if we imagine a ternary relation as a subset of S3, then
augmentation is just the reverse of set inclusion.

Given a € S, recall the equivalence relations ~ and ~ on S\ {a} defined earlier in
this section. Note that a pretree is saturated if and only if these relations are identical for
alla € S.

Proposition 3.33 : A pretree, S, is saturated if and only if the pretree relation is
maximal among all pretree relations on S (i.e. if S does not admit any non-trivial aug-
mentation.)
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Proof : Suppose S is saturated, and z,y,z € S. If there were an augmentation of S
including the relation xyz, then certains (z,y) N (y, z) would be empty (in the augmented,
and hence also in the original pretree). But by the saturation hypothesis, the relation zyz
must already hold in S.

Conversely, suppose S is not saturated. Then there is some a € S for which the
relations ~ and ~ are not the same. Now we add to S all relations of the form zay, where
(x = y)A(x % y). (In other words, we impose the condition that [z, a)N[y,a) = 0 = zay in
the augmented structure.) One can now verify that S is indeed a pretree in the augmented
structure. &

Note that by Zorn’s Lemma, one can now see easily that any pretree admits an
augmentation which is a saturated pretree. Of course, such an augmentation will not
in general be unique. (For example, if we continue with the process of adding relations
in the manner described above, the result may depend on the order in which the points
are chosen.) However, in the case of a complete embedding, T C ©, there will be a
unique maximal augmentation subject to the constraint that the relations on 7' do not
change and the embedding remains complete. (The construction of the pretree structure
on the completion can thus be interpreted as starting with the pretree © = T U P\ T,
and performing the operation described in the proof of Lemma 3.3 simultaneously for all
acO\T.)

In other words, we can describe ® as the unique maximal pretree containing 7" subject
to the constraint that 7' C ® is a complete embedding.

We finish this section with a few remarks concerning “discrete” pretrees and their
connection with simplicial trees. This will be used in Section 6, and is also relevant to
[Bo2|.

Definition : A pretree, T, is discrete if [z, y] is finite for all z,y € T.

A simplicial tree can be defined as a connected graph containing no cycles. The vertex
set of a simplicial tree admits a Z-metric, where the distance between two points is defined
to be the number of edges in the arc connecting them. With this structure, the vertex set
is a Z-tree, as defined in [Sha]. Moreover every Z-tree arises in this way. The notion of
a Z-tree is, in turn, essentially the same as a discrete median pretree. Given any discrete
median pretree, S, we can define a metric on S by setting d(z,y) = |[x, y]|—1. It’s not hard
to see that this satisfies the axioms of a Z-tree. (To be precise, it’s easy to see that, given
x,y € S, a “Z-segment” as defined in [Sha] coincides, in this context, with our notion
of a closed interval [z,y]. The axioms of a Z-tree thus demand that, given z,y,z € S,
there is some w € S such that [z,y] N [z, 2] = [z, w], and that if [z,y] N [z, 2] = {x} then
[z,y] U [z,2] = [y,2]. These are clearly satisfied for a discrete median pretree.) Again,
every Z-tree arises in this way. We can summarise this by saying that:

Lemma 3.34 : A pretree is a discrete median pretree if and only if it arises as the vertex
set of a simplicial tree. &

If a pretree, T, is discrete, then so is its completion (as defined by the space of flows).
Clearly, this case, there are no flows of type (m,n) for any m > 0. Also, all flows of type
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(0,2) are redundant. It’s thus natural to form a pretree, only by adding those flows of type
(0,n) for n > 3. This pretree is a discrete median pretree, and is thus the vertex set of a
simplicial tree, 3. We summarise this by saying:

Proposition 3.35 : Suppose T is a discrete pretree. Then T naturally embeds in the
vertex set, V(X), of a simplicial tree, ¥, such that every vertex of V(%) \ T has degree at
least 3. ¢

4. Quotients.

In this section, we describe how to construct quotients of pretree, 7. Our main
objective will be to describe a natural quotient, 7'/, which is the largest quotient of T
which is dense.

Recall that a subset @ C T is “full” if [z,y] C Q for all z,y € Q.

Lemma 4.1 : Suppose X,Y € T are full, and X NY = (). Suppose z,2' € X, y,y' €Y
and z € T\ (X UY). Then xzy < x'yz'.

Proof : We have z # y,y’ and —yzy'. Thus zzy < zzy'. Similarly, zzy' < 2'2y/'. O

If X and Y are disjoint non-empty full subsets of T"and z € T', we write XzY to mean
that 2z ¢ X UY and (3xz € X,y € Y)(zzy). By Lemma 4.1, we could have equivalently
said (Vx € X,y € Y)(zzy). In the case where X = {z}, we write zzY for {z}zY. Note
that we can make the usual inferences such as xzY A xwz = zwY etc.

Definition : A full relation on a pretree is an equivalence relations for which every
equivalence class is full.

Suppose ~ is a full equivalence relation on a pretree, . We write T/~ for the quotient.
Given z € T, we write [z] = [z]. € T/~ for the equivalence class of z. If XY, Z € T/~
we write XY Z to mean (Jy € Y)(XyZ). We can regard this as a ternary betweenness this
relation on 7'/~.

Lemma 4.2 : With the betweenness relation thus defined, T/~ is a pretree. Moreover,
if T' is a median pretree, then so is T'/~. Also, if T is a complete pretree, then so is T'/~.

Proof : We first verify the axioms of a pretree.

(T1): This is immediate.

(T2): U XYZANXZY , then (Jy €Y,z € Z)(XyZAXzY). Choose any z € X. By Lemma
4.1, we get the contradiction xyz A zzy.

(T3): Suppose X,Y, Z, W € T/~, with XYZ AW # Z. Choose y € Y so that XyZ, and
any x € X, z € Z and w € W. Now apply (T3) for T.
This shows that 7'/~ is a pretree.
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Now suppose that T is a median pretree. Given distinct elements, X,Y,Z € T/~
choose any z € X, y € Y, z € Z, let w = med(x,y, z), and let W = [w]. We see readily
from the definitions, that W must be a median of X,Y, Z. This shows that, in this case,
T/~ is a median pretree.

Now suppose that T is complete pretree (not necessarily a median pretee). Suppose
that (A, <) is a directed arc in T'//~. We want to show that 4 has a supremum. We can
suppose that A is endless, and has a minimum, say M € A. Thus if X, Y € A, then
X<Y & MXYV(X=MG#Y). Choose any m € M.

Suppose that x € X € A, and V,Z € A with X < Y and X < Z. Then we
have mzY < maZ. To see this, we can assume that ¥ < Z. Thus XY Z, so there
is some y € Y with XyZ. Choose any z € Z. Thus xyz and so mxy < mxz. Thus
mzY & may & maz < maZ as claimed.

Now let

A={zeT|3X,YcA)(r e XNX <Y AmzY)}.

JFrom the observation of the preceding paragraph, we see that if z € AN X, X € A, and
Y is any point of A satisfying X <Y, then mzY.

We claim that A is an arc (with minimum m).

We first show that it is linear. Note that it is enough to show that if z,y € A, then
either x € [m,y| or y € [m,z]. We can suppose that x, y and m are all distinct. Let
X =[z]and Y = [y], so X,Y € A. Choose Z € A and with X < Z and Y < Z, and
choose some z € Z. Thus mxzz A myz so mzxy V myx. This shows that A is linear as
claimed.

To show that A is full, it’s enough to show that if x € T, y € A and mxy then x € A.
Let Y = [y], and choose any Z = Y. Then myZ so mazZ. Now let X = [z]. Either X = M,
or MaxZ so MXZ. Thus X € Aand X < Z. It follows that z € A.

Since T is complete, there is some g € T such that A = [m,q). Let Q@ = [q] € T/~.
We claim that A = [M, Q) (i.e. the interval in T'/~).

First we show that [M, Q) C A. So suppose M X Q. Choose z € X with Mz@Q. Thus
mxq, so x € [m,q) = A, so by the definition of A, we have X € A as required.

Finally we show that A C [M, Q). Suppose X € A\ {M} and let z € X N A. Then
x € [m,q) so mzq so MXQ and X € [M,Q).

Thus every directed arc in 7'/~ has a supremum and so 7'/~ is complete. &

If we view a relation on a pretree, 1T', as a subset of T' x T', then we see that the set
of all relations carries a natural structure as a boolean algebra. We write A and V for
the binary lattice operations. Thus, if ~ and ~’ are relations on T', and z,y € T, then
(A Yy e (z~y) A (e~ y)and z(~V ~ )y & (x~y)V(z~"y). More generally, if
S is a nonempty set of relations, then define A S and \/ S by z(AS)y & (V~ € S)(x ~ y)
and z(\/S)y & (I~ € S)(z ~ y). We write < for the partial order on the set of relations:
thus ~ < ~' means that z ~y = x ~ y.

Let R be the set of all full relations on 7. Thus R is closed under the operation
A. Indeed, if S C R is nonempty, then AS € R. (This follows from the fact that the
intersection of any nonempty set of full subsets of T is full.) Also if S C R is a chain (i.e.
linearly ordered by <) then \/ S € R.
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Note that R contains a both a minimal and a maximal element, namely the trivial
relation, ~g = AR (given by z ~g y < x = y) and the universal relation ~., (given by
T~y forall z,y € T).

Definition : A codense relation on T is a full relation, ~, such that 7'/~ is dense.

This may be alternatively expressed by saying that if z,y € T and = ¢ y, then (3z €
TY(xzy Nz Lz Az ly).

Let D C R be the set of all codense relations on T'. Note that if S C D, then A S € D.
To see this, write 2 = A S, and suppose z,y € T with 2 22 y. Then (3~ € D)(x # y) and
so (Fz € T)(xzyNz L xAzty). Thus z 2 Az % y. This shows that = € D as claimed.

Now certainly D # (), since ~, € D. Thus we can set ~ = A\ D. We see that ~ € D.
Also if ~ € D, then ~ < ~. Thus ~ is the unique minimal codense relation on 7'

There are various alternative descriptions of the relation ~. One using a transfinite
induction process will be considered shortly. First we give another more explicit descrip-
tion.

By a rational (linear) subset of T, we mean a linear subset which is order isomorphic
to the rational numbers (given either of the two compatible directions on this subset). In
other words, it is a countable dense order without endpoints. If z,y € T, we say that x
and y are separated by a rational subset if (x,y) contains a rational subset.

We write © = y if x and y are not separated by a rational subset. Suppose x % y
and let @ C (z,y) be a rational subset. If z € @, then @ N (z,2) and @ N (y, z) are both
rational, so z 2% x and z 2 y. Similarly, if z # w € Q, the z 2 w.

We claim that = is an equivalence relation. It is clearly reflexive and symmetric. To
see that it is transitive, suppose % y and that z € T'\ {z,y}. Thus (z,y) C (z, z]U|[z,y).
Let Q@ C (z,y) be a rational subset, and choose any w € @. Without loss of generality,
w € (z,2) so (z,w) C (x,z) Thus (z,w) N Q is a rational subset of (z,z). We see that
z % z. Thus 2 is an equivalence relation as claimed. A similar but simpler argument
shows that it is full. Moreover, from the observation of the preceding paragraph, we see
that it is codense. Thus ~ < =,

To prove the reverse inequality, suppose that ~ is a codense relation (such as ~). We
claim that = < ~. Suppose that x,y € T" with z ¢ y. We define an order-preserving map
g:Z[1/2]N(0,1) — (x,y) as follows. Choose any z € (x,y) with z ¢ x and z ¢ y. Set
h(1/2) = z. Now find similar points u € (z,z) and v € (z,y) and set h(1/2%) = u and
h(3/2?) = v. Now continue inductively in this manner, to obtain a subset of (x,y) order
isomorphic to Z[1/2]N(0, 1) and hence to the rationals. We deduce that 2 < ~ as claimed.

This shows that ~ = 2. In summary, we have shown:

Lemma 4.3 : Suppose T is a pretree, and that ~ is the minimal codense relation on T'.
If x,y € T, then x =~ y if and only if x and y are not separated by any rational subset. <{

Recall that z,y € T are said to be “adjacent” if (z,y) = (). Let ~ be the equivalence
relation generated by adjacency. In other words, x ~ y if and only if there is a finite
sequence, r = Ig,Z1,...,T, = Yy, of points of T" such that z; is adjacent to z;_; for each
i€{l1,2,...,n}. Applying Lemma 2.6 we see that in this case [z, y] is finite. In fact, it we
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choose our sequence so that n is minimal, then [z,y] = {xo, z1,...,z,}. Conversely, it is
clear that if [z, y| is finite, then x ~ y. Tt is easy to see that ~ is a full relation on T. We
shall refer to it as the finite interval relation on T'.

Recall that a pretree is “discrete” if every interval is finite. Equivalently, T is discrete
if T/~ is trivial. For a general pretree, we see that each ~-equivalence class is a maximal
discrete subtree (which gives another means of defining ~). Note that T is dense if and
only if ~ = ~y, i.e. each ~-equivalence class is a singleton.

Suppose now that ~ is any full relation on T'. Let ~ be the finite interval relation on
T/~. Define a relation, ~', on T' by x ~' y < [z]. =~ [y]~. This is clearly an equivalence
relation. In fact, it’s easily seen to be a full relation on 7. ;From the definition of the
pretree structure on T'/~, we see that x ~" y if and only of the interval [z,y] in T meets
only finitely many ~-equivalence classes. ;From this alternative description, we see easily
that if ~ and = are two full relations with ~ < 2, then ~’ < 2. Note also, that ~ = ~/
if and only if ~ is codense.

We now aim to give an inductive description of the minimal codense relation =.

To each ordinal number, o, we associate a full relation ~, by a process of transfinite
induction as follows. Set ~q to be the trivial relation on T (i.e. equality). If « = S+ 1, set
~q = (~g)". If a is a limit ordinal, set ~, = \/{~p | B < a}. This gives us a full relation,
since, by transfinite induction, all the relations ~g for 8 < « are full relations. Moreover,
if v < B < «, then ~, < ~g, so that {~g | 8 < a} is a chain.

We claim that these relations must eventually stabilise, i.e. for some «, we have
~a41 = ~q, s0 that, in fact, ~g = ~, for all 8 > . One elementary way to see this is as
follows. Suppose ~, # ~qt1. Let I, = {8 | B < a}. Thus |I,| = |a|+1, where |.| denotes
cardinality. We must have ~g # ~gy; for all 8 € I,. We define amap h: T xT — I, as
follows. If x7t, .y, then set h(x,y) = 0. If x~y 11y, then set h(z,y) = min{f | z~p41y}.
(Thus if z = y then h(x,y) = 0.) Now h is surjective, since if § < « we know that
~p < ~gy1, so we can find x,y € T with z¢zy and x ~gy1 y, and so h(z,y) = B. It
follows that || < |T'|*> = |T|. (In the case where T is finite, we stabilise immediately on
~1 = ~.) This shows that this process must stabilise as soon as we reach an ordinal of
cardinality |T'|. (Of course one can certainly improve on this statement with a little extra

work.)
Suppose now that ~, = ~411. We claim that ~, = =&, i.e. the minimal codense
relation. Now ~, = (~g)’ so it is certainly codense, and so ~ < ~,. We now show

inductively that for all 8, ~3 < =. Certainly, ~9 < ~. Also, if ~3 < =, then ~gy; =
(~3)" < ~' = ~. Finally, suppose § is a limit ordinal, and that ~, < ~ for all v < g.
Then ~g = \/{~, | ¥ < B} < ~. We thus conclude that ~, = ~ as claimed.

In summary, we have shown:

Lemma 4.4 : The transfinite inductive process defined above stabilises on the minimal
codense relation. O

We finally make some remarks with regards to the completion process described in
Section 3. Recall that we can embed any pretree, 7', in a complete median pretree, & =
®(T). This embedding has the property that if x,y € ® are distinct, then T'N (z,y) # 0.
Let ~ be the minimal codense relation on ®. Recall that ~ = ~ as in Lemma 4.3.
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Lemma 4.5 : Ifx,y € ®, then x % y if and only if x and y are separated by a rational
subset of T, i.e. there is a subset () C T'N(x,y) which is order isomorphic to the rationals.

Proof : We first observe that there is some z € T'N (x,y) with z % x and z % y. To see
this choose a rational subset R C (x,y). Choose any distinct elements a,b € R, and choose
any z € T'N(a,b). Now RN (z,a) C RN (x, z) is rational, so z % . Similarly, z % y. This
gives the required element z. Now, as in the proof of Lemma 4.3, we continue the binary
subdivision in this manner and construct a subset of 7'M (z,y) order isomorphic to the
rationals. &

We shall write U(7T') = ®(T")/~. Thus ¥(T') is complete and dense.

5. Continua

In this section we shall be concerned mainly with continua (compact connected haus-
dorff topological spaces). We shall see (Lemma 5.3) that a continuum carries a natural
pretree structure arising from the manner in which it can be separated by the set of cut
points. (For this, assumption of compactness is irrelevant.) We shall see that a separable
continuum has a natural quotient which is a dendrite. (In general this quotient may be
trivial.) Much of the analysis can be done either purely from the topological structure or
from the pretree structure. We begin with a purely topological discussion. Some useful
references for continua are [HocY], [Ku| and [Na].

Let M be a connected hausdorff topological space.

Definition : A point a € M is a cut point if M \ {a} is not connected.

Thus, we can write M \ {a} = U UV, where U and V are nonempty open subsets of M.
We shall write UaV to represent this situation. Clearly the set U U{a} is closed in M. In
fact,

Lemma 5.1 : IfUaV, then U U {a} is connected.

Proof : Suppose that U U {a} = F U G, where F' and G are closed in U U {a} and
hence in M. Without loss of generality, we can assume that a € F' so that G C U. Now
M\G=FUV =FU((VU{a}) and so M \ G is also closed. Since M is connected, we
deduce that G = 0. ¢

Now suppose that a and b are distinct cut points of M, and suppose that UaU’ and
VaV'. Without loss of generality, we have b € U" and a € V'. Since U U {a} is connected
and b ¢ U U {a}, we must have U U {a} C V or U U {a} C V’; (otherwise the sets
(UU{a})NV and (U U {a}) NV’ would separate U U {a}). But a ¢ V' and so we must
have U U {a} C V. Similarly, VU {b} C U’'. We see that UNV = 0. Let W =U'NV".
Now W # () (otherwise U N {a} and V N {b} would partition M into two nonempty closed
subsets). Thus, U, V and W are nonempty and open in M and M = UU{a}UW L{b}UV.
Note that U U {a} and U U W U {a, b} are both closed and connected (the latter being
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equal to V' U {b}). The same applies to V U {b} and V. UW U {a,b}. Also W U {a,b} is
closed, and it’s not hard to see that it must be connected. (We omit the argument here,
since it will follow from Lemma 5.5.) We shall write UaW bV to represent the situation
just described. In summary, we have shown:

Lemma 5.2 : Ifa,bée€ M are distinct cut points, then there are open sets U, V and W
in M such that UaWbV. In fact, if U'aU"” and V'bV", then we can choose U € {U’,U"}
and V e {V' V"}. &

At this point, we can define the pretree structure on M. Given x,y,z € M, we shall
write zzy to mean that there are open sets, U and V', of M with UzV,z €U and y € V.

Lemma 5.3 : With the ternary relation thus defined, M is a pretree.

Proof :
(T1): This is immediate.
(T2): Suppose xab A zba. There are open sets U, U’, V, V' so that UaU’ and VbV’ with

zeUNV,be U and a € V'. Applying Lemma 5.3, we have UaWbV , where W = U'NV".
In particular, U NV = (), contradicting z € UN V.

(T3): Suppose zay and z # a. There are open sets U,V with UaV, x € U and y € V.
Either z € U so that zay, or else z € V so that zax. &

An alternative proof of this fact, using a more general observation about the separating
properties of finite subsets of a connected hausdorff space, is given in [Bo5|. It is also
described in [W2].

Note that a corollary to Lemma 5.3 is the fact that the set of cut points separating
any two given points in M carries a natural linear order. This was mentioned in the
introduction. Direct proofs can be found in various places, for example [HocY].

We shall return to the pretree structure later. We first consider further the topology
on M.

Definition : A branch of M is a closed subset of M containing at least two elements,
whose boundary consists of a single point.

Lemma 5.4 : A closed subset B C M is branch if and only if it has the form U U {a},
where a is a cut point of M and U is a connected component of M \ {a}. (In this case

9B = {a}.)

Proof : Suppose first that UaV and B = U U {a}. Now V cannot be closed (since M is
connected), so a cannot lie in the interior of B. Thus, 0B = B\ U = {a}, and so B is a
branch.

Conversely, suppose that B is a branch with 0B = {a}. Let U = B\ {a} and
V =M \ B. Since B is closed, V is open. Also B\ {a} = B\ 9B is open. By hypothesis,
U # (. Thus UdV. &

It follows by Lemma 5.1 that any branch is connected. In fact:
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Lemma 5.5 : Suppose that K C M is closed and connected and that B C M is a
branch. Then B N K is connected.

Proof : Let 0B = {a}. Suppose that BNK = F UG, where F and G are closed. Without
loss of generality, we can suppose that a ¢ F. Now K\F = GU(K\B) = GU(K\(B\{a})).
But B\ {a} is an open subset of M. Thus K \ (B \ {a}) is closed, and so K \ F' is closed.
Since K is connected, it follows that either F' = ), or K \ F' = (). In the latter case, we
have K C F so K = F and so G = 0. O

(Note this shows that if UaWbV, then W U {a, b} is connected, as claimed earlier.)
The following notion seems to be useful in the present context:

Definition : We say that a subset F' of M is coherent if it is closed and if FF N K is
connected for every compact connected subset, K, of M.

Thus, Lemma 5.5 shows that every branch of M is coherent.
Note that if M happens to be compact, then every coherent subset of M must be
connected (take K = M). However this need not be the case in general.

Lemma 5.6 : If F' and G are coherent subsets of M, then F' N G is coherent.

Proof : If K C M is compact and connected, then so is K N F. Since G is coherent, it
follows that K N (FNG) = (KNF)NG is connected. o

We say that a set F of subsets of M is a chain if it is totally ordered by inclusion (i.e.
if F,G € F, then FF C G or G C F'). Now, in a compact hausdorff space, the intersection
of a nonempty chain of closed connected subsets is connected. This is a simple exercise,
see for example [HocY]. As a corollary we deduce:

Lemma 5.7 : If F is a nonempty chain of coherent subsets of M, then (| F is coherent.

Proof : Suppose K C M is compact and connected. The sets K N F', as F varies over
F, form a chain of connected subsets of K. Thus K N (F) = ({KNF | F € F}is

connected. &

Putting the last two results together, we find that in fact:
Lemma 5.8 : If F is a nonempty set of coherent subsets of M, then (| F is coherent.

Proof : Let F' be the set of all possible intersections of sets in . Thus F C F’ and
N F € F'. We partially order F’ by set inclusion. Let G C F’ be the set of all coherent
sets in F’'. By hypothesis, F C G. By Lemma 5.7, every chain H C G has a lower bound,
namely (| H. Thus, by Zorn’s Lemma, G contains a minimal element, say G.

We claim that G = (| F. To see this, suppose that F € F C G. By Lemma 5.6,
FNGe@. But FNG C G and G is minimal, so FNG = G. Thus G C F. It follows that
GCNOF. ThusF=Geg. O
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Putting together Lemma 5.5 and 5.8, we deduce:

Lemma 5.9 : Any intersection of branches is coherent. &

If M happens to be compact, it follows that an intersection of branches is connected.

We now forget about topology for the moment, and focus on the pretree structure of
M. Note that some information is lost in doing this — clearly we cannot hope, in general,
to recover the topology from the pretree structure alone. For example, points which are
not separated by any cut point are indistinguishable in the pretree structure. Also the
notion of a “branch” cannot be defined purely in terms of the pretree. However there are
various natural pretree constructions which will turn out to be intersections of branches.

Suppose, for the moment, that M is any pretree, and T' C M any subset. Let ® =
®(T') be the completion of T" as defined in Section 3. Thus, we may regard T" as a subset
of both M and ®. We define a map ¢ : M — & as follows. Given z € M, define ¢(z) = p
where flow s (z)|T = flows (p)|T". This p is uniquely defined (see the discussion of complete
embeddings at the end of Section 3). Clearly, ¢ restricts to the identity on 7.

JFrom the definition of ¢, we have that if @ € T and = € M, then [a,2]NT =
[a, p(x)]NT. In fact:

Lemma 5.10 : Ifz,y € M and [z,y]|NT # 0, then [z,y]| T = [¢(z), p(y)| N T.

Proof : Choose any a € [z,y]NT. Then [z,y|NT = ([a,z] U [a,y]) N T = ([a, p(x)] U
[a, ()) NT = [p(x), oY) N T ¢

Note, in particular, that for a € T, ¢(x)ap(y) = xay.

Consider for the moment, a general pretree, S. Suppose a € S. Recall from Section
3, that we may define an equivalence relation ~ = ~g on S\ {a} by = ~ y < —zay. Given
x € S\ {a}, we write Rg(a,x) = {a} U [x]~, where [z]~ denotes the ~-equivalence class of
x. Thus, Rs(a,z) = {y € S| ~zay}. Clearly, if x ~ y, then Rg(a,z) = Rg(a,y).

Returning to our earlier set-up, suppose that a € T" and p € ®. We must have that
Re(a,p) NT \ {a} # 0. (Otherwise [p]« NT = 0, so (Vb € T\ {a})(bap). Thus by
Lemma 3.1, flows (p)|T" = flowg (a)|T" and so a = p, contrary to our assumption.) Now if
b€ Ro(a,p)NT\ {a}, we have b ~¢ p so Re(a,p) = Re(a,bd).

Now if b,b' € Rg(a,p) NT \ {a}, then b ~g p =g b'. Thus —bab’ and so b =),
b'. It follows that Rps(a,b) = Rpr(a,b’). In other words, the set Rps(a,b) is defined
independently of the choice of b € Rg(a,p) NT \ {a}. We can thus write it as Rys(a, p).
Clearly, Rg(a,p) N T = Rpy(a,p)NT.

Now suppose that = € Ry/(a,p), and let ¢ = ¢(x). We claim that —pag. To see this,
choose any b € T with p ~¢ b, so that, by definition, z € Rys(a,b). Thus, —bazx. By the
definition of f, we must have —baq (since flows (q)|T = flowps (z)|T). We can suppose that
q# a,s0ob=g q. But b~g p and so p ¢ ¢. In other words, —paq as claimed.

Now given any p € ® \ T, let Ry(p) = (e Ra(a,p). Suppose x € Rpr(p), and
q = ¢(x). (From the previous paragraph, we see that (Va € T')(—pagq). It follows that p
and ¢ must be either equal or adjacent in ®. (For if prq, we must have r ¢ T'. Since we are
assuming that p ¢ T, we would get (p,r) # (), and so (p,q) N T # 0.) Now since p ¢ T, it
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follows by Lemma 3.28 that either ¢ = p, or else ¢ € T and q is adjacent to p. In summary,
we have shown:

Lemma 5.11 : Suppose M is a pretree, and T' C M is any subset. Let ¢ : M — &
be defined as above. Suppose p € ® \ T, and let Ry;(p) C M be defined as above. If
x € Ryr(p), then either ¢(x) = p, or else ¢(x) € T and ¢(x) is adjacent to p in D. &

The objective, in all of this, is to show that in certain circumstances, the map ¢ is
“almost surjective”. Thus, we would like to have conditions under which the sets Ry (p)
are guaranteed to be nonempty. For this we shall need to make further appeal to topology
(see Proposition 5.14). We can, however make the following general observation:

Lemma 5.12 : IfTy C T is finite, and p € ®\ T, then (,cp, Ru(a,p) # 0.

Proof : In fact, we show that (,cp, Re(a,p) N Ty # 0. (Recall that Re(a,p) N T =
Rys(a,p) NT.) We are thus reduced to considering the finite pretree Tj U {p} (which, by
Lemma 2.5, can be assumed to be a subset of a finite simplicial tree). Now let b € Tj be
some point adjacent to p in Ty L {p}, i.e. so that (b,p)NTy = 0. If a € Ty, then —bap, and
so b € Re(a,p). We see that b € (J,cp, Ra(a,p) N Tp. O

To go any further, we need to reintroduce the topology on M. We are assuming that
M is a connected hausdorff space. We have defined a pretree structure on M (Lemma
5.3). We shall suppose that T is a subset of the set of cut points of M. (Note that this
may be defined in terms of the pretree structure: a € M is a cut point if and only if it is
not a terminal point in the pretree.)

Lemma 5.13 : Ifa €T and p € ®, then Ry(a,p) is an intersection of branches.

Proof : ;From the definition, we know that Rys(a,p) = Ras(a,b) for some b € T. Let BB be
the set of branches B C T such that 0B = {a} and b € B. We claim that Rys(a,b) = B.

Certainly, if = € Rps(a,b) and B € B, then we must have x € B (otherwise, by
definition, zab). Thus = € (| B. Conversely, suppose that = ¢ Rys(a,b). Then zab, so we
have open sets U,V C M, with UaV,be U and x € V. Let B=UN{a} € B. Now x ¢ B,

soxz ¢ ) B. ¢

Thus we see that Rys(a,p) is closed (in fact coherent).
We can now prove:

Proposition 5.14 : Suppose that M is a continuum, and that T' C M is a set of cut
points of M. Considering T as a pretree, let ® = ®(T) and let ¢ : M — & be the map
defined above. If p € ® then either p € ¢p(M), or else p is adjacent (in ®) to some element
of T. In all cases, Ry(p) = 0.

Proof : Let R = {Ry(a,p) | a € T}, so that, by definition, Ry (p) = ()R. By Lemma
5.13, each element of R is closed. By Lemma 5.12, every finite subset of R has nonempty
intersection. Since we are assuming that M is compact, it follows that R/ (p) # 0. Choose
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some z € Ry/(p). By Lemma 5.11, either p = ¢(z) € ¢(M), or else ¢(x) € T and p is
adjacent to ¢(x). &

As in Section 4, let ~; be the (full) equivalence relation on ® generated by adjacency.
We see immediately that the composition of ¢ with the quotient map ® — &/~ is
surjective.

At the end of Section 4, we defined ¥ = ®/~, where ~ is the minimal codense relation
on ®. Let m: ® — U be the quotient map, and let f =71 o0¢: M — ¥. We know that
VU is a quotient of ®/~; and so:

Lemma 5.15 : The map f: M — ¥ is surjective. &

We can thus regard ¥ as a topological space, with the quotient topology derived from
M. Considering it as such, we shall usually denote it by D7 (M). Note that it depends on
the set of cut points, T', of M which we take. Usually we just take T" to be the whole set of
cut points. In this way the construction is a natural one, and it is reasonable to abbreviate
Dy (M) to D(M) or just D. Clearly, D(M) is compact and connected, and we shall see
shortly that it must be hausdorff. If it is separable, (for example if M is separable), then
it must be a dendrite (Theorem 5.23).

Consider, for the moment, a general pretree, S. We say that a full subset Q C S is
preclosed if (Vr € S\ Q)(Jy € S)(xyQ). (Recall the notation xy@Q from Section 4.)

Lemma 5.16 : Suppose ~ is a full relation on S. Let w : S — S/~ be the quotient
map. If Q C S/~ is preclosed, then m=1(Q) C S is preclosed.

Proof : If z € S\ 7 1(Q), then 7(x) € S\ Q, so there is some y € S with 7(z)7(y)Q. By
the definition of the pretree structure on the quotient, we have xyQ. &

Suppose now that S is a median pretee. Given distinct points, z,y € S, let J(z,y) =
{z € S| med(x,y,2) = y}. Thus J(z,y) = S\ H(z,y) where H(x,y) was defined in
Section 2 (see Theorem 2.14). It is easily seen that J(z,y) is full.

Lemma 5.17 : If S is a dense median pretree, and z,y € S are distinct, then J(x,y) is
preclosed.

Proof : Suppose z € S\ J(z,y). Choose any w in the interval (y, med(z,y, z)). Then we
have zwJ(z,y). O

Note also that in a dense pretree, all singletons are preclosed.

Now, let’s return to our map ¢ : M — ®. Note that if Q C & is preclosed and
p € &\ Q, then there is some a € T such that pa@. Recall that if a,b € T are distinct,
then Rys(a,b) is defined as {x € M | —zab}.

Lemma 5.18 : If Q C ® is preclosed, then ¢~1(Q) = N{Ras(a,b) | a,b € T, abQ}.
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Proof : Suppose z € ¢~ 1(Q) and a,b € T with abQ. Now ¢(x) € Q, so abg(x). Thus
abx, so —bax and so x € Rys(a,b).

Conversely, suppose = ¢ ¢~ 1(Q). We can find a € T with ¢(x)aQ, and then b € T
with ab@. Thus ¢(x)ab, so xab, and so = ¢ Rys(a,b). O

Now, applying Lemma 5.13 and Lemma 5.9, we deduce:

Lemma 5.19 : If Q C ® is preclosed, then $~1(Q) C M is coherent (hence closed and
connected). O

We now return to our map f : M — D(M). Recall that f is defined as a composition
of p: M — Pand7: P — ¥V =D(M).

Lemma 5.20 : Ifx,y € D are distinct, then J(z,y) is closed in D.

Proof : By Lemma 5.17, J = J(xz,y) is preclosed. Thus, by Lemma 5.16, 7= 1(J) C ® is
also preclosed. Thus, by Lemma 5.19, f~1(J) = ¢! ~!(J) is coherent, and hence closed.
Thus J(z,y) is closed. &

Note that sets of the form H(z,y) = D\ J(x,y) are open in D. It follows easily that
D is hausdorff, hence a continuum.
Also, since singletons in D are closed, essentially the same argument shows that:

Lemma 5.21 : Ifz € D, then f~!(z) is coherent (hence closed and connected). &

Now, it’s not hard to show that if we map a compact space (such as M) into a normal
space (such as D) in such a way that the preimage of any point is connected, then, in fact
the preimage of any closed connected set is connected.

We summarise what we have shown so far:

Proposition 5.22 : Suppose that M is a continuum, and let D be the quotient space
as defined above. Then D is a continuum. Moreover, the preimage of any subcontinuum
of D by the quotient map is a subcontinuum of M. &

Note that, as remarked in the introduction, there is a more direct way to define D as
the quotient M /~, where x ¢ y if and only if there is a set of cut points of M, separating
x and y, which is order-isomorphic to the rational numbers in the natural linear order.
The fact that this is equivalent to our earlier definition is an easy consequence of Lemma
4.2.

Finally, if M is separable, then so is D. Thus, applying Theorem 2.14, we deduce:

Theorem 5.23 : If M is a separable continuum, then D is a dendrite. &

As remarked in the introduction, if M is a separable continuum with the property
that any pair of distinct points are separated by a third point of M, then it is immediate
that the above equivalence relation is just equality on M. It follows that M itself is a
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dendrite, as defined in Section 2, and so, for example, can be realised as a compact R-tree.
We see that this weak definition is equivalent to the apparently much stronger one.

As we have observed elsewhere, this construction can be expressed more succinctly
by defining the equivalence relation directly in terms of the (linear) order type of the set
of points which separate two given points of M. (See the discussion in the introduction.)
The fact that this is equivalent to the above construction follows using Lemma 4.3. Also,
with this approach, we see easily that the quotient is a dendrite by the apparently weaker
definition.

We have chosen this more convoluted path to Theorem 5.23 for a number of reasons.
It gives us more information, and shows directly that the quotient is a dendrite by the
apparently stronger definition. Also, this approach will allow us to show that, in certain
circumstances, the result is non-trivial — as in Theorem 6.1.

6. Groups.

In this section, we consider convergence group actions on continua. The notion of a
convergence group was defined by Gehring and Martin [GeM1]. Accounts in more general
contexts can be found in [Tul] and [Bo5].

Our main result of this section will be:

Theorem 6.1 : Suppose that I' is a one-ended finitely generated group which admits
a minimal convergence action on a continuum, M. If M has a cut point which is not a
parabolic fixed point, then the quotient D(M) is non-trivial (i.e. not a point).

Here, a “parabolic fixed point” should be interpreted as one whose stabiliser is infinite
and contains no loxodromic elements. Such a subgroup either contains a parabolic element
or is an infinite torsion group. In either case, it has no other fixed points in M. (For most
applications we will assume that I' has no infinite torsion subgroup, so one need not worry
to much about this point.)

Recall that the quotient, D(M), was defined with reference to a set, 7' C M, of cut
points of M. For terminological convenience, we have usually taken this to be the set of
all cut points, though, in fact, any I'-invariant set of cut points will do. Clearly, if the
quotient with respect to one I'-invariant of cut points is non-trivial, then the quotient with
respect to any larger set will be non-trivial. With this in mind, we see that to prove the
result, we can assume that no point of T' is a parabolic fixed point. (Take T to be the
[-orbit of such a point.)

Note that with the hypotheses of the theorem, M will necessarily be separable, and so
the quotient D(M) will be a dendrite (Theorem 5.23). Since the construction is natural, it
will be equivariant. Moreover, the induced action on D will also be a convergence action.

One of the main applications of this theorem is to the case of a one-ended word-
hyperbolic group I" where M = JI'. Thus, if OI' contains a cut point we see that it must
have an equivariant quotient which is a dendrite. The result also applies to “uniform
convergence actions” on continua as we describe later.
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We should elaborate a bit on some of the terms used in the statement of Theorem 6.1.
We begin by giving a definition of a convergence action.

Let M be (for the moment) any compact hausdorff topological space. The space
of distinct (ordered) triples in M is the cartesian product M x M x M minus the large
diagonal. This is locally compact and hausdorff.

Definition : We say that an action of a group, I', by homeomorphism on M is a con-
vergence action (or that I' is a convergence group) if the induced action on the space of
distinct triples of M is properly discontinuous.

(This is equivalent to what is termed a “discrete convergence action” in the original paper
[GeM1]. The term “discrete” has frequently been omitted in the subsequent literature.)

Note that, if M is metrisable, this definition can be rephrased in terms of sequences.
It is equivalent to asserting the following. Suppose that (7;); is a sequence of distinct
elements of ', that x,y, z,2',y, 2 € M, and that (z;);, (y;); and (z;); are sequences in M
with z; =z, y; =y, 2i — 2, vix; — o', viy; — y' and v;2; — 2’. Then, either at least two
of z,y, z must be equal, or at least two of ', ¢y, 2/ must be equal. (If M is not metrisable,
then we simply replace the word “sequence” by “net”.)

In fact, the definition of a convergence action is usually given in the following equiv-
alent form. We shall again phrase it in terms of sequences. In doing so, we are tacitly
assuming that M is metrisable. All the arguments we shall give based on this definition
can be readily translated to the general case by rephrasing everything in terms of nets, as
is described in [Bob]. However, since the arguments are exactly the same, and since all the
spaces we are principally interested in are metrisable anyway, it does not seem worthwhile
introducing this additional terminology into the proceedings here.

Suppose then again that I' acts by homeomorphism on a compact hausdorff (metris-
able) space M. The action of I" is a convergence action if and only if for every sequence,
(VYn)n, of distinct elements of I', there is a subsequence, (v;);, and points A and p such
that if K is any closed subset of M \ {A}, and U C M is any open set containing pu,
then ~;(K) C U for all but finitely many . This is often expressed by saying that maps
~i| (M \ {\}) converge locally uniformly to (the constant map which sends all of U \ {\}
to) u. Note that A may or may not be equal to p.

Note that, in the above definition, if we set K/ = M \ U, then K’ is a closed subset
of M\ {u}, and the hypothesis can be rephrased as saying that K’ N~; K = () for all but
finitely many ¢. This is a more symmetrical formulation — we see that the convergence
hypothesis is satisfied for the sequence (v, l)i on swapping A and pu.

The equivalence of the above definitions is shown in [GeM2] in the case where M is a
topological sphere. This argument seems to work unaltered for metrisable Peano continua.
A proof in the general case is given in [Bo5|. Here we shall work mostly with the second
definition.

Typical examples of convergence groups are kleinian groups (i.e. groups acting prop-
erly discontinuously and isometrically on hyperbolic n-space). Such groups act as conver-
gence groups on the ideal sphere, and were the principle motivating examples of [GeM1].
Many of the dynamical properties of kleinian groups can be interpreted in this broader
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context.

Other examples are (word) hyperbolic groups acting on their boundaries. The fact
that such groups are convergence groups, by the convergence subsequence definition, is
proven directly in [F] or [Tul]. In fact, in this case, one can say more — namely that the
action on the boundary is a “uniform” convergence group. This was observed by Gromov.
For a proof see for example [Bo5]. A convergence group acting on a compactum, M, is said
to be uniform if the induced action on the space of distinct triples of M is cocompact in
addition to being properly discontinuous. It turns out that this is equivalent to demanding
that every point of M is a conical limit point — see [Tu2| or [Bo7]. In fact, hyperbolic
groups are the only examples of uniform convergence groups [Bo7]. It thus gives a means of
characterising hyperbolic groups dynamically. We note that a uniform convergence group
has no parabolic elements and no infinite torsion subgroups. For dynamical proofs of these
assertions, see [Tu2]. Geometric arguments, in the context of hyperbolic groups, can be
found, for example, in [GhH].

Other examples of convergence groups are relatively hyperbolic groups acting on their
boundaries. Relatively hyperbolic groups were introduced by Gromov [Gr] and gener-
alise the notion of geometrically finite kleinian groups. For some discussion in relation to
convergence groups, see [Bo§|.

Theorem 6.1 is applicable to hyperbolic groups, as well as to relatively hyperbolic
groups with mild restrictions on the class of groups that can arise as maximal parabolic
groups. In the latter case, one has to take care in handling maximal parabolic groups that
are two-ended. This is discussed in [Bo6]

We now return to the general set-up.

We suppose that I' acts a convergence group on the compact hausdorff space M. The
most basic result is the classification of elements of I'. Given v € I', write fix(y) for the
set of fixed points of v in M.

Definition : An element v € T is elliptic if it has finite order. It is parabolic if it has
infinite order and fix(y) consists of a single point. It is lozodromic if it has infinite order
and fix(+y) consists of a pair of points.

The following result can be found in [GeM1] or [Tull:

Lemma 6.2 : Suppose that I' acts as a convergence group on a compact hausdorff space,
M, with at least three points. Then every element of I is elliptic, parabolic or loxodromic.

¢

It’s not hard to see from the following discussion that any iterate of a parabolic will be
parabolic, and that any iterate of a loxodromic will be loxodromic. Note also that if y € '
is loxodromic, and F' C M is a closed invariant set, then either F' C fix(y) or fix(y) C F.

Suppose that v € T" is loxodromic. We know that there are points, A, u € M, such that
some subsequence of (7")nenN, restricted to M\ {\} converges locally uniformly to . Now,
it’s easy to see that A\ and p must be precisely the fixed points of v. Let U be any open set
with 4 € U and A ¢ U. Tt follows that there is some m € N with v™(U) C U. Since p is
fixed by ~, the intersection W = ﬂ?:ol 7v*(U) is non-empty. Moreover, v(W) C W. Now,
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if K C M\ {u} is closed, and V' > p is open, there exist p,q € N such that v?(K) C W
and Y4(W) C U. Thus v"(K) C V for all i > p+ ¢. In words, the forward iterates of
restricted to M \ {\} converge locally uniformly to u, without the necessity of passing to
a subsequence. Since the situation is symmetric with respect to simultaneously replacing
v by v~ 1, subsets of M with their complements, and swapping A and u, we see that the
backward iterates of « restricted to M \ {u} converge locally uniformly to A\. We refer to
w as the attracting fixed point of v, and A as the repelling fized point.

Note that the cyclic group (v) acts properly discontinuously on M \ {\, u}. In fact,
it acts cocompactly on this set. To see this, choose disjoint closed neighbourhoods, F' and
F’', of p and X respectively. Let U = M\ F and V = M \ F’, so that U UV = M. Now
there is some m > 0 such that U U~™(V) = M. Let K = U N~y™(V). Now it’s not hard
to see that the images of K under (7™), and hence under (), must cover M \ {\, u}.

A corollary of the above observation is that if v is loxodromic with fix(y) = {\, u},
then () has finite index in the group G = {g € I' | {\, u} C fix(g)}. To see this, fix some
closed set K, whose (v)-orbit covers M \ {\, u}, and choose any = € M \ {\, u}. Now
given any g € G, there is some n(g) € Z such that y*@g(z) € K. Since T' acts properly
discontinuously on the space of distinct triples, we see that {y"(9)g | v € G} is finite. Thus
(G, (7)] < 0o as claimed.

We also have

Lemma 6.3 : If~ € I is loxodromic, then any element I which fixed one of the fixed
points of v must fix both of the fixed points of .

Proof : Let fix(y) = {z,y}. We claim that if h € " and z € fix(h), then y € fix(h).

Without loss of generality, we can assume that y is the attracting fixed point of 7.
Suppose that h=1(y) = 2z # y. Now choose any compact set K C M \ {z,y}, whose images
under «y cover M \ {z,y}, and choose any w € M \ {z,y}.

Now given n € N, there is some m(n) € Z such that v™( (hy~"(w)) € K. Now
Ay (4 2) = 4y R(2) = ™M) (y) = 5, and Y™™ hy~"(z) = x. Thus, the images
of the triples (z,w,y™(z)) under y™(™h~y~" remain in a compact region of the space of
distinct triples. Also 4"(z) — y as n — oco. Thus, since I" acts properly discontinuously on
the space of distinct triples, we must have that the set {y"(™h~y~" | n € N} is finite. We
can thus find some p > 0, and ¢ € Z such that v9h = hy?P. But now, h(yPz) = v9(hz) =
v4(y) =y = h(z), and so vz = z. But 7 has no fixed points outside {z,y}, so we get a
contradiction. &

Putting this result together with the preceding remarks, we see that if x € M is the
fixed point of a loxodromic, then its stabiliser is virtually cyclic. In other words:

Proposition 6.4 : The stabiliser of any point of M, is either virtually cyclic, or consists
entirely of elliptics and parabolics. &

We say that a subgroup of I' is lozodromic if it is virtually cyclic and contains a
loxodromic. We say that a subgroup is parabolic if it has a unique fixed point in M.

In [Tul] it is shown that any subgroup of I' is loxodromic, parabolic, or contains a
free group of rank two. In particular, we see that the only possibility for an infinite torsion
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subgroup is a parabolic group. ;From Proposition 6.4, we see that a parabolic group is
either an infinite torsion group or contains a parabolic element.

One can go on from here to describe a partition if M in to a limit set and discontinuity
domain, as for kleinian groups (see [GeM1]). However, we shall only be interested in
“minimal” actions, where the discontinuity domain is empty. More precisely:

Definition : An action of I' on M is minimal if M has no proper nonempty closed
['-invariant subset.

In particular, the orbit of any point under I" is dense (and so, if I" is countable, then M is
separable).

Note that with the definitions we have given, any group action on a singleton or a
pair will qualify as a convergence action. (In the latter case it may be possible to have
an infinite order element which swaps the two points, so our classification fails in this
case.) Since we are only really interested in continua, a two-point space will never arise.
However it is convenient to allow a singleton, since it saves us from having to make special
qualifications about trivial quotients.

We make one more general observation about convergence actions:

Lemma 6.5 : Suppose that I' acts as a convergence group on a compact hausdorff space,
M. Suppose that ~ is an equivalence relation on M which gives a I'-invariant upper-
semicontinuous decomposition of M (so that the quotient M/~ is hausdorff). Then, the
induced action of ' on M/~ is also a convergence action.

Proof: Let D = M/~, and let f : M — D be the quotient map. Suppose that (7,), is a
sequence of distinct elements of I'. Let (+y;); be a subsequence, and let A, u € M be such that
~vi| M\ {\} converges locally uniformly to u. Suppose K C D\{f(A\)} and K’ C D\{f(u)}
be closed subsets of D. Thus, f~1(K) # X\ and f~*(K’) # p are closed subsets of M.
Thus, for all sufficiently large i, we have f~1(K'Nv,K) = f~YK)N~vf~1(K’) = 0. Thus,
K’ N~; K = (). This gives the convergence condition for D. &

(An alternative proof of this is given in [Bo5].) Note that an element which is parabolic
for the action on M will also be parabolic for the action on N; whereas an element which
is loxodromic for the action on M may be either parabolic or loxodromic for the action on
N. In the last case, the preimage of a loxodromic fixed point in N will be single loxodromic
fixed point in M.

Returning to Theorem 6.1, we should explain the term “one-ended”. To any finitely
generated group, I', one can associate a space of ends, namely the space of ends of the
corresponding Cayley graph. It’s not hard to see that this is well defined, independently
of the choice of finite generating set. In fact, there are just four possibilities for this space,
namely:

(1) T is finite and has no ends.
(2) T has one end (in some sense the “generic” situation).

(3) T has two ends and is virtually infinite cyclic.
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(4) The space of ends ends is a Cantor set, and I" splits non-trivially as an amalgamated
free product or an HNN-extension over a finite subgroup.

(The fact that these are the only possibilities was shown by Hopf [Hop]. The fact that
in Case (4) T splits over a finite subgroup is due to Stallings [St].)

In particular, we note that if I' is one-ended, then it does not split over a finite
subgroup.

We shall want to relate this to group actions on trees.

By a “graph of groups”, we shall mean an ordered triple, (V, E,G), where (V, F) is
a finite or countable connected graph, and G associates to each vertex, v € V, a “vertex
group” G(v), and to each edge e € E, an “edge group” G(e). Moreover, if v is incident on
the edge e, then we are given a particular monomorphism from G(e) into G(v). To such a
graph of groups, we may associate the fundamental group, m1 (V, E, G).

Suppose that e € E. Now, if e lies in a cycle in (V, E), then 7 (V, E,G) can be
written as an HNN-extension over G(e). If e does not lie in a cycle, then removing e splits
the graph into two connected subgraphs, (Vi, E1) and (V, F3). Now we can restrict G
to these subgraphs to give us two graphs of groups, (Vi, E1,G1) and (Va, E3, G3). In this
case, m1(V, E, G) splits as an amalgamated free product over G(e), namely

WI(V7E7G) = 7Tl(‘/hElv Gl) *G(e) 71-1(‘/27E‘27C712)-

As described at the end of Section 3, a “simplicial tree” is a connected graph with no
cycles. We recall (Lemma 3.34) that (the vertex set of) a simplicial tree is essentially the
same structure as a discrete median pretree.

Suppose (S, I) is a simplicial tree, with vertex set S, and edge set I. Suppose I' acts
without edge inversions on S. Given p € S or f € I, write I'(p) and I'(f) for the vertex
and edge stabilisers respectively. Thus, if p,q € S are the endpoints of the edge f, then
I'(f) =T(p)NT(q). Let V.= S/T and E = I/T, so that (V, E) is the quotient graph.
There is a natural graph of groups, (V, E, G), such that if v € V and e € E, then G(v) and
G(e) are naturally isomorphic to the stabilisers, I'(?) and I'(€), where ¥ and € are lifts of
v and e to (S, I). Moreover, we have I' 2 (V| E, G).

Lemma 6.6 : Suppose that I' acts without edge inversions on a simplicial tree such that
all the edge stabilisers are finite. If I' is a one-ended finitely generated group, then I fixes
some vertex of the tree.

Proof : Let (V, E,G) be the quotient graph of groups. Thus, G(e) is finite for all e € E.
Since I' does not split as an HNN-extension over any G(e), we see that (V, E) cannot
contain any cycles, and so is itself a tree.

Now suppose that e € E. Let (V1, Eq1,G1) and (Va, E2, G3) be as above. Now the split-
ting over G(e) must be trivial, and so, without loss of generality, we have 71 (V1, F1,G1) C
G(e). We put an arrow on the edge e pointing from (Vi, E7) to (Va, Es).

Now, it’s easy to see that at each vertex, v € V, there is at most one incident edge
pointing away from v. If all incident edges point towards v, we refer to v as a “sink”.
Now, either there is a (unique) sink, or else there is an infinite ray of edges all of which
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are directed towards infinity. In the former case, we see that G(v) must support the whole
of m(V, E,G), and so the stabiliser of a lift (in fact the lift) of v to S will be the whole
group I'. In the latter case, we could write I' as an ascending chain of finite subgroups.
But since I' is finitely generated, we would deduce that I' itself were finite. &

Lemma 6.7 : Suppose that I' acts on a bipartite tree, S = Sy U Sy, preserving each of
So and Sy. Suppose that whenever two distinct edges e and e’ meet at a vertex in Sy, then
either I'(e) or I'(e’) is finite. Suppose that I is finitely generated and one-ended. Then T'
fixes some vertex of S.

Proof : We modify the proof of the last lemma. Let (V, E,G) be the quotient graph of
groups. Thus V =V, U V; where Vy = Sp/I" and V; = S1/T. Let E be the set of edges
e € E for which I'(e) is infinite.

Now any cycle in (V, E) would have to contain a vertex in Vy and hence an edge
e € E'\ Ew. Thus I' would split as an HNN-extension over G(e). We conclude that (V, E')
is a tree.

Now, we can put arrows on the edges of E'\ E, as in the proof of Lemma 6.6. In
this case, the same argument leads us to a connected subgraph of groups (V', E', G), with
E' C E, and with 71 (V, E, G) supported on 71 (V’, E', G'). Now, if V' consists of a single
vertex, we are done. The other possibility is that it consists of a single vertex, v € Vi,
together with a set of adjacent vertices in Vj.

Suppose w € V' NV, and let e € E’' be edge joining w to v. Now, we must have
G(w) € G(e), otherwise, there would be at least two edges of the simplicial tree S, both
incident on the same lift of w and which both project to e. But since the stabilisers of
these edges are infinite, we contradict the hypotheses of the lemma. It follows that we
have I'(w) C G(v) for all w € V' N Vy. Thus m (G, E, V) is supported on G(v), and so v is
fixed by T %

We now set about the proof of Theorem 6.1. Let M be a continuum. Let 7' C M be
any set of cut points. We begin with a refinement of Lemma 5.11, which gives a complete
description of the sets Rys(p) for p € &\ T. Write A(p) for the set of elements of ® which
are adjacent to p. Thus A(p) C T. Note that, as observed in Section 3, the set {p} U A(p)
is full. Also, if a,b € A(p) are distinct, then apb.

Lemma 6.8 : Ry (p) = ¢~ (p) UA(p).

Proof : Suppose z € Ry(p) \ ¢~ (p). Let a = f(z). By Lemma 5.11, we have a € A(p).
Now x € Rp(a,p) = Rar(a,b) for some b € T with —pab. Thus —zab. Since a = ¢(z),
we have flow(a)|T = flow(z)|T. Since —bax, we must have x = a, and so x € A(p). This
shows that Ry (p) C ¢~ 1(p) U A(p).

Conversely, suppose p € ® \ T. If p € ¢~ (p), then flow(z)|T = flow(p)|T. Since
x ¢ T, we have bax < bap for all b,a € T, and so x € Rp(p).

Finally, suppose b € A(p). Given a € T, we have —bap and so, by definition,
Ryr(a,p) = Rar(a,b). In particular, b € Ry(a,b). Thus b € Ry (p). O
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Note that we always have that Rys(p) # 0 (Proposition 5.14).

If a € T, we shall define Rys(a) = {a}. We have thus associated to each point p €
a non-empty closed (connected) subset of M. Any two such sets are either disjoint, or
intersect in a single point of 7.

Note that Rps(p) might a singleton in essentially three cases, namely, if p € T, if
p € ®\ T and p is not adjacent to any element of ®, or if p € &\ T, and p is adjacent to
a single element of ®.

Let @’ be the set of those elements of @\ T which are adjacent of precisely one element
of T. (These are all of type P(1,1) as described in the classification of flows in Section 3.)
The elements of ® play no useful role in the argument, so it will be convenient to forget
about them as far as possible. We set &5 = ® \ ®’. Note that &/~ can be identified with
®y/~, where ~ is the finite interval relation as defined in Section 4.

Suppose now that I' acts as a convergence group on M. We assume that 7' C M is a
[-invariant set of cut points. The map ¢ : M — & is natural and thus equivariant. We
get an induced action of I' on ®. These actions must agree on 7', so there is no ambiguity
in writing v(p) for the image of p € ® under ~.

Given an element v € I', we write F'(y) for the set of fixed points of v in ®. Note that
every point of F(v) \ @ is adjacent to a (unique) point of F(vy)NT.

Lemma 6.9 : Suppose that v is loxodromic, then either

(1) F(v) N ®q consists of a single point, two adjacent points, or a single point of ®y \ T
together with two adjacent points of T', and each element of F(vy)\ ®¢ is adjacent to some
element of F(y)NT.

(2) F(v) consists of two points of p,q € ®y \ T, both of which are terminal in ®, and such
that the interval [p, q] is infinite.

Proof : First, we observe that F(v) N ®q # (). To see this, note that if u € fix(y), then
f(p) € @ is fixed by ~. If it should happen that f(u) ¢ ®g, then the unique adjacent point
of T will also be fixed by T'. In any case, we get at least one fixed point in ®.

We next claim that it is not possible for F'(7)N®g to contain an element of 7" together
with two adjacent elements. For suppose, to the contrary, that p,q € ®¢ \ T, and a €
A(p) N A(q) C T, and that a,p,q € F(y). Now the sets Ry;(p) and Rys(q) are closed and
v-invariant, and Rps(p) N Ry (q) = {a}. But since p,q € o \ T, we have that these sets
must each contain at least two elements. Thus, fix(y) C Ras(p)NRar(q). Thus fix(y) = {a}
contradicting the supposition that ~ is loxodromic.

Note also that F'(y) N T can contain at most two points.

Suppose, for the moment, that for all p,q € F(v) N ®q, we have that [p, | is finite.
In this case [p, ] must be fixed pointwise by 7, Lemma 3.28 tells us that it must consists
of an alternating sequence of elements of 7' and ® \ 7. Note also that [p,q] C ®q. Thus,
[p,q] C F(vy). We see that |[p,q] \ T'| <1 and that |[p,q]NT| < 2. Thus, |[p,¢]| < 3, and if
I[p, q]| = 3 then p,q € T. Now, since this applies to any interval in F'(y) N ®g, we see that
if F'(7) N®( contains more than two points, it must consist of a point p € & \ T, together
with a subset of the set A(p) of adjacent points. Since A(p) C T, this subset has at most
two elements.
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We can thus assume that F'(y) N @y contains two elements p and ¢ for which [p, ¢] is
infinite. Now Rj/(p) and Rjs(q) are disjoint closed ~y-invariant subsets of M, and so must
each consist of a single point, i.e. Ry/(p) = {p} and Ry (q) = {q}.

Now, suppose that r € F(v) N ®g \ {p, ¢}. Without loss of generality, [p, 7] is infinite,
so the same argument shows that Rys(r) = {r}. Since  has only two fixed points in M,
we get a contradiction. We conclude that F'(vy) N ®y = {p, q}.

We next show that p,q € o\ T" and that p and ¢ are terminal in ®.

Now, (p,q) and hence (p,q) N'T are infinite. Define N(p) = (\{Ram(a,b) | a,b €
T, qabp}. Note that if abp, then —bap, so Rys(a,b) = Rps(a,p). We conclude that Ry (p) C
N(p). In particular, N(p) # 0. Also N(p) is closed and ~y-invariant. We similarly define
N(q). Note that N(p) N N(q) = 0. (Choose a,b,c,d € T with pabcdq. Then N(p)
Rpr(b,a) N Rys(e,d) = 0.) Tt follows that N(p) and N(q) are both singletons.

Now suppose, for contradiction, that p € T. Then N(p) = {p}. Choose any c € (p, q).
Since p is a cut point of M, there is some x € M with xpc. It follows easily that apx for all
a € (p,q) NT. Now suppose gabp. We must have abx so —bax and so x € Rps(a,b). Thus
x € N(p) = {p} and so z = p. This contradiction shows that p ¢ T'. Similarly ¢ ¢ T.

A similar argument shows that p and ¢ are terminal in ®. For suppose, to the contrary,
that p is not terminal. There is some ¢ € ® with ¢pq. We can assume that ¢ € T'. Now, if
a,b € T with qabp, we must have gabpc. In particular abc, so —bac, and so ¢ € Rys(a,b).
We see that ¢ € N(p) = {p}. We get the contradiction that ¢ = p.

Finally, suppose that F(y) contains two elements r,s with [r,s] infinite. If either
of these does not lie in ®¢, it must be adjacent to an element of F'(y) N'7T. But this
would contradict what we have already shown. We conclude that in this case we have

F(v) ={r,s} C . &

Lemma 6.10 : Suppose v is a parabolic whose fixed point, a € M, does not lie in T
Then, F'(v) consists of a single point of & \ T

Proof : We know that F(y) NT = (. It follows immediately that F(vy) C ®q. As in the
proof of Lemma 6.9, we see that F(y) # (). Also, if p,q € F(v) are distinct, then [p, ¢
is infinite (otherwise it would contain a point of F(y) NT). Now, Rps(p) and Ryps(q) are
disjoint closed y-invariant sets, contradicting the fact that v is parabolic. This shows that
F(7y) contains just one point. &

(We remark that if 7 is parabolic with fixed point a € T, the F(v) consists of the
point a together with a set of adjacent points of ®. We shall not need this fact here.)

The proof of Theorem 6.1 will proceed by transfinite induction. Recall that D(M) =
U = &/~, where ~ is the minimal codense relation on ®, as defined in Section 4. Also,
A = ~vq for some ordinal a. The idea will be to show inductively that no element of ®/~4
is fixed by the whole of I'. In particular, it follows that ®/~ is non-trivial.

The hypothesis that M has a cut point is used to get the induction started. (Recall
that ~q is just equality on ®.) We assume that I" acts minimally on M.
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Lemma 6.11 : No element of ® is fixed by I.

Proof : First, we claim that if p € ®, then Ry;(p) # M. Suppose, to the contrary, that
Ry (p) = M. Clearly p ¢ T. Let a be any point of T. Now, a is a cut point, so we can find
x,y € M with zay. Now, z,y € Ry (p) € Ry(a,p). By definition, Rys(a,p) = Rpr(a,b)
for some b € T'\ {a}. We have baz V bay. But since z,y € Ry/(a,b), we have =bax A —bay.
This proves the claim.

But now, if p € ® were fixed by I', Ry/(p) would be a closed nonempty I'-invariant
subset. By the minimality hypotheses, we would deduce that Ry;(p) = M. &

Now, let ~ = ~j be the finite interval relation on ® (Section 4). Recall that a ~-
equivalence class, X, is a (maximal) discrete full subset. Since X is full, it must itself be
a median pretree, and so by Lemma 3.34, it can be thought of as a simplicial tree.

At this point we need to assume that I' is one-ended. ;From the observation following
the statement of Theorem 6.1, we can assume that the stabiliser of any point of T is either
finite or loxodromic (see Proposition 6.4).

Lemma 6.12 : No element of ®/~ is fixed by I'.

Suppose, for contradiction, that I" preserves setwise the ~-equivalence class, X C . Now
S = X NPy is full and nonempty (since any element of X, which is not terminal in X must
be adjacent to at least two elements of X). Thus, S is a discrete median pretree, and so
by Lemma 3.34, it is a simplicial tree. Let S = SNT and S; =S\ 7. Thus S = Sy U Sy,
and I" preserves Sy and S;. By Lemma 3.28, this a bipartite partition, (i.e. each edge of S
has one endpoint in each of Sy and S7). We aim to verify the hypotheses of Lemma 6.6.

Suppose that a € Sy is adjacent to distinct points p,q € S1, and that each of the edge
stabilisers, I'(a) N T'(p) and I'(a) N T'(g) is infinite. Now, I'(a) is infinite, and hence must
be loxodromic. (See the remark before the statement of the lemma.) Thus, I'(a) N T'(p)
and I'(a) N T'(q) each have finite index in I'(a). It follows that there must be some infinite
order element v € I'(p) N I'(¢). Now 7 is loxodromic and fixes p, @ and ¢q. But a € T
and p,q € @y, contradicting Lemma 6.9. This shows that at least one of I'(a) N I'(p) or
['(a) NT'(¢g) must be finite.

Now, the hypotheses of Lemma 6.6 are satisfied, so we see that I' must fix some
element of S C &, which contradicts Lemma 6.11. &

Before we finish the proof of Theorem 6.1, we need a lemma about complete median
pretrees. Suppose that © is a complete median pretree, and that X and Y are disjoint
nonempty full subsets, and that X UY is also full.

Suppose that there is some p € Y with the property that for some x € X, [z,p]NY =
{p}, and so [z,p] N X = [z,p). Now, if z € X, we have [z,z] C X. Thus med(z, z,p) €
[z,p)N[z,p) and so [z, p) and [z, p) are cofinal. In particular, we see that, in fact, [z, p|NY =
{p} for all x € X. Suppose that there is some ¢ € Y such that [x,q]NY = {q}. Then since
med(z, p,y) € [p,q] C Y, we see that p = ¢. In other words, the point p € Y, if it exists,
is uniquely determined. We write it as p = p(Y, X).

Suppose that x € X and y € Y. Let ¢ = med(z,y,p). Then we see easily that
[z,q] NY = {q} and so, in fact, ¢ = p. This shows that [z,y]NY = [p,y].
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Lemma 6.13 : Suppose that © is a complete median pretree, and that X,Y € © are
disjoint, full and nonempty subsets with X UY full. Then either p(X,Y") or p(Y, X) exists.

Proof : Choose any x € X and y € Y. Now [z,y] N X and [z,y] NY gives a partition of
[z, y] into two non-empty subarcs. By completeness, [x,y] N X has the form [z, p] or [z, p)
for some p € ©. In the former case, we must have p € X. Since [y, p] C [z,y], we must
clearly have [y,p] N X = {p} and so p = p(X,Y). In the latter case, we can assume that
p € [z,y]. (For if not, let ¢ = med(z,y,p) € [z,y]. Then [x,p) = [z, q] and we are reduced
to the first case.) Thus, p € Y, and so [z,p] N Y = {p}. Thus p = p(Y, X). O

Proof of Theorem 6.1 : We prove, by transfinite induction on the ordinal «a, that T"
cannot fix any element of ®/~. Lemma 6.12 has already done this for ~ = ~, so we can
assume that o > 1.

Suppose first that « is a limit ordinal, and suppose that the ~,-equivalence class = C ¢
is preserved setwise by I". Let {v1,...,7,} be a finite generating set for I'. Choose any
x € E. Now for each ¢ € {1,...,n}, we have z ~,, 7;(z), and so, by the definition of ~,, as
V{~s | B < a}, we must have x ~g, v;(x) for some ; < . Let § = max{f1,...,58,} < a.
Now, x~gv(x) for each v € {71, ..., 7.} and hence for all ¥ € I'. Thus, the ~g-equivalence
class containing x is preserved by I'. In other words ®/~3 contains a point fixed by T,
contrary to the inductive hypothesis.

Thus we can assume that o = 4 1 is a successor ordinal. Now ®/~, = (®/~p)/=,
where ~ denotes the finite-interval relation in ®/~g. Suppose, for contradiction, that the
~q-equivalence class = C @ is preserved by I'. Now, =/~3 C ®/~p is a finite-interval-
equivalence class, and hence a simplicial tree. Write ¥ = Z/~3. Thus ¥ admits a I'-action,
which by the inductive hypotheses has no I'-invariant vertex. We first show that there are
no edge inversions on .

Suppose that X,Y € ¥ are adjacent vertices. Thus X UY is a full subset of ®. We
claim that the points p(X,Y") and p(Y, X), as described by Lemma 6.13, cannot both exist.
For if they did, they would clearly have to be adjacent in ®, and thus be identified by the
finite-interval relation ~;. Since we are assuming that a > 1 and so § > 1, they would
also be identified by ~g, and so could not lie in distinct ~g-equivalence classes. Thus,
applying Lemma 6.13, we see that precisely one of the points p(X,Y") or p(Y, X) exists. It
follows that no element of I' can swap X and Y. We have thus shown that there are no
edge inversions on X.

The next objective will be to show that if the stabiliser of an edge of ¥ is infinite,
then one of the incident vertices will be terminal in X.

Suppose then that X,Y € ¥ are adjacent. We can suppose that p = p(Y, X) € Y
exists. Now if the edge stabiliser, I'(X) N T'(Y) were infinite, it would have to contain an
infinite order element, v. Moreover, v must fix p.

Let W be the set of point € ® such that —zpX. Thus X C W, and Y NW = 0.
Moreover if z,y € W, then [x,p) and [y, p) are cofinal (since med(z,y,p) # p). Since X
and p are vy-invariant, so is W. We claim that W contains a fixed point of ~.

Suppose, to the contrary, that W contains no fixed point of v. We construct a ~-
invariant arc in W as follows. Choose any y € X, and choose x € [y,p) N [y(y),p) C X.
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Now, v(x) € v(ly,p)) = [v(y),p). Since = and y(z) are, by assumption, distinct, and both
lie in [y(y), p), we must have either = € (p,y(z)) or y(z) € (p, z). Without loss of generality
(replacing v by v~ ! and x by v(z) if necessary), we can assume that z € (p,v(z)). Now,
Y (x) € ¥ (p,y(x)) = (7" (2)), and so (p,y"(x)) € (p,7"*'(x)). It follows that
A = U, y(p,7™(x)) is an arc. Clearly, v(4) = A. Also, since the arcs (p,7"(x)) are
strictly increasing, it’s easy to see that A is endless. Since ® is complete, there is some
z € ® such that A = (p, z). Moreover, since ¢ is a median pretree, this z is determined
uniquely, and so v(z) = z. Now, since y € A = (p, z), we have pyz and so —zpy. Since
y € X we have —zpX, and so z € W. Thus W must have contained a fixed point of ~
after all.

Let ¢ € W be a fixed point of 7. Since ¢ ¢ Y, we have pyX5q and so p#,q. In other
words, [p, ¢| is infinite.

Now Lemmas 6.9 and 6.10, we see that we see that v must be loxodromic. In fact, we
are in case (2) of Lemma 6.9, and so, in particular, p is terminal in ®.

Now it follows that, in fact, Y = {p}. For suppose y € Y. Choose any x € X. Then
[z,y]NY = [y, p|]. In particular, p € [z, y], so since p is terminal, and p # =, we must have
p = y. It now follows immediately that ¥ must be a terminal point of ®/~g, and so in
particular of ¥ = =/~3.

In summary, we have shown that if an edge of ¥ is stabilised by an infinite group,
then one its enpoints must be terminal. Now if we delete from 3 each such edge together
with its terminal endpoint, we obtain a simplicial tree S C X. all of whose edge stabilisers
are finite. By Lemma 6.5, we see that I' must fix some vertex of 9, i.e. some element of
®/~g, contrary to the inductive hypothesis.

In summary, we conclude that for each ordinal a, no vertex of &/~ is fixed by I". In
particular, ®/~, is non-trivial. Now, by Lemma 4.4, the minimal codense relation on ®
has the form ~ for some ordinal a. We deduce that the quotient by the minimal codense
relation is non-trivial. &

As explained in the introduction, one of the main applications we have in mind is to
the boundaries of hyperbolic groups.

Suppose that I' is a (word) hyperbolic group in the sense of Gromov [Gr| (see also
[GhH]). The boundary, dI', of I" is a compact metrisable topological space. Moreover,
[’ acts on JI' as a convergence group (without parabolics) in the sense of [GeM1] (see
[F,Tul,Bo5]). Also the orbit of every point under I' is dense, and so the action is minimal.
If T is one-ended, then OI" is a continuum. Moreover, a hyperbolic group cannot contain
an infinite torsion subgroup. Thus, if OI' has a (global) cut point, we see that Theorem
6.1 gives an equivariant quotient which is a non-trivial dendrite. This proves Theorem 0.1
described in the introduction.

As mentioned in the introduction, we can use this construction together with that of
[L] or [Bo3| to obtain a splitting of I" over a two-ended subgroup. (For this we need to
assume that I' if finitely presented and has no infinite torsion subgroup.) With certain
additional hypotheses, using an idea of Swarup [Swa] one can show that every global cut
point must be a parabolic fixed point see [Bo6]. This gives the result [Swa] that a one-ended
hyperbolic group has no global cut point. In fact, the argument can be applied to the case
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of relatively hyperbolic groups (in particular, geometrically finite kleinian groups) to show
that if the boundary (or limit set) is connected, then every global cut point is a parabolic
fixed point. For this one need to place certain mild restrictions on the class of groups that
can occur as maximal parabolic groups. (It is sufficient to assume that they are one or
two-ended, finitely presented, and not infinite torsion groups. Probably only the last of
these assumptions is really important.) These restrictions are redundant for geometrically
finite kleinian groups (or indeed geometrically finite groups acting on hadamard manifolds
of pinched negative curvature). One can go on to show that such boundaries are locally
connected. The details are set out in [BoS,B09,Bo10]. In the case of kleinian groups, this
has for some time been an open problem in dimension greater than 3.

Recently, Swenson [Swe| suggested an alternative route through some of the dendrite
constructions described above. Thus, starting with a convergence action on a continuum,
one uses the pretree structure to construct a “non-nesting” action on a real tree, and
then applies the result of [L]. Although the construction is less natural than the quotient
dendrite, it avoids the necessity of demonstrating non-triviality directly, so it is may prove
to be both simpler and more powerful. Finding an optimal route through these various
construction so as to give the strongest possible result remains an ongoing project.

It is natural to wonder what hypotheses on a minimal convergence action on a contin-
uum are necessary in order to force local connectness. Indeed, I know of no counterexample
for finitely generated groups, though it would indeed be remarkable if this were sufficient.
In this connection, it is worth mentioning the classical conjecture that the limit set of
a finitely generated 3-dimensional kleinian group is locally connected if it is connected.
(There are certainly counterexamples if one drops the assumption of finite generation.)
Some progress has been made of this question by Cannon and Thurston, Minsky and oth-
ers, though the techniques employed are very different to those discussed here (see, for
example, [Min]). I don’t know of any work on the problem in higher dimensions. One
might wonder if a dynamical approach might bring any new insights, though it is unclear
where to begin, or how one might bring the finite generation hypothesis into play.

7. Dendrons.

We shall use the term “dendron” to mean a compact real tree, where a “real tree”
as defined in Section 1 can be described as a uniquely arc-connected locally arc-connected
topological space. (Thus a “dendrite” is just a separable dendron. For most of this section,
the separability assumption will not be needed.)

We shall be principally interested here in isometric group actions on R-trees. Such
an action naturally gives rise to an action on a dendron. We shall see that the latter
action is a convergence action if and only if the action on the R-tree satisfies a certain
“edge-discreteness” condition (Proposition 7.2).

For the purpose of analysing boundaries of hyperbolic groups with cut points, the
main interest is in going in the opposite direction. Thus to a convergence action on a
dendron (or dendrite), one would aim to associate an isometric action on an R-tree. We
discuss this further later in this section.
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Before formulating the theorems, we recall some results about R-trees, and give some
examples of the phenomena we are interested in.

There are many equivalent ways to define an R-tree. A common way is to regard it as
a special case of an A-tree where A is an ordered abelian group. They were introduced in
this form in [MorS]. (See also [Shal,Sha2,Mor,Pa2] for more discussion.) We shall see some
other ways of defining R-trees later. The term “edge” is sometimes used to mean a non-
trivial closed interval, particularly with reference to “edge-stabilisers”. Thus, a common
hypothesis is to place restrictions on the possible groups that can arise as edge-stabilisers.

Suppose I' acts isometrically on an R-tree. Suppose I is finitely generated and acts
freely. A theorem of Rips tells us that I' is a free product of surface groups and free
abelian groups (see, for example [GaLP]). An extension of this classification theorem has
been given by Bestvina and Feighn [BeF2]. In particular they show that if T' is finitely
presented and acts stably with cyclic edge stabilisers, then I' splits over a small subgroup.
Here “stable” means that given a nested decreasing sequence of edges, the corresponding
edge stabilisers are eventually constant. A “small” group is one which does not contain a
free group on two generators.

Central to this section will be notion of the “compactification” of an R-tree. An
elegant idea for describing such a compactification can be found in a paper of Ward [W1],
and a more intuitive construction was described by Pearson [Pe]. Of course, these papers
were written before the notion of an R-tree was formulated, and apply to certain kinds of
real trees described purely as topological spaces. (Note that the metric structure is not
directly relevant here.) A general method explicitly for R-trees was described in [MayNO)].
Note that the term “compactification” should be interpreted broadly, in that the subspace
topology on the R-tree will in general be coarser than the original metric topology. It
seems that the notion of a pretree gives a particularly natural context in which to describe
these ideas, and we give an overview of these constructions in terms of pretrees later.

First, it will be helpful to illustrate these these notions with reference to a well-known
example — that of a surface group acting on an R-tree which is the leaf-space of a measured
lamination (or of a measured foliation). In fact, a theorem of Skora [Sk] tells us that all
minimal free surface group actions arise in this way (see also [O]). For a discussion of
laminations on surfaces, see for example [CaEG].

Suppose, then, that 3 is a closed compact surface of genus at least 2. Let I' = 71 (2).
We choose some hyperbolic structure on 3. Suppose we have a measured lamination
on Y with support L, such that each connected component of ¥ \ L is a topological
disc. We lift the lamination to the hyperbolic plane H2. Let T be the set of strata of
the lifted lamination, where a stratum is either a non-boundary leaf, or the closure of
a complementary region. (The latter type is a finite-sided polygon.) Thus, T' gives a
I-invariant partition of H?2.

We put a metric, d, on T by defining the distance between two strata to be the
transverse measure across the set of geodesics which separate them. It turns out that
(T',d) is an R-tree. The induced action of I" on 7' is free.

Now, given a stratum x € T', let f(z) be its closure in the disc H?> U 9H?. Let D be
the set of such closures, together with the set of points of 9H? which do not lie in any
such closure. Thus D gives an upper semicontinuous decomposition of H? U9H?2. We give
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D the quotient topology. Thus, D is a continuum. In fact, D is a dendrite. Note that
f T — D is an injective map, and it’s not hard to see that it’s continuous. Moreover,
f(T) is dense in D, and D \ f(T) consists entirely of terminal points. We can thus view
D as a kind of compactification of T', although the subspace topology on T is coarser than
the original metric topology.

Note that D can also be viewed as a quotient of OH?, since the closure of every
stratum meets OH? (in a finite set). Now I' is word-hyperbolic, and we can identify oT
with 0H2. We thus have an example of an equivariant quotient of the boundary of a
hyperbolic group which is a non-trivial dendrite. Moreover, I" acts on D as a convergence
group. Of course, this is quite different from the sort of picture we would expect from our
cut-point construction, though it should guard against attempts to find some immediate
contradiction.

The dendrites arising from this construction have been well-known for some time;
they arise as the limit sets of Bers boundary groups. In fact, it’s known from the work
of Thurston, Bonahon and Minsky among others, that if a surface group acts properly
discontinuously on H? in such a way that the discontinuity domain is connected, and the
quotient manifold, H3, has a lower bound on injectivity radius, then the limit set is a
dendrite of the type described, and that the natural actions of I are conjugate. One would
conjecture that the bound on injectivity radius should be unnecessary. One would also
suspect that all dendrites of this type arise as limit sets of such groups.

We shall want to explore more generally the relationship between actions on R-trees
and actions on dendrons, as illustrated by this example. The topological relationship can
be described by the following compactification theorem (cf. [MayNO]).

Proposition 7.1 : Given an R-tree, T, there is a dendron D and a continuous injective
map f : T — D such that f(T) is dense in D. Moreover, if D' is another dendron, and
f": T — D' is another such map, then there is a unique homeomorphism g : D — D’
such that f' = go f.

Note that only the topology of T' is relevant here. In fact we could replace the term
“R-tree” with “real tree” provided we assume that 7' contains no embedded long line.
We shall write D(T') for the dendron thus defined. It’s not hard to see (Lemma 7.6) that
D(T)\ T consists entirely of terminal points of D(T"). Note that if 7" is separable, then so
is D(T'), and so in this case D(T') is a dendrite.

JFrom the naturality of the construction, we see that any homeomorphism of an R-
tree, T, extends to a homeomorphism of D(T'). (Since we are dealing with two different
topologies, the word “extends” should be interpreted on the level of sets.) In particular,
any isometric action of a group I' on T gives rise to an action on D(T") by homeomorphism.
We aim to describe when the latter action is a convergence action.

To do this, let E(T) =T x T\ {(z,z) | z € T} be the set of edges. Thus, formally,
an edge is an ordered pair of distinct points (x,y), though we shall usually imagine it
as the closed interval [z,y]. We give F(T) the product topology. We define a notion of
“edge-discreteness” for a group acting isometrically on 7. There are several equivalent
ways to do this as we describe later. For the moment, we say that I' is “edge-discrete”
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if all the edge stabilisers are finite, and no I'-orbit of an edge accumulates in E(T). We
shall see (Proposition 7.20) that if edge-discreteness fails, then either some edge stabiliser
is infinite, or there is some closed subset of T' isometric to the real line, whose setwise
stabiliser contains a dense set of translations. Relating this to the compactification, we
shall show:

Proposition 7.2 : Suppose the group I' acts isometrically on an R-tree T'. Then I' is
edge-discrete if and only if the induced action on D(T') is a convergence action.

The “if” bit of the above result is fairly elementary (in view of the fact that edge-
discreteness is defined in terms of the metric topology, which is finer than the compactified
topology). The “only if” bit is somewhat more involved.

A natural question to ask is: what happens if we drop the assumption that I' acts
isometrically? In other words, given a convergence action on a dendron, D, can we re-
construct an isometric action on an R-tree, T', for which D = D(T"). We can begin by
removing all the terminal points from D and looking for an equivariant path-metric on the
complement, T'. (Note that we cannot expect such a metric to be continuous.)

We shall see (Proposition 7.26) that it is possible to find an equivariant metric on
T, such that T is topologically a real tree. A result of Mayer and Oversteegen [MayO]
now shows that T" can indeed be given the structure of an R-tree. Unfortunately, the
latter construction is not canonical, in the sense that it’s not clear that it can be made
equivariant.

In summary we can ask:

Question : Suppose a group I' acts as a convergence group on a dendron D. Is this
action induced by an isometric action on an R-tree 7', for which D = D(T)?

(One might try restricting this question in various ways, for example by supposing
that I is finitely presented and acts minimally.)

Later in this section, we make a start on this question (Proposition 7.26). In [Bo3],
we use this result to construct an action of I' on an R-tree in the case where I' is finitely
presented, although it is not necessarily of the type asked for in the question. However, it is
sufficient to show that I' splits over a finite or two-ended subgroup. (At least provided we
add the hypothesis that I' does not contain an infinite ascending chain of finite subgroups.)
Putting this together with Theorem 6.1, we obtain the result (Corollary 0.2) that the
boundary of a strongly rigid one-ended hyperbolic group has no global cut point, and
hence is locally connected. (Recall that, in this context, a “ strongly rigid” group is one
which does not split over a two-ended subgroup.)

A situation in some sense at the opposite extreme to the rigid case was considered
by Martinez [Mar]|. In that paper, it was shown that if I" is a one-ended hyperbolic group
which is an amalgamated free product of two free or surface groups over an infinite cyclic
subgroup, then OI is locally connected. Using a combination of these ideas, it was shown
in [Bo4] that any strongly accessible one-ended hyperbolic group has locally connected
boundary [Bo4]. Swarup [Swa| showed how, in fact, these arguments could be carried over
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to the general case, using a relative version the splitting result of [L] or [Bo3], together
with (standard) accessibility over two-ended subgroups of [BeF1]. These ideas are carried
further in [Bo6], with applications to relatively hyperbolic groups, as discussed in Section 6.
It remains an interesting question as to whether every hyperbolic, or indeed every finitely
presented group must be strongly accessible (over finite and two-ended subgroups).

We now get on with a more detailed account of the compactification process for R-
trees.

There are many equivalent ways of defining an R-tree, other than as a special case
of A-tree. Perhaps the simplest definition is to say that an R-tree is a path-metric space
which contains no subset homeomorphic to a circle. Alternatively, it is a path-metric
space (or in fact any connected metric space) which is O-hyperbolic, i.e. (Vz,y,z,w €
T)(d(x,y) + d(z,w) < max{d(z,z) + d(y,w),d(x,w) + d(y,2)}). (In other words, the
largest two of the three quantities d(x,y) + d(z,w), d(x, z) + d(y, w) and d(x,w) + d(y, 2)
are always equal.) In either of these other definitions we could replace “path-metric space”
by “length space”, where the latter means that every pair of points can be joined by a
geodesic. In fact, since there is no embedded circle, we see that every pair of points are
connected by a unique arc, which must therefore be geodesic. Moreover, such a space is
locally connected, and hence a real tree, in the sense of Section 1 (a uniquely arc-connected,
locally arc-connected topological space). In other words, an R-tree is a real tree with a
particular path-metric. The equivalence of the above definitions is shown in [MorS] or
[Bol]. One can also show that, in fact, any connected 0-hyperbolic metric space is an
R-tree.

JFrom the point of view of compactification, we are not really interested in the metric
structure, so for the most part, we will talk about real trees. Note that not every real tree
can be given the structure of an R-tree; for example, the long line is a real tree. However,
R-trees can be characterised topologically as metrisable real trees [MayO].

A method for compactifying a real tree can be found in a paper of Ward [W1]. Since
the idea is easy to describe, we shall begin with a sketch of this process. Suppose that T is a
real tree. Let E(T') be the set of edges, as defined above. Let X(T') =[], , e [z y] be
the cartesian product, with the product topology. Thus X (7') is compact by Tychonoff’s
theorem. We can think of an element of p € X(T') as a map p : E(T) — T such
that p(z,y) € [z,y] for all z,y. We define a map 7 : T — X by setting 7(a)(z,y) =
med(z,y,a). Now it’s not hard to see that 7 is a continuous injection. We can thus
compactify 7" by taking the closure, D, of 7(T') in X (7'), and identifying 7" with 7(7"). Of
course, the subspace topology may be coarser than the original.

In general, D need not be a real tree. For example, if T" were the long line, D is
obtained by adding two endpoints. These endpoints are not connected by a real interval,
so D is not arc connected in the topological sense. However, this is essentially the only
thing that can go wrong.

Note that a real tree has a natural pretree structure. In this context, an “arc” is
defined to be a full linearly ordered subset (Section 2). This leads to the definition:

Definition : A real tree is short if every arc is homeomorphic to a connected subset of
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R.
Note that every R-tree is short. In fact:
Lemma 7.3 : Every arc in an R-tree is isometric to a connected subset of R.

Proof : Suppose that T is an R-tree, and A C T is an arc (in the pretree sense). Choose
any a € A, and a direction < on A. Define a map f: A — R by f(z) =d(a,z) of x > a
and f(x) = —d(a,z) if x < a. It’s not hard to verify that f is an isometry onto its range,
and that the range is connected. &

It turns out that Ward’s compactification of a short real tree is always a real tree,
and hence a dendron. This is a bit tricky to see directly. (In the original paper, Ward
puts additional hypotheses on the tree which ensures that the topology on T itself does
not change.) We shall thus use an approach to compactification which is more explicit,
but which will take longer to describe.

As already mentioned, the subspace topology of the compactified topology on a real
tree is in general coarser that the original topology, and admits a simple description in
terms of the pretree structure. This topology is described in several places in the literature,
usually in terms of pseudotrees. A very general account of topologies on pseudotrees can
be found in [Ni], which includes many other references to this subject. However, pretrees
seem a more natural context in which to phrase these ideas, at least in relation to real
trees. Although many of the constructions can be dealt with more generally, for the sake
of simplicity, we shall restrict attention here to “real pretrees”.

Definition : A pretree, T, is a real pretree if given any pair of distinct points x,y € T,
the interval [x,y] is order isomorphic to a real closed interval. A real pretree is short, if
every arc is separable (and hence order isomorphic to a full subset of R).

Lemma 7.4 : A real pretree is median.

Proof : By essentially the same argument as Lemma 2.11 (which showed that every
complete dense pretree is median). &

Obviously, every (short) real tree, T, is a (short) real pretree. Note that if x,y € T,
then from the definition of the pretree structure, the pretree interval [z, y] is the same as
the real arc [x,y] joining x to y, so there is no clash of notation.

Lemma 7.5 : Suppose that S and T are real trees and f : S — T' is a continuous
bijection. Then f is a pretree isomorphism.

Proof : Suppose that z,y € S and = # y. Then [z, y| is homeomorphic to a real closed
interval with endpoints x and y. Thus f([z,y]) is also homeomorphic to a real closed
interval, with endpoints f(x) and f(y). Thus f([z,y]) = [f(x), f(y)]. This shows that f is
a pretree isomorphism. &
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Suppose that T is a real tree and S C T'. Then S is full if and only if it is connected,
and hence subtree. In such a case, S is topologically dense in 7" if and only if it is (weakly
or strongly) dense in the pretree sense. We note:

Lemma 7.6 : Suppose T is a real tree, and S C T is a dense subtree. Then every point
of T'\ S is terminal. &

We can now get on with describing the compactification. Suppose that T is any real
tree (or for the moment, any dense median pretree). Given z,y € T, x # y, we define, as
in Section 5, J(z,y) ={z € T | med(z,y, 2) = y}.

Definition : If T is a real pretree, the order topology on T is defined by taking as subbase
for the closed sets the collection {J(z,y) | (z,y) € E(T)}.

There are various other ways of describing this topology. A particularly useful one is in
terms of preclosed subsets. Recall from Section 5, that a full subset ) C T is “preclosed”
if Ve e T\Q)(3y € T)(zyQ). We shall take the term “preclosed” to imply full. (Thus, in
the case of a real tree, the preclosed subsets are precisely the topologically closed subtrees.)

Now, any set of the form J(z,y) is preclosed. Conversely, it’s easily seen that any
preclosed subset is an intersection of sets of the form J(x,y), and so we could alternatively
define the order topology by taking the collection of all preclosed subsets as subbase for
the closed sets.

We note:

Lemma 7.7 : Any non-empty intersection of preclosed subsets is preclosed.

Proof : Let F be a collection of preclosed sets, and let G = (| F. Clearly G is full.
Suppose x ¢ G. There is some F' € F such that x ¢ G. Thus (Jy € T)(xyF'). Since
G C F we have xyG.

We can thus define the preclosure, Q, of a full set Q C T to be the intersection of all
preclosed sets containing Q. It’s not hard to see that Q = {x € T | =(Jy € T)(2yQ)}.

Suppose that Q@ C S C T with Q and S full in 7', and @ preclosed in S. Then
Q =QnNS. Conversely, if Q,S C T are full, and Q is preclosed in T, then Q N S is full
and preclosed in S. This shows:

Lemma 7.8 : If S is a full subset of the real pretree T, then the order topology on S is
the same as the subspace topology of the order topology on T &

Now note that the order topology on a linear pretree is the same as the usual topology
for a totally ordered set. Putting this observation together with Lemma 7.8, we get:

Lemma 7.9 : IfT is real pretree with the order topology, and x,y € I are distinct, then
[z, y] is homeomorphic to a real closed interval. &

In fact:
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Proposition 7.10 : Suppose T is a real pretree in the order topology. Then T is a real
tree. Moreover, the induced pretee structure agrees with the original.

Proof : For the moment, we use [z, y| to denote the pretree interval.

We first note that the order topology is hausdorff. To see this, given distinct points
x,y € T, choose any z € (z,y). We then have z € T'\ J(x,2) and y € T'\ J(y, 2).

Now, Lemma 7.9 tells us that 7' is (topologically) arc connected. We show that it is
locally arc connected.

Suppose z € T and V C T is a neighbourhood of . We can assume that V has
the form T\ (Fy U---UF,), where Fy,..., F,, C T are full and preclosed. For each i, let
G;={z€T|[x,z]NF; # 0}. Now G; is also full and preclosed. Let U = T\ (G1U- - -UG,,).
Thus U C V is a neighbourhood of z. If y € U, then [z,y] CU C V.

We have thus verified the hypotheses of Lemma 2.19, and so it follows that T is a real
tree. &

If T is a real tree, then the order topology on 7" will in general be coarser than the
original topology. However, we have:

Lemma 7.11 : IfT is a dendron, then the topology agrees with order topology.

Proof : The identity map from the original topology to the order topology is compact to
hausdorff, and thus a homeomorphism. &

Note that by Lemma 7.8, we could weaken the hypothesis of Lemma 7.11 to say that T is
a subtree of a dendron with the subspace topology.

In view of Proposition 7.10, we should think of a real tree as more general notion than
a real pretree (rather than the other way around, as one might at first imagine).

We can observe:

Lemma 7.12 : A dendron is complete as a pretree.

Proof : There are various ways to see this. For example, the preclosure of an arc is again
an arc. Since it is closed in the dendron it must be compact, and is thus easily seen to be
an interval. %

Note that this shows that a dendron is necessarily a short real tree. We shall omit
the details, since we are primarily interested in the converse to Lemma 7.12; namely:

Proposition 7.13 : A complete real pretree is compact in the order topology.

Proof : By the Alexander Subbase Theorem [Ke|, to show that a space is compact, it’s
enough to show that if a given intersection of closed subbase elements is empty, then some
finite subset of these subbase elements has empty intersection.

Suppose then that T is complete, and that F is a collection of preclosed subsets such
that the intersection of every finite subset of F is non-empty. We can assume that F
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is closed under finite intersection (by replacing F by the set of all finite intersections of
elements of F if necessary, and noting that an intersection of preclosed sets is preclosed).

Suppose, for contradiction, that (| F = (). Choose any a € T, and let
A={a}U{z e T | (3F € F)(azxF)}.

We claim that A is an arc.

First, we note that A is linear. To see this, suppose x,y € A\ {a} are distinct. There
exist F, G € F with axF and ayG. Choose any z € FNG € F. We have axz A ayz and
so axy V ayzx. It follows that A is linear. Now it’s easy to see that A is full, since if x € A,
then clearly [a,z] C A.

Now, by completeness, there is some b € T such that either A = [a,b] or A = [a,b).
Since (| F = 0, there is some F € F with b ¢ F. Since F is preclosed, (3z € T)(zzF).
Now if abz, we would have azF, and so z € A. But A C [a,b], so get the contradiction
that azb.

It follows that —abz. Since T' is a dense median pretree, we can find z,y € T with
axyb A zzyb. Now since y € A, there is some G € F with ayG. We thus have zyG A yx F'.
Choosing any w € F'N G, we get the contradiction zyw A yzw. &

We remark that in any pretree, a finite intersection full subsets is non-empty if and only
if any pair of these subsets has non-empty intersection. This follows by a simple induction
argument (cf. Helly’s theorem for convex subsets of euclidean space). We thus see that for
a complete real pretree with the order topology, any set of subbase elements which meet
pairwise has non-empty intersection — a property known as “supercompactness”. In other
words, we see that all dendrons are supercompact (see [Ni]).

In summary, we have reduced the problem of compactifying a real tree to one of com-
pleting a real pretree. The following construction, essentially the same as that described
in [Pe], gives a fairly explicit description of this completion.

Definition : A ray in a real pretree is a directed arc with no supremum.

Given a real pretree, T, let A be the set of rays in T. The relation of cofinality, which we
denote here by ~, is an equivalence relation on .A. We may identify the quotient QQ = A/~
as a subset of the set, P, of flows on T. We can thus regard 7' LI () as a subpretree of the
pretree T' U P defined in Section 3. We write D(T') =T U Q.

It’s easy to give an explicit description of the pretree relation on D(7T"). First note
that every point of @ = D(T) \ T is terminal. If z,y € T and p € @, then we have zyp if
and only if there is some representative A € A of p such that xyA. Finally, if x € T and
p,q € Q, then we have pxq if and only if there are representatives, A, B € A of p and ¢
respectively, such that AzB.

Lemma 7.14 : D(T) is complete.
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Proof : Suppose that A C D is a directed arc, with minimum a and with no supremum in
D. We can suppose that a € T. Now if p € AN Q, then since p is terminal, it would have
to be a supremum of A. We can thus suppose that A C T, and so A € A. Let p € Q be
the corresponding point. ;From the definition of the pretree structure, it’s easily verified
that A = [a,p) and so p a supremum. O

Lemma 7.15 : If T is a short real pretree, then D(T) is a real pretree.

Proof : If z,y € D(T) are distinct, then (z,y) is an arc in 7', and thus order-isomorphic
to R. It thus follows that [z,y] is order isomorphic to a closed real interval. &

In summary, we have shown:

Proposition 7.16 : If T is a short real pretree, then D(T) is a dendron in the order
topology. Moreover, T is dense in D(T).

Proof : By Lemmas 7.14 and 7.15, and Propositions 7.10 and 7.13. &

In order to prove uniqueness part of the compactness theorem as we originally stated
it (Proposition 7.1), we need one more observation:

Lemma 7.17 : Suppose that D is a complete real tree, and that T C D’ is a dense
subtree. Then we can extend the inclusion of T into D’ to a pretree isomorphism of D(T)
onto D’.

Proof : By Lemma 7.6, we know that every point of D’ \ T is terminal. It’s now easy to
see that the points of D'\ T are in natural bijective correspondence with cofinality classes
of rays in T. Moreover the pretree structure on D’ must be what one would expect.

Proof of Proposition 7.1 : Suppose 7' is an R-tree. By Lemma 7.3, T" is a short real
tree. By Proposition 7.16, T" embeds continuously in a dendron D(T).

Now suppose that D’ is another dendron, and that f’ : T < D’ is a continuous
injective map, with f'(T) dense in D’. By Lemma 7.12, D’ is complete. By Lemma 7.5, f’
is a pretree isomorphism onto f/(7"). By Lemma 7.17, f’ extends to a pretree isomorphism
of D(T) onto D’. By Lemma 7.11, this extension is a homeomorphism.

The uniqueness of the extension is trivial. &

We can now relate all this back to first construction we described, based on the paper
of Ward [W1]. Thus, given a real tree, T', we have a continuous injection, 7 : T — X (T,
of T into the infinite product X (7). By unravelling the definitions, it’s not hard to see that
a subbase for the closed sets in the induced topology on T is given by {J(z,y) | (z,y) €
E(T)}. In other words, the induced topology is precisely the order topology on T

Note that if 7" happens to be complete, then the image 7(7") will be closed in X (7).
With some work, one can verify this directly (giving another proof of Proposition 7.13),
though in retrospect, we know already, by Proposition 7.13, that 7(7") is compact.
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Now, given any short real tree, T\, we can extend the map = : T — X(7T) to a
continuous map D(T') — X(T'). To do this, first embed D(T) in X(D(T')) and then
project back into X (T') by forgetting those intervals which have some endpoint in D(T') \
T. It’s easily seen that this extension remains injective. Since D(T') is compact, it is a
homeomorphism onto its range. Since T' is dense in D(T'), we see that it can be described
as the closure of 7(7") in X(T).

We have thus shown that both compactifications give the same result. In particular,
the result of the Ward compactification is indeed a dendron.

Before we leave the subject of compactification, we note that in the special case of a
separable R-tree, there is a simple intuitive way of describing this process which we briefly
outline. We again reduce the question of compactification to one of “completion”, this
time interpreted in the metric space sense.

We begin by observing:

Lemma 7.18 : The metric completion of an R-tree is an R-tree.

Proof : This follows easily from the description of an R-tree as a 0-hyperbolic path-metric
space. (Note that the completion of a path-metric is always a path-metric.) &

Given an R-tree, (T, d), let pu be the 1-dimensional Hausdorff measure on T'. Thus, if
x,y € T, then d(z,y) = p([z,y]).

Now, if (7', d) has finite length, i.e. u(T") < oo, then it’s easily seen that T is precompact
(totally bounded), and so its metric completion will be compact.

Now, given any R-tree (T, d), the idea is to find another metric d’ on T, with d’ < d
and such that (7', d’) is an R-tree of finite length. It will be easiest to deal with the case
where (7, d) has no terminal points.

To do this, let (a;);en be a sequence of points of T', whose image in (7', d) is dense. For
each n € N, let T,, = J"_,[ao, a;]. Thus, (T,,),en is an increasing sequence of finite trees
which exhaust T'. Passing to a subsequence, we may as well assume that A,, = T,,\ T),—1 is
non-empty and thus a half-open interval for alln > 1. Thus T' = | I, A;, where Ay = {ao}.
By subdividing these intervals if necessary, we can also suppose that pu(A4;) < 1 for all 4.
We now define a new metric d’ by rescaling the metric d on A; by a factor of 27%. In
other words, if z,y € T, define d'(z,y) = > ., 27 'u(A; N [z, y]). Note that this is in fact
a finite sum, since we have x,y € T,, for some n. Now d’ is a path metric. Moreover, we
see that for each n, (T,,d") is homeomorphic to (7),,d) from which it follows easily that
(T, d") contains no embedded circle. Thus (7', d’) is an R-tree. Moreover it has length at
most 2, and so its completion is compact, and hence a dendrite.

The case where (T, d) does have terminal points is easily dealt with, by first removing
them, performing the above construction, and putting them back in at the end. We omit
the details here.

Before leaving the general subject of topologies on pretrees, there is one further remark
we could make. Note that, given a real pretree 7', the order topology can be thought of as
the unique coarsest topology on T', with respect to which 7" is a real tree (since preclosed
sets are necessarily closed in any real tree). There is also a unique finest topology in this
sense. It can be defined by declaring a subset of T' to be open if its intersection with any
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closed pretree interval is open in the order topology on that interval. One can easily verify
that this is indeed a topology, and that T is a real tree with this topology. However, we
shall have no use for this topology here.

We now want to move on to consider group actions on R-trees. We begin by recalling
the classification of isometries. Suppose (7, d) is an R-tree.

Definition : An isometry ~ of T is loxodromic if it has no fixed point in T'.

Lemma 7.19 : Suppose that v is loxodromic. Then there is a y-invariant subset | C T
which is isometric to the real line.

Proof : Choose any x € T. If d(x,vyz) > d(x,~yx), then the midpoint of the segment [z, yx]
would be fixed by . Thus, we must have d(x,yz) < d(z,v*r). Let y = med(z, yx,y%z).
Now it’s not hard to see that vy € (y,7*y), and so the set | = |J, .5 [y, vy] is isometric to
the real line. O

It’s easy to see that the set [ is unique with this property. We denote it by I(vy), and
refer to it as the axis of 7. It is a closed subset of T'. In fact, it is the unique minimal
nonempty y-invariant subtree. It is translated some positive distance by v which we denote
by m(7y). Thus m(y) = min{d(x,vz) | © € T'}. Note that any iterate of a loxodromic is
loxodromic with the same axis. In fact, m(y") = nm(7y).

Note, that if 2 € T, and d(z, v?z) = 2d(x,yz), then vz € [z, 3], and so, if d(z, yx) >
0, 7y is loxodromic, with = € I(vy). Moreover, m(y) = d(z,yz).

If v is not parabolic, then its fixed point set is a non-empty subtree. In this case we
set m(y) = 0. If v has infinite order and has a unique fixed point, we refer to it as a
parabolic.

We are primarily interested in group actions which have finite edge-stabilisers. In this
case every group element will be loxodromic, parabolic or of finite order. We shall refer to
an element of finite order as elliptic. Note that, in this case, every iterate of a parabolic is
parabolic.

Recall that the set of edges, E(T), of T is defined as E(T) = {(x,y) € T? | = # y}.
(We usually imagine such an edge as a closed interval, [z,y].) We define a metric, d, on
E(T) by 6((z,y), («',y")) = max(d(x,z’),d(y,y’)). Thus an isometry, -, of T" also acts an
isometry of (E(T'),0). A useful property to note is that if e = (x,y) € E(T) and a € [z, y],
then d(a,~va) < d(e,ve). This follows by the convexity of the distance function d.

Suppose I' acts isometrically on T'.

Definition : We say that ~ is edge-discrete if there does not exist an edge e € E(T)
together with a sequence (;);en of distinct elements of I" such that (v;(e))ien is Cauchy
with respect to the metric 4.

This is one of several equivalent definitions we could have chosen. Given Proposition
7.20, there are a number of apparently stronger alternatives. For example, we could say
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that T" is edge-discrete if it has finite edge stabilisers and no I'-orbit in F(7T') accumulates
in E(T'). This is the definition we mentioned earlier.

Now suppose [ C T is a subset isometric to the real line. Such a set is necessarily
closed, and we shall refer to it simply as a line. Suppose I' acts by isometry on 7. We
write G < I for the subgroup which preserves [ setwise, and respects its orientation. We
write H <G for the pointwise stabiliser of [, and set B(l) = G/H. Thus B(l) acts faithfully
by translation on [, and so can be regarded as a subgroup of the additive group R. This
subgroup is well defined once we have chosen an orientation on /. Note that if I' has finite
edge stabilisers, then certainly H is finite, so GG is a finite extension of an abelian group.

Proposition 7.20 : Suppose v acts on T" with finite edge stabilisers, then either T' is
edge-discrete, or there is a line | C T such that B(l) is a dense subgroup of the additive
reals.

Before we begin proving this, we make a few general observations.

Fix an edge e = (z,y) € E(T), and write de = {z,y}. Given an action of I on T,
and some r > 0, write G(e,r) = {y € I' | §(e,ye) < r}. Suppose d(z,y) > 2r. Given
v € Gle,r), define 0(y) = 5(d(z,vy) — d(y, vx)).

A more intuitive way of describing 6() is as follows. Choose any a € [z,y] with
d(a,0e) > r. Since d(z,vz) < d(x,a), we see that a ¢ [z,vz|. Similarly, a ¢ d(y,~y).
Thus a € [yz,vy]. Similarly, ya € [z,y]. Thus a,va € [z,y] N [yz,vy]. Note also that
d(a,va) < é(e,ve).

Suppose a € [z,va]. Then d(a,va) = d(a,z) — d(a,yz). Now ~va € [y, a], and so we
also have —d(a,~va) = d(a,y) — d(a,vy). Thus 2d(a,va) = d(a,z) + d(a,vy) — d(a,y) —
d(a,vz) = d(z,vy) — d(y,yx). Thus 0(y) = d(a,ya). Similarly, if ya € [z, a] we find that
0(v) = —d(a,va).

Note that if v € G(e,r), then y~1 € G(e,r), and 0(y~1) = —0(y). Also |0(y)| <
d(e,ve).

Now suppose that 3,7 € G(e,r/2), so that v8 € G(e,r). As before, choose any
a € [z,y] with d(a,0e) > r. We have d(a,fa) < r/2 and so d(fBa,de) > r/2. Thus,
a, Ba,vBa € [x,y]N B[z, y|NyB[z,y]. IO(B) > 0 and O(y) > 0, then 6(3)+60(v) = d(a, Ba)+
d(Ba,ypa) = d(a,vpa) = O(~B). By similar arguments, we see that the same identity holds
whatever the signs of 6(5) and (). Thus, 6 is a kind of “local homomorphism” to R.
Note also that |0(8) — 0(v)| = [0(y~1B)| < d(e,v~1Be) = §(Be, ve).

Now if v € G(e,r/2), then 0(v*) = 20(y). Thus, if we choose a as above, then
d(a,vy?a) = 2d(a,~va) and so m(vy) = d(a,ya). We conclude that m(vy) = |0(~)|.

Finally note that if d(e,ve) < r and () = 0, then ~ stabilises an edge: choose any
distinct a,b € (z,y) with d(a,0e) > r and d(b,de) > r, then a and b are fixed by 7. In
fact we notice that all such v can be assumed to stabilise the same edge.

Proof of Proposition 7.20 : Suppose that I" has finite edge-stabilisers but is not edge-
discrete. There is an edge e = (z,y) and a sequence (7;);en of distinct elements of I such
that (v;e);en is Cauchy in (E(T),0).

Choose any r < d(z,y)/2. We can suppose that v; € G(e,r/8) for all i € N (by
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replacing e by e and each v; by viyr v, ! for large enough k if necessary ).

Let a,b € [x,y] with d(x,a) = d(y,b) = r. Let K < T be the stabiliser of the edge
(a,b). By hypothesis, K is finite.

Let 60 : G(e,r) — R be the map defined above. Note that if v € G(e,r) and
0(v) =0, then ~v fixes a and b, so v € K. Now, given any 3,7 € G(e,r/4), the commutator
(B,7] = ﬁfyﬁ 7~ lies in G(e r). Moreover 9([5,7]) 6(8) +6(y) —0(B8) —0(v) =0, and
so [3,7] €

Now, given 4,5 € N, we have |0(v;) — 0(v;)| < 6(vie,vje) and so the sequence
(0(7:))ien is Cauchy. We can suppose that the numbers 6(+;) are all distinct and non-zero
(since K is finite).

Suppose 5 € G(e,r/4) and k € N. Consider the commutators [3,7;] € K for i > k.
There exist j > i > k with [§,v;] = [B,7;]. We see that § commutes with 'yj_lfyi. Note
that ,yj—l%_ € G(e,r/4).

Using this idea, we may inductively define a sequence 3, € G(e,r/4) as follows. Set
B =1. Given 3, = 73_(;)'71(71) with j(n) > Z(n)7 set ﬁn-i—l = Vj_(;+1)71(n+1) where ](n+1) >
i(n+1) > j(n) and B,11 commutes with 3,,. Note that 0(8,) = 0(7i(n)) —0(7;(n)) tends to
zero, but is always non-zero. We see that each f3,, is loxodromic, and that m(3,) = |0(5,)|-

Now since (3,11 commutes with f,,, we see that (3,11 must fix setwise the axis I(5,,).
Thus (6,+1) = U(Br). Thus, by induction, I(5,) = [ is constant for all n. Since it is
translated arbitrarily small distances, we see that the group B(l) must be a dense subgroup
of R. &

We now want to relate this to convergence groups. Proposition 7.1 gives us a contin-
uous injective map f : T < D of T into a dendron D. We identify 7" with f(7T), so T C D
is a dense subtree. We can extend an action of a group I' on 7' by isometry to an action
of I' on D by homeomorphism.

Proposition 7.2 asserts that the action on D is a discrete convergence action if and
and only if the action on T is edge discrete. Now one direction is more or less immediate,
given Proposition 7.20. We thus concentrate on showing that the extension of an edge
discrete action is a convergence action. (Note that given this, it’s easy to see that the
terms “loxodromic” and “parabolic”, as defined in the two contexts, agree.)

We shall do this by showing the action on the space of distinct triples is properly
discontinuous. As in Section 6, we shall phrase our argument in terms of sequences. Thus,
technically, this only deals with the case where the dendron, D, is metrisable. This is
the principal case of interest to us. (Note, for example, that if T is separable then D is
separable, and hence metrisable.) One can obtain a proof in the general case simply by
rephrasing everything in terms of nets (cf. [Bo5]).

Our argument is complicated slightly by having to deal with two different topologies.
If (z;); is a sequence in D and = € D, we shall write x; — x to mean that x; converges to x
in the compact topology. Note that if all these points happen to lie in 7', then the assertion
that d(z, z;) — 0 is, in general, stronger (since the metric topology on T is finer). However,
if all these points are constrained to lie in some interval of T, then these statements are
equivalent (since both topologies agree on any interval).

Suppose, then, that I' acts isometrically on 7T, giving an induced action by homeo-
morphism on D. Suppose that the action on T is edge-discrete. We want to show that
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the action on distinct triples in D is properly discontinuous. We begin with the following
observation:

Lemma 7.21 : Suppose (;); is a sequence of distinct elements of I'. Suppose x,z’ € D,
z € T\{z} and 2’ € T\ {2'}. Suppose that (x;); is a sequence in D and (z;); is a sequence
in T. Then, it is impossible to have simultaneously that x; — x, v;x; — x', d(z,2;) — 0
and d(2',7;z;) — 0.

Proof : Suppose that these sequences do indeed converge in the manner described. Choose
some € > 0, and let w and w’ be the points in the intervals (z, z) and (z’, 2’), respectively,
with d(w,z) = d(w’,2’) = e. Such points certainly exist, provided we choose € small
enough.

Now for all sufficiently large i, we have w ¢ [z,x;] U [z, 2] and w' ¢ [z, vx;] U
[2/,vizi]. It follows that w € [z, 2] and w' € [vix;,vizi]. Now |d(viw,7vizi) — €| =
|d(w, z;) — €| < d(z,2;) and |d(w',v;z;) — €| < d(2',7viz;). Since w',v;w € [vixs, vizil,
we see that d(w',v;w) = |d(w',v;2;) — d(viw,v:z)| < d(Z',viz;) + d(z,2;) — 0. We also
have d(2/,v:2) < d(2',7vizi) + d(viz,vizi) = d(Z',viz) + d(z,2z;) — 0. It follows that the
sequence of edges, (7v;(z,w));, is Cauchy, contradicting the edge-discreteness of I'. &

Proof of Proposition 7.2 : We show that the action on distinct triples of D is properly
discontinuous. Suppose, for contradiction, that we can find sequences, (x;);, (v;); and (2;);
in D with x; — x, v; = vy, zi — 2, vix; — ', vy; — vy and ~v;2; — 2’, where z,y,z € D
are all distinct, and 2/, v/, 2’ € D are all distinct.

Let m = med(x,y, 2), m; = med(x;, y;, 2;) and m’ = med(2’,y’, 2’). By continuity of
the median (Lemma 1.3), we have that m; — m and v;m; — m’. Now, without loss of
generality, we have m # x, m # y and m’ # 2’. Thus, replacing z by m, z; by m;, and
either 2’ or ¢/ by m/, we can assume that z € (z,y), z; € (z;,y;) and either 2’ € (2/,y') or
y € (2, 2).

Suppose, first, that z
ly, yi]| and ~;z; ¢ [2/,viz;) U [y, vivi]. Now z; € (x;,y;) and so z; € (z,y). Also v;z; €
(vixi,viy:) and so v;z; € (2/,y’). Now, the metric topology on (z,y) agrees with the
subspace topology from D. Since z,z; € (z,y) and z; — z, we see that d(z,z;) — 0.
Similarly, since 2/, v;2; € (2',y’) and ~;2; — 2z’ we have d(2/,7;2;) — 0. Since x; — x and
vix; — x’', we get a contradiction to Lemma 7.21.

Finally, suppose that y’ € (2, 2"). For all sufficiently large i, we have that the intervals
[/, vixs], [V, viys] and [2/,v;2;] are mutually disjoint. Since y’ € (2/,2’), this tells us, in
particular, that v;2; € [v;x;,viy;]. This contradicts the fact that z; € (z;,y;). O

/ /

€ («',y'). For all sufficiently large i, we have that z; ¢ [z, x;] U
U

We now return to the question formulated earlier of constructing isometric actions on
trees from convergence actions on dendrons.

We shall want to restrict attention to metrisable dendrons. We saw in Section 1 that
every dendrite (i.e. separable dendron) is metrisable (Lemma 1.7), though this need not be
the case in general. (Consider for example the real pretree formed by taking uncountably
many copies of a real closed interval, and connecting them all together at one endpoint.
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This pretree is complete, and hence compact in the order topology. However the connecting
point has no countable base.)

We shall want to consider different kinds of metrics on a real pretree, T. In general,
we use the term “metric” in the elementary sense (as a map d : T2 — R). Two metrics
are equivalent if they induce the same topology. We are only really interested in metrics
for which (7', d) is topologically a real tree, inducing the original pretree structure. We
shall examine hypotheses under which this is the case.

Definition : A metric, d, on a real pretree, T', is monotone if, given z,y,2z € T with
z € [z,y], we have d(z, z) < d(z,y).

Note that this is equivalent to saying that the metric ball N(x,r) ={y € T | d(z,y) < r}
is full for all x € T and r > 0.

Lemma 7.22 : Suppose that T is a real pretree, and that d is a monotone metric on
T such that for all z,y € T, the interval ([x,y],d) is compact. Then (T, d) is a real tree,
inducing the the original pretree structure on T

Proof : First, we claim that ([z,y],d) is homeomorphic to a closed real interval. To see
this, suppose that a,b € [z,y| and z € (a,b). Choose 0 < r < min{d(z,a),d(z,b)}. Thus,
a,b ¢ N(z,r). Since N(z,r) is full, we have N(z,r) N [z,y] C (a,b). Thus, (a,b) is open
in ([z,y],d). Similarly, intervals of the form [z,a) and [y,a) for a € [z,y] are open in
([x,y],d). Since these form a base for the order topology on [z, y], we see that the metric
topology is finer that the order topology. Since the metric topology is, by hypothesis,
compact, and the order topology is hausdorff, we see that they must agree. Since T is a
real pretree, [x,y| is homeomorphic to a closed real interval in the order topology. This
proves the claim.

Now, since the metric balls N(x,r) are full, we see that the local connectedness hy-
pothesis of Lemma 2.19 is satisfied. We conclude that (7', d) is a real tree. &

(In our principal application of this lemma (Proposition 7.26), we shall see directly
that pretree intervals in the metric topology are homeomorphic to real closed interval, so
we could bypass much of the above argument.)

Definition : A metric, d, on a real pretree, T, is convez if, given x,y, z € T with z € [z, y],
we have d(z,y) = d(z,z) + d(z, x).

Now, clearly a convex metric, d, is monotone, and so by Lemma 7.22, (T,d) is a real
tree. But now it is clear that (7, d) satisfies the axioms of an R-tree. This gives us yet
another characterisation of an R-tree, namely as real pretree with a convex metric. Note
that, as we have already observed, any path metric on a real tree is necessarily a convex
metric. Also, from [MayO], we know that any metrisable real tree admits an equivalent
path metric. Unfortunately (for us) their construction is not a canonical one.

Suppose, now, that D is a metrisable dendron which admits a convergence action by
some group I'. Choose (for the moment) any metric d on D. Let R be the set of terminal
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points of D, and let T'= D\ R. Thus, (T,d) is a real tree, which is a bounded metric
space. Moreover, I' acts by homeomorphism on 7.

Lemma 7.23 : Given any x,y € T and r > 0, the set {y € ' | d(yz,~vy) > r} is finite.

Proof: Suppose not. Let (7;);en be a sequence of distinct elements of I' with d(~;x, v;y) >
r. Passing to a subsequence, we can find A, 4 € D so that the maps v;|(D \ {\}) converge
locally uniformly to the point . Let U be a connected neighbourhood of u with diameter
less than r. Now, since x,y ¢ R, we can find z’,y’ € D\ {\}, with [z,y] C [2/,y].
Now, for all sufficiently large i, we have v;x’,v;y’ € U. Since U is convex, it follows that
~vix, vy € U, and so d(v;x,~v;y) < r, contradicting the hypothesis on (~;). &

Thus, given z,y € T, we can define d'(z,y) = max{d(yx,vy) | v € T'}. Clearly, d’ is
[-invariant, and d < d'.

Lemma 7.24 : d’ is a metric.

Proof : We only really need to verify the triangle inequality. Suppose x,y,z € T. then
there is some v € I" such that d'(z,y) = d(yz,vy). Thus d(x,y) = d(yx,vy) < d(yx,vz) +
d(vz,vy) < d'(ye,vz) +d'(vz,yy) = d' (2, 2) + d' (2, y). ¢

Lemma 7.25 : Ifxz,y € T, then ([z,y],d") is homeomorphic to a closed real interval
(where [x,y] denotes an interval in the original tree (T, d)).

Proof : In other words, we want to show that the metrics d and d’ are equivalent on [z, y].
Since d < d’, it’s enough to show that, given any € > 0, there is some 1 > 0 such that if
a,b € [z,y] with d(a,b) <n then d'(a,b) < e.

Suppose, for contradiction, that this fails. There are sequences, (a;);en and (b;);eNn
of points of [z,y| with d(a;,b;) — 0 and d'(a;,b;) > €. Thus, there are elements ; € T
with d(v;a;,v:b;) > €.

Now, if {v; | i € N} were finite, we could assume that ; = 7 is constant for all 7. But
v maps [z, y| d-homeomorphically onto v([x,y]), and so v|[x, y] is uniformly d-continuous.
We get the contradiction that d(vy;a;,v:0;) — 0.

Thus, passing to a subsequence, we can assume that the elements ; are all distinct.
Thus, again passing to a subsequence, we can fine A, u € D such that the maps v;|(D\{\})
converge uniformly to pu. Now, since z,y ¢ R, we can find z’,y" € D\ {\}, with [z,y] C
[’,y']. We choose some connected neighbourhood U of p of diameter less that e. Now
for all sufficiently large i, we have v;2’,v;y' € U, and so ~;a;,v;b; € U. We thus get the
contradiction that d(v;a;,v:b;) < €. O

So far, this works for any metric on D. To go any further, we shall want to assume that
d is monotone. This is possible, since by the theorem of Bing/Moise referred to in Section
1, [Bil,Bi2,Moi], any metrisable Peano continuum admits a path metric. In particular, D
admits a convex metric, which is certainly monotone. (This also follows from the result of
MayO].)
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Now, the property of monotonicity is clearly preserved in passing from the metric d
to d’. By Lemmas 7.22 and 7.25, it thus follows that, in this case, (T, d) is topologically
a real tree.

Now, since d < d’, the inclusion map f : (T,d') — (D, d) is a continuous injection,
and f(T) is dense in D. Thus, D is the unique compactification of the real tree (7, d’) as
described by Proposition 7.1.

Finally recall that a metrisable real tree has the topological structure of an R-tree
[MayO].

In summary, we have shown:

Proposition 7.26 : Suppose that D is a metrisable dendron, and that I' acts homeo-
morphically as a convergence group on D. Then, there is an R-tree I', with an action of
I' by homeomorphism, and a I'-equivariant continuous injection f : T — D, with f(T)
dense in D. Moreover, T admits a I'-invariant monotone metric which is equivalent to the
R-tree metric. &

In other words, T" admits one metric which is convex, and another (equivalent) metric
which is monotone and I'-invariant. Thus we arrive at the natural question, can the
convex metric itself be made I'-invariant? In [Bo3], we succeed in constructing a convex
pseudometric, sufficient for our purposes with regards to hyperbolic groups.

In the above construction, we made a choice of monotone metric, d, on the dendron D.
It turns out that the induced topology on (7', d’) is independent of this choice. This follows
from the following observation. We start with a dendron D, admitting a convergence action
of a group I', and let T be the subpretree consisting of the set of all nonterminal points.

Lemma 7.27 : Suppose that d is any monotone metric on D (inducing the original
topology), and that d is any I'-invariant monotone metric on T. Then, the identity map
from (T, dyp) to (T',d") is continuous.

Proof : Suppose not. Then we can find sequences of points x;,y; € T, with do(x;,y;) — 0
and d'(z;,y;) bounded below. Now (after applying appropriate elements of I'), we can sup-
pose that d(z;,y;) = d'(x;,y;). In particular d(z;,y;) is bounded below, whereas dy(x;, y;)
tends to 0. Now, on passing to a subsequence, we can suppose that z; — x € D and
yi — y € D (in the topology on D). Since d(x;,y;) is bounded below, z # y. Now choose
any distinct points a,b € (z,y). Thus, for all sufficiently large i, we have a,b € (z;,y;)-
But now, by monotonicity, we get that do(x;,y;) > do(a,b) > 0, contradicting the fact that
this sequence tends to 0. &

Corollary 7.28 : Suppose D, I" and T are as above. Suppose that di and do are
monotone metrics on D (inducing the original topology). Then, the metrics d| and d’, on
T are equivalent.

Proof : Apply Lemma 7.27 with d = d; and dg = d}, and with d =ds and dg =d}.

This shows that the topology we obtain on 7" in this way is a canonical one. It can be
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described as the coarsest topology on 71" which can be induced by a I'-invariant monotone
metric.
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